Dieter R. Pawelczak

DPas32 - 32 bit Pascal Compiler

The DPas User Manual & Reference Guide

Dieter R. Pawelczak

(C) 19972000 byDipl.-Ing. (Univ) Dieter R. Pawelczak,
Fasanenweg 41,

D-85540Haar,

Germany

All rights reserved. This manual is ©ld subject to the cndtion that it shal nat, by the way
of trade or otherwise, be lent, re-sold, hired out or otherwise drculated without the prior
written permisson d the aithor.

No part of this pulication may be reproduced o transmitted in any form or by any means,
electronicdly, opticd or medhanically, including phdocopying, recording a any information
storage or retrieval system without either the prior written permission of the author or a
license from the author, permitting restricted copying.

The author takes no warranty for the examples, the manuals, the usage and the de
generation d DPas32. The software comes without any warranty.

Windows, MS-DOS is a trademark of Microsoft, Pentium is a trademark of Intel.
Turbo Pascal (TP) is atrademark of Borland Inc., now Inprise.

For my dea wife Alexandra

About

This is the first BETA release of the DPas Compiler. The difference between the previous
ALPHA releases is huge, especialy concerning the code generation and ogimization.

DPas is a Pascal Compiler, that generates directly executable 32-bit Applicaions withou any
further Assembling a Linking.

The Compiler structure is a dired code generator, i.e. there ae no stages between parsing,
scanning and code generation. This makes the source code of the compiler on the one hand
very tough, onthe other hand, it provides a lot of advantages. The main advantage was, that
even with orly a very little functionality, the compiler already created executable de.
That's, why | already puldished a preliminary Alpha Versionin 1997 This release was just
able to understand integer expressons and most standard Pasca commands with a lot of
l[imitations. Nevertheless with abit luck, | managed to code the Pro 32 debugger already with
thisinitial release.

Ancther advantages is, that the compiler requires a minimum of hegp memory. Withou
building a red command tree, the compiler saves a lot of memory. As DPas is a DOS
product, written with Turbo Pascal, this is very important. The compiler needs only memory
to store the symbol names. So any sourceis only limited by the number of symbadls.

And last but not least, the compiler is very fast. Again for the same reasons. During the
parsing d the source, the compil er already creates code.

In the mean time, the cwmpil er creaes highly optimized code. This makes the wmpiler source
code very complex, as each optimization dgpends on previous read code and foll owing code.
Espedally hard is, of course, the aror tracing. As for each ogtimization a correspondng test
program needs to be written, thisis an immense dfort. Therefore, DPas will remain for quite
some time a BETA version.

DPas is an ongang development. In brief, thisis planned for the near future:
— Win32 suppat
— DPasis able to compiler Pass32
— DPasis able to compil e itself

Contents

N o o 1 4
LO0] 0 1= 0115 PP PRPPPPPIN a
g0 o 11 o 1 o o I 7
1. Getting Started With DPas........c..oiiniiiii s 9
1.1 Frst EXAMPIE .. 9
1.2 CompiliNg With DPaS32.........cuuuiiiiiiiiieeeeeeee e e e 10
1.2.1 Compiling Programs and UNItS..........cooiiiiiiiiiiiiiiiiiiiieee e e 10
1.2.2 Compilingthe SYSTEM UNit........ccooiiiiiiiiceece e vmeeem e 11
1.3 The Command LinN€ ArQUMENESeuriiiiiiiiieeeeaaeeeeeeaeaasie b bemeeeaeeeeeeeeees 12
1.4 The Standard Program StIUCLUIEiiiiiee e 12
1.4.1 Structure of the SOUrCECOORevuverriiiiiiieeee e ee e eeeen e 12
1.4.2 Structure of the Program COde.........cccooeeeiiiiiiieeee e 14
1.5 The Compiler DIFECLIVES.........coevviiiiiiiiiee e e e 15
1.5.1 Compiler Control DIFECLIVES.uuuuiieieieeeeeeeee i mreeena s 16
1.5.2 Code Generator Control DIreCtIVES.........cceeeieiiiiiiiiiiiiiiiiee e 17
2. The DPasS LanQUAaQE.......u.cceumiiemueeemeeiiseeiime e e e e e e e e e e ann e 19
N R Y/ o PPN 19
N N RS = [0 = o I Y 0SSR 19
N A 1 10T 20
2.1.3 ENUMEIatioN TYPES ..cceiiiiiiiieeeeeeeee ettt e e e e e e e e e s semmmmmme e 20
2.1.4 Type SUBSHIULION......ccco e e e 20
2.1.5 RECOM TYPES...utttuuuiiiiii it e e e e ee ettt s e se b raaaaeaeeeaaeeeees 20
2.0.8 AT Y S ittt e e e e e 21
P ©o | o= S PPPPPUPPPPPPRPPPPRR 21
2.3 VAADIES. ...t a e 21
2.4 PasCal CONSIIUCEScceiiiiieeeieiiii ittt ettt e e e e e e e e e e e e e s 111 22
2.5 INliNE ASEMDIES ... ———————— 22
2.6 Procedure/ FUNCLION NGBScoooeiiiiiiiiieeeeeee e e 22
2.7 SYSEEM UNIT. ittt ettt e e e e e e 23
2.8 RUN TIME LIBRARY ..ottt s e 24
P2 S T A O I PP PPPPRPPPPPPPPPPPRR 24
2.8.2 DOSB ... ettt a e e e e e e e aa e e e e e aa e e e e 24
2.9 Import of Dynamic Link Libraries. ... 24
P20 O I @ o 1] 0 4] = (o] 1SR 25
2.10.1 EXPIESIONS. .. ucuutttttiieireeeeteataaaaeaaeaaaasaaaaaaaibbb bbb be e e e e e e et eeeaeaaeeaeaaaaaaaaaaaaaaans 25
2.10.2 MUItipliCatiON / DIVISION....uuuiiiiieieeee e eee e e e e e a2 a e e e e 25
2.10.3 Constant Off SELS.......cciiieieiiiiiiiieeee e e e e e e e 25
2.10.4 ASEMDIEr ProCEAUNES.uiiiiei e e e e 26
3. EXAMPIES. ..t 27
Sl PHIMIES et a e e e e e aa e e e e e e e e e 27

(c) 1999 by Dieter R. Pawelcz&, Munich

G 1= o O 27
G 70 T I = 1 o SPS 27
B4 PASSU . 27
S I | o T S SRR 29
4.1 SYMDOIS ..ttt 29
A ©o] > TP RRPPPPRP 29
B3 TYPBS. ettt e et s 30
4.4 AITAY DEPEN ... s 30
T = ToTo [g I e o 1SS T 0] oS 30
G T Y S | PP 31
A7 WITH ettt ettt e e e e e e e e e e e e e e e e e s s bbb bbb rrneeeeeees 31
.8 ASM.eeiiiiiiiee et a e e e e e e e e e e e e b 31
e VY1 (= TR (= | o 31
4.10 Procedure/ FUNCLION FBadErS..........cooviiieice e s 31
S £ RRPPP 31
4,12 EITOr IMESSA0ES . ctuuceti e eeti ettt e ettt e ettt e et e e e et e e e et e e et e e e et e e e e e e eeann s 31

(c) 1999 byDieter R. Pawelcz&, Munich

| ntroduction

What is the DPas32 Compiler?

The nametellsus all: Pas stands for Pascal, the number 32 informs us, that the target platform
is 32 hit and the prefix D comes from my surname. Therefore, DPas can na compile any
Pascal, it can compile Dieter’s Pascal.

Who uses the DPas32 Compiler?

Anybody, who wants to work under a fast and stable operating system, i.e. 32 kit DOS.
Pass32 programmers, as DPas understands Pass32 DLLs. Turbo Pascal programmers, who
finally made the jump from 16 to 32 ht.

DPas is afast 32 kit Pascal Compiler. It is compatible in its g/ntax to Turbo Pascal, bu it
does not provide the same run time library and it does not provide dl feaures of Turbo
Pascal. It is a Standard Pascal compiler and does not provide any olject oriented
programming methods.

DPas suppats units in the same manner as Turbo Pascal and therefore allows moduar
programming.

DPas creates highly optimized code, e.g. DPas provides optimization d constant expressons,
optimization d bodean expressons, optimizaion d const field expressions, ogimization o
multiplication/ divisions, ogtimization d procesor instructions.

What is DPas nat?

DPasis not a Turbo Pascal clone. It is, of course, possible to pat Turbo Pascal programs to
DPas programms, bu the effort varies alot, depending onthe TP source.

DPas is not a commercial prodict. It is an ongang development of 1(!) private person,i.e.
me. Therefore, | can nd make any guarantees for bug fixes, upgades, etc. | also can na give
suppat on DPas, except, you py me on the basis of areally high german pditician’s slary.
Nevertheless | use DPas for several projects for myself, so it is in my interest also, to
increase the quality of the product

Who shoud read this manua ?

This manual is not a Pascal tutorial, you can find already enough @ these in the World Wide
Web. This manual gives an introduction on hav to use DPas. It describes the features of
DPas as well as its limits (always in comparison to Turbo Pascal). In the meantime you lean
something abou compil er programming and protected mode programming. So, this manual is
not only for a DPas user, it is also interesting for any protecded mode and compiler
programmer.

First Example 9

1. Getting Started with DPas

1.1 First Example

Any reaer is used to the standard 'Hello, World' - example. Therefore you shoud not miss
it in this manual. The first example prints three times’Hello, World!" in threedifferent ways:

PROGRAM HELLO;
VAR c:STRING = "HELLO,WO RLD’;
S:STRING;

BEGIN
writein(HELLO, WORLD!)
writeln(c);
s:=’HELLO, WORLD’;
writeln(s);
END.
Exanmpl e 1: HELLO PAS

The source can be compiled and executed under DOS with:
DPas hello
hel | o

This smple application already describes some of the main functions of the compil er:

The generated code is linked together with the Pro32 Dos Extender into a standalone applica
tion. In order to perform the writeln function, the Compiler links the SYSTEMunit to the
main program. Try the same example with the uses instruction. The uses instruction im-
ports and links additional units to the code. In case you import the CRT32 unit, the standard
readln and writeln are overwritten. The standard SYSTEMunit uses DOS functions,
whereas the CRT32 unit accessdirectly the video memory for writeln and the keyboard
buffer for r eadIn . This allows a much faster output, but programs using the CRT32 unit can
naot redirect the standard inpu and ouput.

PROGRAM HELLO2;
USES CRT32;

VAR c:STRING ='"HELLO,WO RLD’;
S:STRING;

BEGIN
writeln(HELLO, WORLD! ")
writeln(c);

(c) 1999 by Dieter R. Pawelcz&, Munich

10 Getting Started with DPas

s:='HELLO, WO RLD’;
writeln(s);

END.

Exanpl e 2: HELLQOR2. PAS

When yourun the second example, youwill natice alightred output to the screen. Lightred is
the default color for the CRT32 unit. You can easily change the value of this color in the
CRT32unit.

1.2 Compiling with DPas32

1.2.1 Compiling Programs and Units

DPas compiles only one program / unit per call. DPas does not provide a build feature, nor
does it chedk source @mde dependencies. This makes compiling a bit more difficult as with
Turbo Pascal for example. Nevertheless DPas suppats moduar programming, therefore you
just need to re-compil e the unit, that actually changed. Aslongas the interface definition stays
compatible, you dont need to re-compile other units, which depend from that modified unt.

In the case of our simple example HELLOZ2 the CRT32 unit need to be compiled first:

DPAS crt 32
DPAS hel | 02

If youwant to change the default color in the CRT32 unit, you have to recompile the CRT32
unit, and, d course also you application.

Imagine, a second unt: We aeate a unit HUNIT, that simply writes 3 time "Hello, World!’
and dfers asingle procedure clled W iteHello

UNIT HUNIT;
interface
USES crt32;

PROCEDURE Write Hello;

implementation
VAR s:string = ' Hello, World’;
PROCEDURE Write Hello;
begin
writeln(‘Hell o, World);
writeln(s);
s:='Hello, Wo rid:;
writeln(s);

(c) 1999 byDieter R. Pawelcz&, Munich

Compili ng with DPas32 11

END;
END.
Exanpl e 3: HUNIT. PAS

Our third example could then look much easier, i.e.:

PROGRAM HELLO3
USES hunit;
BEGIN
WriteHello;
END.
Exanpl e 4: HELLGB. PAS

Now, we have the following dependencies:
HELLOS3 --> HUNIT --> CRT32
In order to buld the gplication Example 4 (HELLO3.PAS), you reed to compil e

DPAS crt 32
DPAS huni t
DPAS hel | 03

In case any o these units are already compiled, you doft neal to re-compile, of course. If
you want to change the mlor of the hello-message, you can modify CRT32. Now, as long as
you dorit change anything in the procedure interfaces, youdon’t need to re-compile HUNIT.
Y ou modify the implementation d the Writeln procedure in CRT32, for example, the you re-
compile CRT32and HELLO3and you modifications will have eff ect.

There is one exception in this rule: the SYSTEMunit.

1.2.2 Compiling the SYSTEM Unit

One of the most important features of DPas is, that the SYSTEMunit comes with complete
source @de. This makes system specific changes of the compil er very easy.

The system unit is compiled with the compiler switch /SYSTEM The system unit needs to be
cdled SYSTEMP AS for 32 bit DOS-Applications and W N32. PAS for Win32 Applicdti-
ons.

Note, the SYSTEMunit is the basis for al further units and applications. In case you re-com-
piled the SYSTEMunit, you reed to re-compile all units, otherwise, you application will ter-
minate with the run-time-error #0, or create an exception.

1.Not supported in DPas Version 17
(c) 1999 by Dieter R. Pawelcz&, Munich

12 Getting Started with DPas

1.3 The Command Line Arguments

DPas expects the foll owing syntax:

dpas filenane[.ext] [options]

As default, DPas extends the fil ename with the '.PAS extension. The file shoud be a stan-
dard ASCII pascd program, unt or DLL source.

DPas provides the following ogions:

option description

- f skipsthelinking d the PE-Header / Pro32
dos extender. Theresult isabinary file,
that contains code and ceta, starting at an

offest 0100h.

-wA target is aWin32 GUI application.

-wed target isaWin32 Console gplication.

- du adds debuginformation of units. The units
need to be compiled with the -df option.

- df creates debuginformation of the current

source. DPas creates a .DMP file, which
can beread bythe Pro32Debugger in
order to dsplay the source code.

-system allows DPas to compiler the system unit.

- mem xxxx | definesthe minimum memory require-
ment in KBytes.

a. not yet supported by V1.7

1.4 The Standard Program Structure

14.1 Structure of the Source Code

A standard DPas program begins with the PROGRAMinstruction. This first keyword PRO-
GRAM describes what the compiler should crede. Per default, DPas creaes an application.
Therefore the PROGRANMstruction is optional.

Instead of PROGRMa DPas source could start with the keywords UNIT and DLL:

(c) 1999 byDieter R. Pawelcz&, Munich

The Standard Program Structure 13

The following source code defines a standal one appli-

PROGRAM cation. (default)

The sourcedescribes a UNIT, i.e. aset of identifiers,
UNT function and procedures, which can belinked by dher
UNITs or PROGRAMSs

Thisunit does nat contain code, it contains only the
definition d an external dynamic link library, whichis
load dyramically during the runtime. The unit may
contain enum and record type definitions.

DLL

Directly after the PROGRAMMstruction, unts can be imported with the USEScommand.

The USEScommand is followed by a comma separated list of modue names. The SYSTEM
unit is always linked per default and therefore shoud na appear on this list. The USEScom-
mand reeds to come before any code or data definiti ons.

Now, typicaly global types, variables and sometimes even procedure prototypes are defined.
In ou first example, two strings are defined:

VAR ¢:STRING = 'HELLO,WO RLD’;
S:STRING;

You aready ndice adifference to Turbo Pascal: global variable definitions can already as-
sign values to the variables. This can either be done with the standard CONSTdiredive, or di-
rectly inside a VAR definition. The following examples are valid data definitions:

VAR Field:ARRAY/[0..24,0. . 79] OF WORD = $0720;
Screen:ARRAY[0..24,0. . 79] OF WORD ABSOLUTE = $B8000;

VAR MaxX,MaxY:INTEGER = 100;
[LJ:BYTE;
TEST:BOOLEAN;

In the first example, atwo dmensional ARRAYof WORIDs generated. In the oppasite to the
CONSTdefinitions, you dont have to specify all of the 2000fields. Y ou can define oneinitial
value, which will be applied for the whoe ARRAY

In the second line, you'll find an ABSOLUTE definition. The specifier ABSOLUTE defines,
that the variable is not part of the program’ s data segment, the variable points to the asolute
addressas specified. In ou case, the field pdntsto $B8000, which is the physicd addressof
the video memory. As baoth arrays are identically, you gobably know, what the first two lines
mean: Field can be used as a virtual screen and copied to Scree n and vice versa

(c) 1999 by Dieter R. Pawelcz&, Munich

14 Getting Started with DPas

The next example shows the integer definition d MaxX and MaxY: both will take the value
100.The next threedefinitions for | and J will have the init value 0, and FALSE for TEST,
which are the defaullt.

A procedure prototype is defined with the PROCEDUR& FUNCTIONcommand:

PROCEDURENANE [(Parameter {, Parameter})] ; [Specifier;]
FUNCTION NAME [(Parameter {, Parameter})] : Type; [Specifier;]

A functionrequires a return type. Note, that DPas supports any standard Pascal type plus user
defined record and enum types as valid return types. Even panters are dlowed as return ty-
pes, as the following example shows:

function longst r :Astring;
begin

getmem(longstr , 1024);
end;

Please nate, that thisis not allowed in Standard Pascal!

The specifier for procedures are:

FORWARD | Theprocedureis defined as a prototype, the implementation
follows later in the source

ASSEMBLER| The procedureis aplain assembler procedure. As parame-
ters, CPU registers are used.

FAR The procedure is afar procedure, required to call functions
of aPass32DLLs.
WIN322 The procedure is aWin32 pototype.

INTERRUPT | The procedure is a protected mode interrupt.

a. inVersion 1.7 not yet supported.

The main body of a program begins after the first BEG N command outside aprocedure /
function implementation. The main bodyends with ENDfollowed bya’.’. Note, there can be
no further instructions after END

14.2 Structure of the Program Code

a) Global Structure
Every application created with DPas has the same structure:

(c) 1999 byDieter R. Pawelcz&, Munich

The Compiler Directives 15

OFFSET Description
00x00100h & | Program Entry Point: jumptothe acual
start-up code.

00x00105h reserved
00x00140h Code and ckta of the SYSTEMunit.
00x02D40h ° | Code and data of the first unit in the

USESlist.
00x*****h Code and ceta of the foll owing units.
QQ******h Code of the main program.
QFrxkikfy Data of the main program.
Fhkkkkkkh Heap memory of the main program.

a. Under the Pro32 Dos-Extender the x stands for O, under
Win32, the x stands for 4.

b. This value depends onthe SYSTEMunit version, and, of
course onthe DPas Version, that compil ed the SYSTEM unit.

DPas initializes al global data, i.e. all your data declarations will be part of the binary.

For the unit import, DPas resolves the dependencies of the units. In our Example 4
(HELLO3.PAYS), the unit CRT32is used by HUNIT. Therefore, DPas will import the unitsin
the following ader: SYSTEMCRT32, HUNIT. In case the user adds CRT32to the uses ®¢
tion d Example 4 (HELLO3.PAS), there would be no dfference:

USES hunit,crt32; or:
USES crt32,hunit;

b) Start-Up Code

The start-up code is created, when DPas parses the main body,i.e. the main BEGIN instruc-
tion. The start-up code will create astack frame and then call each main function o each urit.
Note, independent on the number of includes of a unit, each main function d a unit is called
only once The main procedure is called last.

Start-up code is only added to the main program and nd to unts.

1.5 The Compiler Directives

DPas suppats smilar to Turbo-Pascal compiler directives. The main dfferenceis, that com-
bination d multiple directivesis nat al owed.

(c) 1999 by Dieter R. Pawelcz&, Munich

16 Getting Started with DPas

15.1 Compiler Control Directives

Directive Description

{$DEFINE Name } defines a condtional define.

{$IFDEF Name} Thefollowing codeis compiled in
case Nane has been defined.

{$SENDIF} End d condtional block.

{$ELSE} Alternative block, that is compiled in
case Nane has not been defined.

{$UNDEF Name} undefines a condtional define.

Note, that DPas defines aways the condtional define:
DPAS?2

To verify whether the sourceis compiled by DPas, you can write:
{$IFDEF DPAS2}
{ Now DPAS CODE }
{$ELSE}
{ Other compile r,eg. TP}
{$ENDIF}

(c) 1999 byDieter R. Pawelcz&, Munich

The Compiler Directives

17

15.2 Code Generator Control Directives

Directive

Description

{$M xx,yy,zz}

defines the memory requirements for
the program in KByte: xx defines the
stack size, yy the minimum and zz the
maximum required memory.

{$I+} {$I-}

enables / disables 1/0O error checking.
When enables, after each system call,
the value of 10Error ischecked. When
unequal to zero, the program aborts
with arun-time eror.

{$S+} {$S-}

enables/ disables gack size dhecking.
When enables, the program abortsin
case the avail able stadk memory istoo
little.

{$A+} {$A}

enables / disables alignment. When
enabled, each data offset isaligned to
4. Note, that record types then might
not represent the actual intended struc-
ture.

(c) 1999 by Dieter R. Pawelcz&, Munich

18

Getting Started with DPas

(c) 1999 byDieter R. Pawelcz&, Munich

Types 19

2. The DPas L anguage

DPas suppats most of standard Pascal and adds ome very powerful features, mostly derived
from C.

2.1 Types

21.1 Standard Types

DPas suppats the following standard Pascal types:

BYTE unsigned 8 lt storage

WOR unsigned 16 bt storage
Dw@aD unsigned 32 bt storage

INT EGER signed 32 bt storage

LONGINT signed 32 hit storage®
POINTER unsigned 32 bt address $orage.
SING.E 32 bt IEEEfloat

FLOAT 32 kit IEEEfloat”

DOWBLE 64 bt IEEEfloat

BOQEAN TRUE/FALSE, 8 Lt storage
TEXT 32 [t file descriptor

STR NG 256 byte longzero terminated string

a. for TP compatibility, may be extended to 64 bit in future.
b. for TP compatibili ty, there is no FPU emulation.

The ~-operator is a standard operator in DPas, which defines a pointer of the spedfied type.
Therefore, the *-operator can be used with any type in any procedure / function definition.

The following parameter definition

PROCEDURE A(P:ASTRING);

isasvalid as afunction like:
FUNCTION longstr:"STRING
begin
getmem(longstr,1024);
end;

(c) 1999 by Dieter R. Pawelcz&, Munich

20 The DPas Language

2.1.2 Strings

Strings are zero terminated in DPas. Per default, DPas reserves 256 bytes for a string. In case
lessor more bytes are required, a string can also be defined like:

var small_str:s t ring[10]
Please naote, that there is no range checking for strings.

The difference to Turbo Pascal is, that string[0] is not the length, it represents actually the
first letter of the string.

As grings handed by the system unit and nd diredly by the compiler, the ABSOLUT Espe-
cifier can na be used in combination with strings.

2.1.3 Enumeration Types

Enumeration types are treaed like integer constants. Therefore the following dcefinitions are
equal:
type color=(red , green,blue);
isequal to:
const red=0;
green=1,
blue=2;
type color=byte

2.1.4 Type substitution
Type substitutions are supparted, like:

type shortptr=n word ;
type color=hyte

215 Reord Types

Record types are suppated. The number of record fields is limited to 100.
type pixel=reco rd
red,gree n,blue:byte;
x,y:iinte ger;
end;
type window=rec ord
pixels:A RRAY[0..10000] OF pixle;
x,y:iinte ger;
title:st ring;
end;

(c) 1999 byDieter R. Pawelcz&, Munich

Const 21

2.1.6 Arrays

DPas suppats a maximum of threedimensional arrays. Array definitions are dlowed inside
record types, constant types and in standard variable definitions, e.g.:

var board:array[0..7,0.. 7] of char;
const
error_mesg:array[0..1] of string = (FILE NOT FOUND!, ’'ERROR IN FILE');

2.2 Const

DPas alows two kind d constant definitions. Initiali zation inside the VARblock, or type spe-
cified constants inside a CONSThlock. The difference is, that an initialization inside the VAR
block refers to a whale array, or block definition, whereas a specified constant type requires
values for each element.

The following example describes the initiali zation inside the VAR block:

VAR Field:ARRAY[0..24,0. . 79] OF WORD = $0720;
VAR MaxX,MaxY:INTEGER = 100;

The whdle field is filled with the init value $0720.

The following example shows a standard definition d specified type constants:
const p:pixel=(red:127;9 reen:127;blue:127;x:100;y:100);

2.3 Variables

DPas provides the specifier ABSOIUTE and IOPORTfor global variables. The following ex-
sample demonstrates ABSOLUTEand IOPORT:

var screen:screenbuffer absolute $B8000;
var keybcontroller:byte i oport $60;

Note, that IOPORT can only be used with BYTE WORDNTEGER/ DWORDLONGINT
Nevertheless, you can still build uprecord types of these types, e.g.:

type VGA_MISCELLANEOUS_REGISTERS=record
index,read_write . byte;
end;
var VGA_MISC:VGA_MISCEL LANEOUS_REGISTERS IOPORT $3c2;

VGA_MISC.index:=0;

Note, that neither ABSOLUTEnhar IOPORT can be used in combination with strings.

(c) 1999 by Dieter R. Pawelcz&, Munich

22 The DPas Language

2.4 Pascal Constructs

The standard Pascal constructs BEGIN-END , CASE FOR-TODOWN O-DQ, | F-THEN-
ELSE, REPEAT-UNTIL , WHILE-DOare suppated.

DPas provides the extended pascd constructs ASM-END, BREAK, CONTI NUE, DEC and
INC.

Additionally, under 32 it DOS, the following arrays are defined to access memory and 1/0
ports: MEMMEMWMEMLand PORT PORTWPORTL

Please nate, that these arays are treated different to standard arrays, as the following example
will demonstrate:

var kMeml: arra y [0..-1] of longint absolute = $0;

meml[1]:=5;

kmeml[1]:=5;
The first memory accesswill write the longnt number 5 at the address 1, the second will wri-
te the longnt number 5 at the aldress4, because the aray element size is 4.

2.5 Inline Assmbler

Between ASMand END, the source code can contain assembler instructions. Inside the assm-
bler instructions, global and locd variables can be acessed.

The EBP/ESP register need to preserved inside the assembler block.

2.6 Procedure/ Function headers

The maximum number of parameters is 20. Additional to standard Pascd, a function can re-
turn any type and is not restricted to the standard Pascal types.

Note, that a procedure spedfier, i.e. INTERRUPT FAR ASSEMBLERneeds to be spedfied
also in any forward definition, therefore also in the interface part of a unit.
An assembler procedure uses CPU registers as parameters. Additionally to the register, the
type needs to be defined:

[VAR] REG8/REG1 6/REG32:TYPE;
An assembler functions returnsits result in EAX(ST(0) for single/doule types). In case the
type does nat fit into EAX(e.g. strings, record-types), in EAXa pointer to the buffer is retur-
ned. This allows dring functions to return in EAX a pointer to the adual string. See for ex-
ample the ParamStr functionin SYSTEM.P/S.

(c) 1999 byDieter R. Pawelcz&, Munich

stem Unit 23
Sy

2.7 System Unit

A lot of standard functions, esp. the handing d TEXT files are supported. Here is an over-
view of the supparted functions. Note, that some functions are handled by the compiler direct-
ly.

- WRITELN / READLN

- LENGTH

- Assign

- Erase

- Rename

- Reset - opens TEXT fil e for read

- Rewrite - opens TEXT f i le for write

- Getdir

- Close

- Chdir

- Eof

- halt

- move

- MoveMem

- fillchar

- fillmemchar

- runerror

- dosmemavalil

- memavalil

- ofs

- zeroofs

- getmem

- freemem

- paramstr

- Copy

- pos

- strupcase

- IOResult

- sin

- COS

- arctan

-In

- sqrt

- Pi

- abs

- trunc

- round

- int

- new

- dispose

(c) 1999 by Dieter R. Pawelcz&, Munich

24 The DPas Language

2.8 RUN TIME LIBRARY

A quite large run time library comes with DPas.

281 CRT32

- clrscr

- gotoxy

- wherex

- wherey

- color

- delay

- keypressed

- readkey

- getvideomode
- setvideomode
- textcolor

- background

28.2 DOS32

- gettime
- loadfile

- filelength
- savefile

- setintvec
- getenv

- exec

2.9 Import of Dynamic Link Libraries

DPas can add dyramic link libraries to programs or units. These libraries are load duing the
runtime. In order to know these functions, DPas requires an interface defintion. The interface
definition is smilar to a unit, it begins with the DLL keyword. The interface may define types,
but can na define variables or code.

In case of aPass32 DLL, the spedfier FARand ASSEMBLERxe required.

(c) 1999 byDieter R. Pawelcz&, Munich

Optimization 25

2.100ptimization

2.10.1 Expressions

DPAS optimizes expressons from the left. Therefore you shoud write dl constants lefthan-
ded, e.g.

i:=1024*2%;
instead of
i:=1024*i*2;
The first results in asingle SHL expresson, the secondin two SHL expressions.

2.10.2 Multiplication / Division

When passible, DPas optimizes multiplicaions. A typical Putpixel function like:

var screen:ARRAY][0..199, 0..319] of byte absolute $A0000;
procedure putpixel(x,y:i nteger;c:byte);
begin
screenly,x]:=c;
end;

Is actually optimized to:
mov eax,y
lea eax,[4*eax+eax]
shl eax,6
mov esi,x
lea esi,[eax+esi+0a0000]
mov al,c
mov gs:[esi],al

Therefore, DPas optimizes mul instructions by the faster lea and/or shl instruction.

2.10.3 Constant Offsets

In case an difset for an array expresson is constant, DPas optimizes the memory aacess In
case of

screen[0,10]:=5;
DPas creates the code:
mov gs:[0a000a],5

(c) 1999 by Dieter R. Pawelcz&, Munich

26 The DPas Language

2.10.4 Assembler Procedures

DPas uses for all system procedure clls CPU registers for parameter passng. In combination
with inline assembler you can also create very fast assembler procedures.

(c) 1999 byDieter R. Pawelcz&, Munich

Primes 27

3. Examples

3.1 Primes

The PRIMESexample is a benchmark program for calculating gime numbers. It can be com-
piled with Turbo Pascal or DPas.

In order to be compatible with bah compilers, DPas defines the compiler define DPAS2
which can be tested with the directive {$IFDEF DPAS2}

3.2 Direct

DIRECT draws aworm on the text screen. It uses an ABSOLUTEvariable to drectly write on
the screen. It also defines an array type in order to store and restore the screen contents:

type screen:array[0..24, 0..79] of word;

var scr:screen absolute $B8000;
scrsave:screen;

begin

SCrsave:=scr,

SCr:=scrsave;
end.

3.3 Traffic

TRAFFIC is again compatible with TP. It defines crazy record typesto describe atraffic light
simulation. The program demonstrates mainly the correct handing d const definitions.

3.4 Passed

PASSEDis next to the Pro32 debugger the largest project created with DPas. PASSEDis an
IDE for the Pass32 compiler. PASSED comes together with a simple text windowv manager
PROWIN

(c) 1999 by Dieter R. Pawelcz&, Munich

28

Examples

(c) 1999 byDieter R. Pawelcz&, Munich

Symbadls 29

4. Limits

As an ongong cevelopment, DPas still hasalot of limits. | hope, that this chapter will get ob-
solete in the near future.

4.1 Symbols

Symbadls can na exceed 32characters. A record field can consist of only 28 characters. DPas
is gill a DOS product. Therefore it is restricted to 640 K memory. DPas can handle &out
5000symbals with 560K Bytes free dos memory. This allows to compile Pascal sources bet-
ween 5000and 32000l nes depending on you style and the complexity of your code.

As DPas suppat up to 40 units, you can buld redly huge gplications. The source @de is
not restricted in size, only the number of symbals. Applications can take be up to 64 MByte.

Note, the total limit of symbadls is depending from your free DOS memory, additionally, for
each symbad type, the following limits are set by DPas:

Symbad Type Limit
Enumeration Type Elememts/ | 800
Integer Constants

Record Types/ Array Types 800
(Public) Variables 6500
(Public) Procedures 2000
Lables 6500

4.2 Const

There ae only two type of constants suppated:

— INTEGER e.g.: const Max=10;
— any type spedfied constant, e.g.
— const MaxX:INTEGER=10;
const Mesg:String="HELLO’;
const p:pixel=(X:100;Y:100);
const cp:colorpixel=(C:red;P:(X: 100;Y:100))

(c) 1999 by Dieter R. Pawelcz&, Munich

30 Limits

Not yet suppated are string, doulbe constants, like

— const Hello="Hello’;
— const Exact_Pi = 3.1415;

4.3 Types

DPas suppats al standard Pascal types.
Note, that a record type can consist of a maximum of 100 record fields.
Arrays can nd be combined:

instead of:
type field=arra y [0..10] of array [0..24] of array [0 . .79] of char;
var bigfield=ar ray [0..10] of field;
bigfield [5][0] [O][0]:="A;
bigfield [5,0,0 , O]:='A;
write:
type field=arra y [0..10,0..24,0..79] of char;
var bigfield=ar ray [0..10] of field;
bigfield [5][0, 0,0]:='A’;

4.4 Array Depth

The array depth is 3, as maximum, a 3 dmensional array field can be defined, e.g.:
console: array [0..10,0..24,0..79] of char;

Y ou can work aroundthis problem by using array types:
type console_ty pe=array [0..10,0..24,0..79] of char;
var console: ar ray [0..10,0..24,0..79] of console_type

Note, that DPas expects proper settings of brackets: in this example, console @an be accessed
like:
console[0,24,0] 0,0,0]:='B";

4.5 Boolean Expressions

For boolean expressons, the compiler needs to learn about the expression type before the
comparison symbals like '=’,'<’,’>": the compiler can na always resolve record or array ty-
pesin an expresson. When ever passble, a bodean expression shoud look like:

CONST = EXPRESSIONand not EXPRESSION = CONST
(c) 1999 byDieter R. Pawelcz&, Munich

ELSE/END 31

4.6 ELSE /END

The parser sometimes fals over amissng’; before ELSE or END Here, the parser is often
inconsequent: sometimes the parser asks for a’;’ before ELSE or END) sometimes the parser
reports an error, when thereisa’;’,

4.7 WITH

WITH isnot yet suppated.

4.8 ASM

FPU instructions are not yet suppated.
Not al x86 instructions are correctly suppated.

49 Writen, ReadLn

Output and input of float numbers are not suppated, because of section 4.8 on pge 31.
ReadLn and WriteLn does nat work with record types or array types, e.g.
readLn(a[0]);

4.10Procedure / Function headers

The maximum number of parameters is 20. Additional to standard Pascal, a function can re-
turn any type and is not restricted to the standard Pascal types.

Note, that a procedure specifier, i.e. INTERRUPT, FAR ASSENBLER, needs to be spedfied
also in any forward definition, therefore also in the interface part of a unit.

4.11Sets

DPas does not suppat SET and probably never will .

4.12Error Messages

Error messages are nat very smart yet.
(c) 1999 by Dieter R. Pawelcz&, Munich

32

Limits

(c) 1999 byDieter R. Pawelcz&, Munich

