
STRICTLY CONFIDENTIAL

CS213 – April 2003 – Mark Scheme

Page 1 of 13

Do not award half marks.

In all cases give credit for appropriate alternative answers.

Question 1 (Compulsory) (30 marks)

(a) The following are three basic software development methodologies. List one

advantage and one disadvantage for each methodology.

(i) Classic model.

(ii) Prototyping.

(iii) 4
th

 generation techniques. [6]

 Advantages Disadvantage

Classical Life-
Cycle

Sequential method of
development, well-
established, suits wide range
of applications well.

Users change requirements,
and no contingency for this.

Prototyping

The concept of a visual
"model" that allows users
and developers to refine
requirements.

Iteration of prototype from
continually changing
requirements will result in
wasted time and effort.

4th Generation
Techniques

Broad range of tools allows
for easy creation and
modification of software.

Limited application domain.

(1 mark for each characteristic. Alternative answers are quite possible
here)

STRICTLY CONFIDENTIAL

CS213 – April 2003 – Mark Scheme

Page 2 of 13

(b) The transform analysis design technique takes a data-flow diagram, and maps it

into a simple program structure with the aid of a pre-defined template. Consider

the following data-flow diagram showing incoming flow.

A

D

B

C

F

G

E

Boundary

of

Processing

Incoming flow Transform flow

Map all the processes A to G into a program structure. [8]

Incoming Flow

Controller

Program

Transform Flow

Controller

B F CG

D EA

One mark should be awarded for the correct placement of each process,
and one mark should be awarded for representing the relationship
between the processes and the flow controllers.

STRICTLY CONFIDENTIAL

CS213 – April 2003 – Mark Scheme

Page 3 of 13

(c) The following are characteristics of programming languages. Describe each of

them.

(i) Uniformity.

(ii) Compactness.

(iii) Ambiguity.

(iv) Tradition.

(v) Source code portability.

(vi) Availability of development tools. [6]

(i) Uniformity indicates the degree to which a language uses
consistent notation, applies arbitrary restrictions (1 mark).

(ii) Ambiguity refers to the situation in which a programming
language is perceived by the programmer in one way, but the
compiler always interprets the language in another way (1 mark).

(iii) Compactness indicates the amount of code-oriented information
that must be recalled from human memory (1 mark).

(iv) Tradition refers to the fact that a programmer with experience in
one form of language will find it easy to pick up another language
that has the same sort of constructs in the former (1 mark).

(v) Source code portability generally refers to whether source code
may be transported from processor to processor and compiler to
compiler with little or no modification (1 mark).

(vi) Availability of development tools can shorten the time required to
generate source code and can improve the quality of code (1
mark).

STRICTLY CONFIDENTIAL

CS213 – April 2003 – Mark Scheme

Page 4 of 13

(d) Consider the following flow graph.

1

2

3

4 5

(i) Copy the above diagram into your answer sheet, and based on this flow-

graph, derive the value of V(G). Show all three methods of calculation,

with full working. [6]

(ii) Based on this value of V(G), derive the basis set of test paths. [4]

STRICTLY CONFIDENTIAL

CS213 – April 2003 – Mark Scheme

Page 5 of 13

Regions method: V(G) = no. of distinct regions = R1 to R4 = 4

1

2

3

4 5

R1

R2

R3

R4

Regions must be clearly identified before the mark can be awarded.
V(G) = predicate nodes + 1 = Predicate nodes (1, 2, 4) + 1 = 3 + 1 = 4
V(G) = edges – nodes + 2 = 7 edges – 5 nodes + 2 = 4

(2 marks should be awarded for the correct application of each method.)

Basis set:
Path 1: 1-3-5
Path 2: 1-2-3-5
Path 3: 1-2-4-5
Path 4: 1-2-4-3-5

Alternative basis sets are possible; as long as each path in the set of four
is examining a previously untested edge.

4 marks for complete correctness of paths
3 mark if one mistake is made in path
2 mark if two mistakes are made in paths
1 mark if three mistakes are made in paths

STRICTLY CONFIDENTIAL

CS213 – April 2003 – Mark Scheme

Page 6 of 13

Question 2

(a) Define what is meant by the term Software Engineering. [2]

Software Engineering is the establishment and use of sound engineering
principles (1 mark) in order to obtain, in an economical fashion, software
that is reliable and works efficiently on real machines (1 mark).

(b) List three problems associated with the software crisis. [3]

One mark should be awarded for each problem listed (up to a maximum
of three marks). Examples include the following:

� Schedule and cost estimates are often grossly inaccurate.

� The productivity of software developers has not kept pace with the
demand for their services.

� The quality of software is sometimes less than adequate.

� There is little data on the software development process, forestalling
improvements that can be made by looking at past experiences.

� Poorly-defined customer requirements at the start of a software
development cycle has resulted in customer dissatisfaction with the
completed software at the end of the cycle.

(c) "The spiral model of development is said to combine aspects of prototyping and

also the classic model." How does the spiral model combine prototyping and the

linear sequential model? [2]

The spiral model combines the iterative nature of prototyping (that allows
for the refinement of expectations before actual product construction) (1
mark) with the controlled and systematic aspects of the linear sequential
model (1 mark).

STRICTLY CONFIDENTIAL

CS213 – April 2003 – Mark Scheme

Page 7 of 13

(d) Draw a diagram showing the different steps of software development for the

spiral model. In addition, describe each step of the model. [8]

One mark should be awarded for the correct placement of stages in the
above and one mark should be awarded for the spiral-like representation.

� Customer communication: tasks required to establish effective
communication between developer and customer (1 mark).

� Planning: tasks required to define resources, timelines, and other
project related information (1 mark).

� Risk analysis: tasks required to assess both technical and
management risks (1 mark).

� Engineering: tasks required to build one or more representations of
the application (1 mark).

� Construction and release: tasks required to construct, test, install and
provide user support (e.g. documentation and training) (1 mark).

� Customer evaluation: tasks required to obtain customer feedback
based on evaluation of the software representations created during
the engineering stage and implemented during the installation stage
(1 mark).

STRICTLY CONFIDENTIAL

CS213 – April 2003 – Mark Scheme

Page 8 of 13

Question 3

(a) Describe the three views of data and control in the information domain. [6]

Information flow (1 mark): represents the manner in which data and
control change as each moves through a system (1 mark). Information
content (1 mark): represents the individual data and control items that
comprise some larger item of information that is transformed by the
software (1 mark). Information structure (1 mark): represents the internal
organisation of various data and control items (1 mark).

STRICTLY CONFIDENTIAL

CS213 – April 2003 – Mark Scheme

Page 9 of 13

(b) A stock trader exists in three states of behaviour: “normal”, “happy” and

“angry”. The default state for this trader is in “normal”. Based on the daily

happenings of the stock market, this trader can transit between each of the three

states of behaviour. Specifically, when the trader is in “normal” state:

� If the stock market is stable, the trader continues to remain in “normal” state,

and continues to observe the daily stock market status.

� If the stock market crashes, then the trader will immediately transit to “angry”

state, regardless of the current state he is in (whether “normal” or “happy”),

and immediately re-look into his investment options.

� If the stock market improves, the trader will transit from “normal” state to

“happy” state, and look into ways of investing his income.

Translate this scenario into a simple state-transition diagram. [9]

Normal

Angry Happy

"Stock Market Crashes"

"Relook into investment options"

"Stock Market Improves"

"Invest new income"

"Stock Market Crashes"

"Relook into investment options"

"Stock Market Stable"

"Observe daily stock market status"

Each of the three remaining transition arrows - 1 mark = 3 marks total

Each "condition" or "event" triggering the transition - 1 mark = 3 marks total

Each "consequence" or "action" that takes place as a result - 1 mark = 3 marks total

STRICTLY CONFIDENTIAL

CS213 – April 2003 – Mark Scheme

Page 10 of 13

Question 4

(a) Consider the following structure.

A

B C D

F G HE

(i) In the context of the above structure, what do we mean by depth?

(ii) In the context of the above structure, what do we mean by width?

(iii) What is the width of this structure?

(iv) What is the relationship between module C and module F?

(v) What is the fan out of module D?

(vi) What is the size of this structure? [7]

(i) The depth is the number of detail levels in the structure (1 mark).

(ii) The width is the overall span of control (1 mark).

(iii) The width is 4 (1 mark).

(iv) Module C is superordinate to module F (or module F is
subordinate to module C) (1 mark).

(v) The fan out of module D is 2 (1 mark).

(vi) Size = number of nodes + number of arcs (1 mark)
= 15 (1 mark)

STRICTLY CONFIDENTIAL

CS213 – April 2003 – Mark Scheme

Page 11 of 13

(b) Consider the following simple pseudo-code fragment.

main {

run subroutine A()

run subroutine B()

}

A() {

while condition C1 is true, run subroutine C()

}

B() {

If condition C2 is true, run subroutine D();

else run subroutine E()

}

C() {

ADD numbers

}

D() {

SUBTRACT numbers

}

E() {

DIVIDE numbers

}

Translate this code fragment into a structure using Jackson’s notation. [8]

main

A () B ()

C () D () E ()
* o o

C1 C2

[A(), B() - 1 mark each = 2 marks]

[C1 and C2 placement -

1 mark each = 2 marks]

[C() - 1 mark,

iterative symbol - 1 mark.

Total = 2 marks]

[D(), E() - 1 mark,

selection symbol - 1 mark.

Total = 2 marks]

STRICTLY CONFIDENTIAL

CS213 – April 2003 – Mark Scheme

Page 12 of 13

Question 5

(a) The following diagram demonstrates testing in relation to other processes.

Based on your understanding of testing as an activity in software development,

describe each process in relation to testing. In your answer, also your clarify

what items A to G are, and how they are used in each process. [8]

A = Software configuration; B = Hardware configuration; C = Test
Results; D = Expected Results; E = Errors; F = Corrections to errors; G =
Error rate data

The following mark allocation is to be used:
Description for each of the four processes (1 mark each, total 4 marks) –
see page 8-2.
Data flows (A to G): 1 mark for one or two correct; 2 marks for three or
four correct; 3 marks for between 5 or 6 correct; 4 marks for 7 correct.

Testing

Evaluation

Debugging

Reliability

Model

A
B

C

D

E

F

G

STRICTLY CONFIDENTIAL

CS213 – April 2003 – Mark Scheme

Page 13 of 13

(b) All software testing strategies are said to share common characteristics. List

three of these characteristics. [3]

One mark should be awarded for each characteristic named (up to a
maximum of three marks). The characteristics are as follows.

� Testing beings at the module level and works "outward" toward the
integration of the entire computer-based system.

� Different testing techniques are appropriate at different points in time.

� Testing is conducted by the developer of the software and (for large
projects) an independent test group.

� Testing and debugging are different activities, but debugging must be
accommodated in any testing strategy.

(c) Describe each of the following types of system testing.

(i) Recovery testing.

(ii) Security testing.

(iii) Stress testing.

(iv) Performance testing. [4]

(i) A system test that forces software to fail in a variety of ways and
verifies that recovery is properly performed (1 mark).

(ii) Security testing attempts to verify that protection mechanisms
built into a system will in fact protect it from improper penetration
(1 mark).

(iii) Stress testing is designed to confront programs with abnormal
situations where unusual quantity frequency, or volume of
resources are demanded (1 mark).

(iv) Performance testing seeks to test the run-time performance of
software within the context of an integrated system (1 mark).

-END OF PAPER-

