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It is a well-known result of Fagin that the complexity class NP coincides
with the class of problems expressible in existential second-order logic (Z']),
which allows sentences consisting of a string of existential second-order quan-
tifiers followed by a first-order formula. Monadic NP is the class of problems
expressible in monadic X'}, i, X! with the restriction that the second-order
quantifiers are all unary and hence range only over sets (as opposed to rang-
ing over, say, binary relations). For example, the property of a graph being
3-colorable belongs to monadic NP, because 3-colorability can be expressed
by saying that there exists three sets of vertices such that each vertex is in
exactly one of the sets and no two vertices in the same set are connected by
an edge. Unfortunately, monadic NP is not a robust class, in that it is not
closed under first-order quantification. We define closed monadic NP to be
the closure of monadic NP under first-order quantification and existential
unary second-order quantification. Thus, closed monadic NP differs from
monadic NP in that we allow the possibility of arbitrary interleavings of first-
order quantifiers among the existential unary second-order quantifiers. We
show that closed monadic NP is a natural, rich, and robust subclass of NP.
As evidence for its richness, we show that not only is it a proper extension
of monadic NP, but that it contains properties not in various other
extensions of monadic NP. In particular, we show that closed monadic NP
contains an undirected graph property not in the closure of monadic NP
under first-order quantification and Boolean operations. Our lower-bound
proofs require a number of new game-theoretic techniques.  © 2000 Academic Press

1. INTRODUCTION

When faced with a very difficult mathematical question, such as the question of
whether NP equals co-NP, one approach to answering the question is first to sim-
plify the question, develop tools for solving the simpler version, and then try to
extend the tools to move toward an answer to the original question.

Such an approach to the question of whether NP equals co-NP has spawned an
area known as descriptive complexity, which is the complexity of describing
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problems in some logical formalism [Imm89]. This area began in the 1970s when
Fagin [Fag74] showed that the complexity class NP coincides with the class of
properties of finite structures expressible in existential second-order logic, otherwise
known as X'}, which allows sentences consisting of a string of existential second-
order quantifiers followed by a first-order formula.

One way of attacking the difficult question as to whether NP equals co-NP is to
restrict the classes under consideration. Instead of considering X'} (=NP) and its
complement 7} (=co-NP) in their full generality, we could consider the monadic
restriction of these classes, i.e., the restriction obtained by allowing second-order
quantification only over sets (as opposed to quantification over, say, binary
relations). We refer to the restricted classes as monadic NP and monadic co-NP
[FSV95]. (It should be noted that, in spite of its restricted syntax, monadic NP
does contain NP-complete problems, such as 3-colorability and satisfiability.) The
hope is that the restriction to the monadic classes will yield more tractable
questions and will serve as a training ground for attacking the problems in their full
generality. .

This line of attack was pursued by Fagin in [Fag75], where he separated
monadic NP from monadic co-NP. Specifically, he showed that connectivity (of
undirected graphs) is not in monadic NP, although it is easy to see that it is in
monadic co-NP. Since then, monadic NP has been studied by a number of authors.
For example, de Rougement [dR87], Fagin et al. [FSV95], and Schwentick
[Sch95, Sch96] showed that connectivity is not in monadic NP, even in the
presence of various built-in relations; Ajtai and Fagin [ AF90] showed that directed
(s, t)-connectivity is not in monadic NP, and their proof was simplified by Arora
and Fagin [AF97]; Cosmadakis [Cos93] showed that a number of properties,
including non-3-colorability, are not in monadic NP; Courcelle wrote a sequence of
papers, including [ Cou94], where he considered expressibility of monadic NP and
of a variant where there is a different representation of graphs; Otto [Ott95]
showed that monadic NP is strictly more expressive the more existential unary
quantifiers are allowed; and Matz and Thomas [MT97b] and Schweikardt
[Sch97] considered extensions of monadic NP obtained by alternating the unary
second-order quantifiers.

One criticism of monadic NP is that it is not sufficiently robust. In particular, it
is not closed under the simple operation of first-order quantification. For example,
Kanellakis showed (cf. [AF90]) that there is a monadic NP sentence ¢(E, s, t) that
says that there is an undirected path from s to 7 in the graph whose edge relation
is given by E. Connectivity is then defined by the sentence Vx Vyg(E, x, y).
However, as noted above, connectivity is not in monadic NP. So indeed, monadic
NP is not closed under first-order quantification. Define the positive first-order
closure of monadic NP to be the class that results from closing monadic NP under
first-order quantification. Thus, the positive first-order closure of monadic NP is
the class of properties that are expressible by a sentence consisting of a string of

' In an earlier version of this paper, we referred to the positive first-order closure of monadic NP as “the
first-order closure of monadic NP.” What we call the first-order closure of monadic NP later in this paper
was referred to in the earlier version of this paper as the “first-order/Boolean closure of monadic NP.”
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first-order quantifiers, followed by a string of existential unary second-order
quantifiers, followed by a first-order formula. We use the word “positive,” since
the class is the result of closing monadic NP under the positive operations of first-
order logic, namely first-order quantification, conjunction, and disjunction.? It is
not hard to see that the positive first-order closure of monadic NP is a subclass of
NP. As we noted above, there is an undirected graph property (namely, connec-
tivity) that is in the positive first-order closure of monadic NP but not in monadic
NP.

The main reason for our interest in monadic NP is that it is a tractable subclass
of NP, in that we can prove lower bounds by showing that certain properties are
not in monadic NP. This paper was motivated by the desire to develop new game-
theoretic tools that will enable us to prove lower bounds involving extensions of
monadic NP. We have mentioned one extension of monadic NP, namely, the
positive first-order closure of monadic NP. We now give another. Define the
Boolean closure of monadic NP to consist of those properties that are Boolean com-
binations of properties in monadic NP. If NP # co-NP, then there is an undirected
graph property (namely, non-3-colorability) that is in the Boolean closure of
monadic NP but not in the positive first-order closure of monadic NP. The
next theorem shows the converse (but without making any complexity-theoretic
assumptions).

THEOREM 1.1. There is an undirected graph property that is in the positive
Jfirst-order closure of monadic NP but not in the Boolean closure of monadic NP.

Define closed monadic NP to be the closure of monadic NP (or equivalently, of
first-order logic) under first-order quantification and existential unary second-order
quantification. Like before, closed monadic NP is a subclass of NP. We call this
class simply “closed monadic NP” because it is formed by closing monadic NP
under the two types of quantification that appear in the definition of monadic NP.
Closed monadic NP differs from monadic NP in that we allow the possibility of
arbitrary interleavings of first-order quantifiers among the existential unary second-
order quantifiers. The next theorem shows that closed monadic NP contains a
property that is not in either of the extensions of monadic NP that we just con-
sidered, namely the positive first-order closure of monadic NP and the Boolean
closure of monadic NP. In fact, it shows even more. Define the first-order closure
of monadic NP to be the result of closing monadic NP under both first-order quan-
tification and Boolean operations. Thus, this class is the result of closing monadic
NP under all of the first-order operations, namely first-order quantification, con-
junction, disjunction, and negation.

THEOREM 1.2. There is an undirected graph property that is in closed monadic NP
but not in the first-order closure of monadic NP.

2 Conjunction and disjunction “come for free.” For example, the conjunction of the sentences
Vx 3y ¥z 3X¢ and Vx' 3y’ ¥z’ 3X"¢', where the first-order variables x, y, z (resp., ', ¥', Z) do not appear
in ¢’ (resp., @), and the unary second-order variable X (resp., X”) does not appear in ¢’ (resp., @), is
equivalent to the sentence Vx 3y Vz Vx’' 3y’ Vz/ X IX'(¢ A ¢').
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Closed monadic NP is a rich subclass of NP. Thus, it is a proper extension of
the positive first-order closure of monadic NP (this follows from Theorem 1.2).
Furthermore, the positive first-order closure of monadic NP is itself rich, in that it
not only contains properties not in monadic NP, but even contains properties not
in the Boolean closure of monadic NP (Theorem 1.1). We first realized the impor-
tance and naturalness of closed monadic NP because of the fact that connectivity
is in this class (as the sentence Vx Vyg(E, x, y) discussed above shows). We have
come up with a number of candidates for graph properties that we originally
thought might not be in closed monadic NP, but which we showed, to our surprise,
are indeed in this class. For example, we originally believed that (s, ¢)-connectivity
of directed graphs, a property known not to belong to monadic NP [AF90], was
a good candidate for a property not in closed monadic NP. However, we later
showed that (s, t)-connectivity of directed graphs is in closed monadic NP
(Theorem 4.1).

On the one hand, closed monadic NP is a monadic subclass of NP (perhaps
even the “right” monadic subclass of NP), if we regard only the pattern of higher-
order quantifiers (and thus ignore the first-order quantifiers). Indeed, there are
often situations in mathematics where it is the higher-order quantifiers that have
the important effect. For example, in the analytical hierarchy, it is only the
quantifiers over the real numbers that matter: the quantifiers over natural numbers
can be “swallowed up”. On the other hand, when we alternate first-order quantifiers
and existential unary second-order quantifiers, this behaves in some ways like
existential second-order quantifiers of higher arity. Intuitively, for example, we can
simulate Vx 3R, where x is a first-order variable and R represents a unary relation,
by 38 Vx, where S is binary and where the unary relation R that corresponds to x
is the set of all y such that Sxy. So Vx 3R is behaving like a limited form of the
existential binary second-order quantifier 3S. This is significant, since it would be
a huge step forward to extend our game-theoretic machinery to allow us to prove
lower bounds about existential higher-arity quantification.> When we prove that
some property is not in, for example, the positive first-order closure of monadic NP
(such a result follows from Theorem 1.2), we are proving a lower bound about a
limited form of existential higher-arity quantification.

To separate monadic NP from monadic co-NP, Fagin [Fag75] extended the
theory of Ehrenfeucht—Fraissé games to monadic NP games. In the standard (first-
order) Ehrenfeucht—Fraissé game over a pair G,, G, of structures, two players, the
spoiler and the duplicator, take turns placing pebbles on elements of the structures.
Informally, the duplicator wins the game if the two structures, when restricted to
the pebbled elements, are isomorphic (a more precise definition is given in
Section 5). In this game (and in the other games we shall discuss), the way that we
prove a lower bound, that is, an inexpressibility result, is to show that the
duplicator has a winning strategy. In the monadic NP game, the spoiler starts by
coloring the elements of G,, the duplicator responds by coloring the elements of

* There has been some limited work on binary NP, which allows existential binary second-order quan-
tifiers. Specifically, Durand et al. [ DLS98] have shown results such as that existentially quantifying over
unary functions is strictly less powerful than existentially quantifying over arbitrary binary relations.
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G,, and the two players then play the first-order game on the colored structures.
Fagin showed that connectivity is not in monadic NP by showing that for every
choice of the number of colors and the number of pebbling rounds, the duplicator
has a winning strategy in the monadic NP game played over a pair G, G, of
graphs, where G, consists of a single cycle and G, consists of two cycles. Since also,
as we noted, connectivity is in monadic co-NP, this gives us the separation of
monadic NP from monadic co-NP. Fagin et al. [FSV95] found a simpler proof
that connectivity is not in monadic NP. Their proof makes use of several
game-theoretic tools. They discuss the importance of developing a game-theoretic
toolkit to help build toward our goal of applying game-theoretic techniques to
fundamental problems such as whether NP equals co-NP.

In the game corresponding to the Boolean closure of monadic NP, played over
graphs G, and G,, the spoiler gets to choose which of G, and G, he wishes to color.
After coloring this structure, the duplicator then colors the other structure. The two
players then play the first-order game on the colored structures. In order to prove
our result (Theorem 1.1) that there is an undirected graph property in the positive
first-order closure of monadic NP but not in the Boolean closure of monadic NP,
we must show the existence of a winning strategy for the duplicator in the game
corresponding to the Boolean closure of monadic NP. Proving such a result is an
advance in our goal of developing new game-theoretic techniques. This is because,
apparently for the first time, we are being forced to consider a game where the
spoiler has a choice of which structure to color.

In order to deal with the complexity introduced by the fact that the spoiler can
choose which structure to color, we make use of two techniques. First, we create
“superstructures,” which are essentially structures of structures. For example, we
create cycles, each of whose “points™ is either a cycle or a disjoint union of cycles.
Second, in considering the duplicator’s strategy, we “split up” the (super)structures
into disjoint pieces in different ways, where the way we split depends on which
structure the spoiler colors. We then consider subgames that are applied separately
to each of the disjoint pieces. We feel that these two techniques give us an approach
that is both elegant and powerful.

Our most difficult result (Theorem 1.2) is the fact that there is an undirected
graph property that is in closed monadic NP but is not in the first-order closure
of monadic NP. In the game corresponding to the first-order closure of monadic
NP, played over graphs G, and G,, the spoiler not only gets to choose which of
G, and G, he wishes to color, but he does not have to make his selection until after
a number of pebbling moves have been played. Thus, not only are we faced with
a situation where the spoiler gets to choose which structure to color, but apparently
also for the first time, we are being forced to consider a game where there are peb-
bling rounds both before and after the coloring round. In order to prove that there
is an undirected graph property that is in closed monadic NP but not in the first-
order closure of monadic NP, we must show the existence of a winning strategy for
the duplicator in this complicated game. To prove this result, we make use of one
further technique. We create “super-superstructures” that are essentially structures
of superstructures (and hence structures of structures of structures). Here each
superstructure in the super-superstructure is one of the superstructures that we used
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in the previous proof that a certain undirected graph property is not in the Boolean
closure of monadic NP.

We note that Ajtai and Fagin [AF90] have introduced a variation of the
monadic NP game for which it is much easier to show that the duplicator has a
winning strategy. In such games, the spoiler is forced to color G, without knowing
what G, is. Unfortunately, for the games we use to prove the lower bound parts of
Theorems 1.1 and 1.2, we cannot apply the idea behind the Ajtai-Fagin game to
simplify the proofs that the duplicator has a winning strategy: the spoiler must
know what G, and G, are before the coloring round.

We now discuss the relationship between closed monadic NP and the “monadic
(polynomial-time) hierarchy.” Monadic second-order logic allows both existential
and universal second-order unary quantifiers. A property is said to be within the
kth level of the monadic hierarchy if it is definable by a sentence of monadic
second-order logic where all of the second-order quantifiers are at the beginning,
and there are at most k — 1 alternations between existential and universal second-
order quantifiers. In particular, members of monadic NP are within the first level
of the monadic hierarchy. It is easy to see that members of closed monadic NP are
in the monadic hierarchy (we simply simulate first-order quantifiers by unary
second-order quantifiers). Matz and Thomas [MT97b] have shown that the
monadic hierarchy is strict. (We note that their proof is not game-theoretic.) A part
of their proof is to define the class of “X 7" sentences” (essentially, monadic NP
sentences where the first-order part can contain a transitive closure operator) and
show that for each k, there is a property that is expressible by a X 7™ sentence but
is not within the kth level of the monadic hierarchy. We show that every property
expressible by a X {“" sentence is in closed monadic NP, which gives us the following.

THEOREM 1.3.  For every k, there is an undirected graph property that is in closed
monadic NP but not within the kth level of the monadic hierarchy.

(This result was shown independently by Matz and Thomas [MT97a]. See
[MST] for this and more recent improvements.) This is another indication of the
richness of closed monadic NP.

We define the closed monadic hierarchy similarly to the monadic hierarchy, except
that we focus only on the pattern of the higher-order quantifiers, and thus allow
arbitrary interleavings of first-order quantifiers among the unary second-order
quantifiers. We show that if the polynomial-time hierarchy is strict, then the closed
monadic hierarchy is strict. It is an interesting open question as to whether we can
prove the strictness of the closed monadic hierarchy without making any
complexity-theoretic assumptions.

Proving the lower bounds in this paper that involve various extensions of
monadic NP has required us to develop powerful new tools for the game-theoretic
toolbox. Extending our results still further, such as proving that the closed monadic
hierarchy is strict or proving that there is a property in the monadic hierarchy but
not in closed monadic NP, will probably require further tools to be developed.

We now outline the remainder of the paper. Section2 contains definitions
of some basic concepts from logic and graph theory that are used in the paper. In
this section we also review the definition of monadic NP. In Section 3 we give
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definitions of several extensions of monadic NP, such as closed monadic NP, that are
the principal subjects of this paper, and we note some inclusions among these new
classes. Section 4 contains examples showing that certain graph properties belong
to certain of the descriptive complexity classes defined in the previous two sections.
This section in particular contains our result that directed (s, 7)-connectivity
belongs to closed monadic NP. Many of the results in Section 4 are used as build-
ing blocks later in the paper. Section 5 reviews the first-order Ehrenfeucht—Fraissé
game and its extension to the monadic NP game. Section 6 recalls a theorem from
[FSV95], based on a technique of Hanf, that gives a sufficient condition for the
duplicator to win the first-order Ehrenfeucht-Fraissé game; this result is used
several times in the sequel. In Section 7 we prove a result that is needed later, and
that is interesting in its own right: We show that for every choice of the number of
colors and the number of pebbling rounds, the duplicator has a winning strategy
in the monadic NP game played over a pair G,, G, of graphs, where G, is a cycle
C and G, consists of two disjoint copies of C. In [ Fag75] a slightly weaker version
of this theorem is given, where one of the cycles in G, is a cycle C' having size
different than C. We need the stronger result for our purposes. Section 8 contains
the proof of Theorem 1.1. In this section we also define a game that characterizes
the Boolean closure of monadic NP and that we use to prove Theorem 1.1.
Section 9 contains the proof of Theorem 1.2, as well as the definition of a game that
characterizes the first-order closure of monadic NP. In Section 10 we review the
definition of the monadic hierarchy, recall some results of Matz, Schweikardt, and
Thomas [ MT97b, Sch97, MST], and prove Theorem 1.3. In Section 11 we define
the closed monadic hierarchy and show that the closed monadic hierarchy is strict
if the polynomial-time hierarchy is strict. This follows from another result that we
prove in Section 11, that there is an undirected graph property, an extension of
3-colorability, that belongs to the kth level of the monadic hierarchy and is com-
plete for the class 2} in the polynomial-time hierarchy; this may be of independent
interest as a new X }-complete problem. In Section 12 we review the “growth”
method that Matz and Thomas used to prove strictness of the monadic hierarchy
(this method is not game-theoretic), and we give an alternate proof of Theorem 1.2
using a combination of a growth argument and a game argument. Section 13
contains conclusions and open questions.

2. DEFINITIONS AND CONVENTIONS

A language £ (sometimes called a similarity type, a signature, or a vocabulary)
is a finite set {P,, .., P,} of relation symbols, each of which has an arity.

An Z-structure (or structure over &, or simply structure) is a set U (called the
universe), along with a mapping associating a relation R, over U with each P, ¢ &,
where R; has the same arity as P;, for 1<i<s. We may call R, the interpretation
of P,. By abuse of notation, we often let a relation symbol P also denote an inter-
pretation of P. In addition, since we are primarily interested in the case that all
quantified relation symbols are unary, for an interpretation of a unary relation
symbol P we often let P also denote the set of points true under the interpretation,
writing x € P synonymously with Px. The structure is called finite if the universe U
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is. Unless otherwise stated, throughout the rest of this paper we make the assumption
that all structures we consider are finite. Thus, this is a paper in finite model theory.

In this paper, we are especially interested in graphs and colored graphs. Graphs
are simply structures where the language consists of a single binary relation symbol.
Such structures are in general directed graphs. We often let such a structure
represent an undirected graph by ignoring the directions of the edges. Thus, if E is
a binary relation symbol, then the undirected graph that corresponds to an
{E}-structure has the (symmetric) edge relation E’ given by E’xy=Exy v Eyx.
When talking about undirected graphs in the text, we say “there is an edge between
x and y” or “x has an edge with y” to mean E’xy. In the context of directed graphs,
the direction of the edge is made explicit, as in “there is an edge from x to y”. We
let (x, y) denote the undirected edge between x and y, and {x, y> denote the edge
directed from x to y. It is convenient to assume that graphs have no self-loops,
although this assumption does not affect our results. Colored graphs are structures
where the language consists of a single binary relation symbol and some number of
unary relation symbols. If G is a colored graph, where the interpretations of the
unary relation symbols in the language are R, ..., R, then by the color of a point
a in the universe of G, we mean a description of which R,’s the point a is a member
of. Thus, intuitively, there are 2* possible colors.

For definitions of a first-order formula (where, intuitively, the only quantification
is over members of the universe, and not over, say, sets of members of the
universe), and what it means for a structure S to satisfy a sentence g, written S =o,
see Enderton [ End72] or Shoenfield [ Sho67]. A sentence is a formula with no free
(first-order) variables. We note that equality is treated as a special relation symbol,
which is not considered to be a member of the language %, and which always has
the standard interpretation. The quantifier depth QD(¢) of a first-order formula ¢
is defined recursively as follows: QD(¢)=0 if ¢ is quantifier-free; QD(—1¢p)=
OD(p); OD(@1 A 9,) =max{QD(¢,), 0D(9,)}; OD(3p) =1+ OD(p).

In passing from first-order logic to second-order logic, we allow quantification
over relations. In particular, a X'} formula is a formula of the form 34, ---34, ¢,
where @ is first-order and where the A4,’s are relation symbols. As an example, we
now construct a X'| sentence that says that a graph (with edge relation denoted by
E) is 3-colorable. As before, let E'xy denote Exy v Eyx. In this sentence, the three
colors are represented by the unary relation symbols 4,, 4,, and 4;. Let ¢, say
“Each point has exactly one color”. Thus, ¢, is

Vx((Ayx A 1A, x A T1A3x) v (143 x A Ayx A 7145 x)

v {(TA4;x A 1Ay, x A A3X)).

Let ¢, say “No two points with the same color have an edge between them”. Thus,
@, 18

Vx Vy((Ayx A Ay = 1E'xy) A (Ayx A A,y = 1E'xy)
A(Asx A Asy = 1E'xy)).

The X'} sentence 34, 34, 34,(p, A @,) then says “The graph is 3-colorable”.
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A I7] formula is a formula of the form V4, ---VA4 +®, where ¢ is first-order and
where the A4,’s are relation symbols. For example, letting ¢, and ¢, be as above,
the IT} sentence VA, VA, VAs(—1¢, v —19,) says “The graph is not 3-colorable”.

A X} formula 34, ---34, ¢, where ¢ is first-order, is said to be monadic if each
of the 4,’s is unary, that is, the existential second-order quantifiers quantify only
over sets. A monadic IT} formula is defined similarly, restricting all (here univer-
sally) quantified relations to be unary. Following [FSV95], we often refer to a
monadic X'} formula (resp., monadic I7 | formula) as a monadic NP formula (resp.,
monadic co-NP formula).

A property is a class of structures, all having the same signature, and closed
under isomorphism. For example, the property “3-colorability” is the class of all
{ E}-structures corresponding to 3-colorable graphs. A sentence o expresses the
property & (having signature %) if all #-structures in the class % satisfy o, and
all #-structures not in the class &% do not satisfy o. Define monadic NP (resp.,
monadic co-NP) to be the class of properties expressible by a monadic NP sentence
(resp., monadic co-NP sentence). For example, the examples above show that
3-colorability is in monadic NP, and that non-3-colorability is in monadic co-NP,
since the relations 4, 4,, A, in these examples are unary.

To close this section, we define some terms concerning graphs. Additional graph
terminology will be introduced later as needed. If G is a graph and X is a subset
of the points of G, let ind(X) denote the subgraph of G induced by X (ind
abbreviates “induced”). A connected component of a graph G is an induced sub-
graph H such that H is connected, but such that no induced subgraph H’ of G that
is connected has H as a proper induced subgraph. If x is a point of the graph G,
let CC(x) denote the connected component of G that contains x. A path in an
undirected graph is a sequence x,, x;, ..., X; of points, where k > 0, such that there
is an edge between x; and x,,, for all 0<i<k; such a path is said to be a path
between x, and x,. We say that a path x,, ..., x; is strict if there is no edge between
x; and x; for all i, j with Ji— j| > 1. If s and ¢ are points of an undirected graph G,
we say that s and ¢ are path-connected if there is a path between s and ¢ (equiv-
alently, if s and ¢ belong to the same connected component of G). If G is a directed
graph with points s and ¢, we say that a sequence x,, ..., x; of points, where k > 0, is
adirected path from s to t if s = x,, t = x;., and there is an edge directed from x, to X1
for all 0 <i<k. In using these terms, the graph G will always be clear from context.

3. BEYOND MONADIC NP

We now formally define several types of formulas of interest to us. In parallel, for
each type T of formula being defined, we define a corresponding descriptive com-
plexity class containing those properties expressible by a sentence of type 7. In our
notations for formulas, MNP abbreviates monadic NP, FO abbreviates first-order,
PFO abbreviates positive first-order, and BOOL abbreviates Boolean.

* A BOOL(MNP) formula is a Boolean combination of monadic NP formulas.
The Boolean closure of monadic NP is the class of properties expressible by a
BOOL(MNP) sentence.
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o A PFO(MNP) formula is a formula of the form Py, where P consists of first-
order quantifiers, and  is a monadic NP formula. The positive first-order closure
of monadic NP is the class of properties expressible by a PFO(MNP) sentence.

* A FO(MNP) formula is a formula in the class of formulas obtained by
closing the monadic NP formulas under first-order quantification and Boolean
operations. The first-order closure of monadic NP is the class of properties expressible
by a FO(MNP) sentence.

» A closed monadic NP formula is a formula of the form Qg, where the prefix
Q can have an arbitrary interleaving of first-order quantifiers and existential unary
second-order quantifiers, and where ¢ is first-order. For example, Q could be
Vx, 44, Vx, 3x; 34,, where Vx;, Vx,, and Jx, are first-order quantifiers, and 34,
and 34, are existential unary second-order quantifiers. Closed monadic NP is the
class of properties expressible by a closed monadic NP sentence.

If y, and ¥, are closed monadic NP formulas, X denotes a unary relation, and x
denotes a first-order variable, then 3Xy,, 3xy,, and Vxy, are closed monadic NP
formulas, and (Y, v ¥,) and (i, A ,) are equivalent to closed monadic NP formulas.
We often make use of these facts in constructing closed monadic NP formulas.

We now note some simple relationships among these descriptive complexity
classes and standard computational complexity classes. First,

monadic NP < the positive first-order closure of monadic NP
< closed monadic NP

= NP.

The first two inclusions are obvious from the definitions. It is easy to establish the
third inclusion by describing, for each closed monadic NP sentence o, a nondeter-
ministic polynomial-time Turing machine M that accepts precisely the structures
that satisfy o (where each structure is encoded as a string of symbols suitable as
input to the Turing machine). We now sketch how M operates. Let ¢ have the form
Q¢, where Q contains an arbitrary interleaving of first-order quantifiers and
existential unary second-order quantifiers, and where ¢ is first-order. The machine
processes the quantifiers of Q in left-to-right order. For each existential unary
second-order quantifier, 34, encountered, M nondeterministically guesses an
interpretation of 4. For each first-order quantifier, 3x or Vx, encountered, M
deterministically cycles through all assignments of elements of the universe to x.
Given interpretations of all relations and assignments to all variables occurring free
in @, the truth of ¢ can be evaluated in polynomial time (as is well known). Since
the number of first-order quantifiers in Q is fixed, the amount of time that M
spends cycling through all assignments to the quantified variables is polynomial in
the size of the universe.

As we now discuss, all of these inclusions are proper, even when we restrict our
attention to undirected graph properties. As noted in the introduction, the first
inclusion is known to be proper, since connectivity belongs to the positive first-
order closure of monadic NP but does not belong to monadic NP. In fact, we
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actually prove the stronger result that there is an undirected graph property that is
in the positive first-order closure of monadic NP but not in the Boolean closure of
monadic NP (Theorem 1.1). As for the second inclusion, we actually prove the
stronger result that there is an undirected graph property that is in closed monadic
NP but not in the first-order closure of monadic NP (Theorem 1.2). The third
inclusion is proper since Turan [Tur84] has shown that the “perfect matching”
property, the class of undirected graphs having a perfect matching, cannot be
expressed in monadic second-order logic. (As with Matz and Thomas’ result, the
proof is not game-theoretic.) It is well known that perfect matching belongs to P,
and clearly every closed monadic NP sentence is a sentence of monadic second-
order Jogic. We note that Turin also showed that Hamiltonicity cannot be
expressed in monadic second-order logic.
For classes involving Boolean combinations, we have

monadic NP U monadic co-NP < the Boolean closure of monadic NP
< the first-order closure of monadic NP

c PNP,

The first two inclusions are obvious from the definitions. We now show the third
inclusion. By definition, a property is in the class PN? if it is recognized by some
deterministic polynomial-time oracle machine with an NP oracle. Let ¢ be a
FO(MNP) sentence. Thus, ¢ is constructed by applying first-order quantification
and Boolean operations to a set S of monadic NP formulas. To determine if a given
structure satisfies g, each first-order quantifier of the form Jx (resp., Vx) that was
used to construct o from S is replaced by a disjunction (resp., conjunction) over all
x in the universe. In this way, o is transformed in polynomial time (i.e., polynomial
in the size of the universe) to a Boolean combination of monadic NP sentences
(each such sentence is a formula in S with each of its free first-order variables
replaced by an element of the universe). Finally, the truth of each of these monadic
NP sentences can be determined using an NP oracle (recall that monadic NP is
contained in NP). This actually shows the stronger result that the first-order
closure of monadic NP is contained in Pﬁ“’ , defined as the class of properties that
are recognized by some deterministic polynomial-time oracle machine with an NP
oracle where all of the oracle queries must be made in parallel (unlike PN? where
each query can depend on the answers to previous queries); for definitions and
results concerning P},“P see, for example, [ Wag90]. In fact, by combining a syntac-
tic characterization of PN? given by Buss and Hay [BHO91] with the fact that
21 =NP, it is not hard to show that the properties in P}I"P are precisely the proper-
ties in the first-order closure of X'}, provided that X! formulas can use a built-in
linear order relation. In other words, if we extend the first-order closure of monadic
NP in two ways, first by extending monadic NP to (non-monadic) X'}, and second
by including a built-in linear order, then we get precisely PTP.

Once again, as we now discuss, all of these inclusions are proper, even when we
restrict our attention to undirected graph properties. The properness of the first
inclusion follows from the fairly simple-to-show fact (Theorem 8.1) that the
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property “There are exactly two connected components” belongs to the Boolean
closure of monadic NP but does not belong to monadic NP nor to monadic co-NP.
As for the second inclusion, we actually prove the stronger result that there is an
undirected graph property that is in the positive first-order closure of monadic NP
but not in the Boolean closure of monadic NP (Theorem 1.1). Properness of the
third inclusion is shown by Turan’s result mentioned above. Alternatively, the
properness of the third inclusion follows from the result that there is an undirected
graph property that is in closed monadic NP (and hence in NP, and so in PNP),
but not in the first-order closure of monadic NP (Theorem 1.2).

Another inclusion, not shown above, is that the Boolean closure of monadic NP
is contained in the Boolean hierarchy [CGH *88], the Boolean closure of NP; this
inclusion is also proper, as shown by Turan’s result.

4. EXAMPLES

This section contains several examples showing how various graph connectivity
and nonconnectivity properties can be expressed by the types of sentences defined
in the previous sections. Many of these results will be used as building blocks later
in the paper. A new result is that the property of directed graphs with distinguished
points s and ¢, that “There is a directed path from s to ¢”, belongs to closed
monadic NP. Ajtai and Fagin [AF90] call this property “directed reachability”.
They prove that this property does not belong to monadic NP.

We begin by showing that the “nonconnectivity” property, the class of noncon-
nected undirected graphs, belongs to monadic NP (this demonstration is from
[Fag75]). Let ¢, say “The set 4 is nonempty and its complement is nonempty”,
that is, dx 3y(Ax A —14y). Let ¢, say “There is no edge between A4 and its
complement”, that is, Vx Vy((Ax A —14y) = —1E'xy). It is clear that the monadic
NP sentence d4(¢; A @,) expresses nonconnectivity. Having described sentences
for 3-colorability and nonconnectivity in detail, in the sequel we do not describe the
first-order part of sentences in complete detail, but rather give enough of a high-
level description that translation to formal logic is straightforward.

Similarly, the property “ind(X) is nonconnected” belongs to monadic NP (viewed
as a property of a structure with signature containing a binary edge relation and
a unary relation X). This is expressed by saying that there exists a set A of points
such that 4 n X and A n X are both nonempty (where 4 denotes the complement
of A), and there is no edge between a point of 4 ~ X and a point of 4~ X. This
is an example of a general principle, used later, that if a property & can be
expressed by a monadic NP sentence (resp., closed monadic NP sentence) o, then
the property “ind(X) has property %> can also be expressed by a monadic NP
sentence (resp., closed monadic NP sentence). The new sentence is obtained from
o essentially by restricting everything to points in X.

We next recall the fact, due to Kanellakis (cf. [AF90]) that for undirected
graphs, “s and ¢ are path-connected” belongs to monadic NP. This is expressed by
saying that either s =1, or there exists a set 4 of points such that the following con-
junction holds: (a) s and ¢ both belong to 4; (b) s has an edge with exactly one
point of 4; (c) ¢ has an edge with exactly one point of 4; and (d) every point of A
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except s and ¢ has an edge with exactly two points of 4. To see that this expresses
that s and ¢ are path-connected for s # ¢, first note that if s and ¢ are path-connected,
we can choose 4 to be the points on a shortest path between s and r. Second, if
A satisfies (a)—(d), then, since the graph is finite, by “following” the path 4 from
s we must eventually reach . (The second argument fails if G is infinite. In fact, it
is not hard to show by a compactness argument that “s and ¢ are path-connected”
cannot be expressed by a monadic NP sentence in the infinite case.) For future use,
let the first-order formula path(4, s, t) say that either (i) s=7 and 4= {s}, or (i)
the conjunction (a)-(d) holds. That is, path(4,s,t) says that (some sequential
ordering of the points in) 4 is a strict path between s and ¢.

As we have noted, connectivity does not belong to monadic NP. However, the
formula path can be used to show that connectivity belongs to the positive first-
order closure of monadic NP, since the sentence Vx Yy 34(path(A, x, »)) expresses
connectivity.

We now consider the directed reachability property mentioned at the beginning
of this section. Ajtai and Fagin [AF90] show that this property does not belong
to monadic NP. However, this property can be expressed by a closed monadic NP
sentence, allowing first-order quantifiers to be interleaved with existential unary
second-order quantifiers, as we now show.

THEOREM 4.1.  The directed graph property “There is a directed path froms to t”
belongs to closed monadic NP.

Proof. We show that the following closed monadic NP sentence expresses
directed reachability, where A4, P, S denote sets of points (unary relation symbols)
and x, y denote points (variables symbols):

(34 with s€ A)(Vx e 4 with x # 1)(3y € A)(IP)3S)

(1) P and S partition 4, ie, PUS=4 and Pn S=;
(2) s,xePandyes,
(3) there is an edge from x to y; and

(4) the only edge from a point of P to a point of S is the edge from x to y.

To see that this expresses that “There is a directed path from s to #”, say first that
there is such a path. We show that the sentence is satisfied. Let s = X0y X1y ey Xpg =1
be a shortest directed path from s to ¢. Choose 4= {x0, X1, e xz}. Given an
arbitrary xe 4 with x#¢, let j be such that x =Xx; (note that j<k), and choose
y=%1, P={x,10<i<j}, and S={x,|j+1<i<k}. (Think of P as the set of
predecessors of x (including x itself) in the directed path, and S as the set of suc-
cessors of x.) Since x,, Xy, ..., X, is a shortest directed path from s to ¢, it is easy to
see that (1)(4) are all satisfied. In particular, (4) is satisfied because, for all i, j with
0<i<j<k, there is an edge from x, to x; iff j=i+ 1.

Say now that the sentence is satisfied by a directed graph G with distinguished
points s and-z. We show that there is a directed path from s to . Using that the
sentence is satisfied we show how, starting at s, to extend the path one point at a
time. Let the set 4 be such that the part of the sentence following 34 is satisfied.
Say that a sequence x,, x,, ..., x; of points with j>0 is a partial path if the points
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all belong to A4, the points are all distinct, x,=s, and for all i with 0<i < j there
is an edge from x; to x,,,. We show that if x,, x,, ..., x; is a partial path with x; #1,
then there is a point x,,, such that x,, x,, .., X;,, is a partial path. Since the
singleton sequence containing only s is a partial path and since the graph is finite,
this suffices to show that there is a directed path from s to t. Let s =x,, xq, ..., X;
be a partial path with x; # . Instantiating x = x; in the sentence, let y, P, S be such
that ye A and (1)-(4) are satisfied. Define x;,, = y. By (3), there is an edge from
x=x;t0 y=x;,,. To complete the proof that xo, Xy, .., X;, is a partial path, we
must show that x; # x;,, for 0 <i< j. Suppose for contradiction that x,=x;,, for
some i with 0 <i< j. Since x,=x,,,=ye S, we have x; € S. Let k be the smallest
integer such that x, € S. Since x,=s€ P and x; € S, we have 1<k <i. Therefore,
k—1>=0, and x, _, € P by the choice of k. Recalling that the points x,, x,, ..., x; are
distinct and that k <i<j, we see that the edge (x;_,,x;) is different from the
edge {x, y)> ={x;, x,> because x;_; #x;. This contradicts the requirement (4)
that the only edge from a point of P to a point of S is the edge {x, y>. |

Noting that S is equivalent to 4 A TP, the proof can easily be modified to show
that directed reachability can be expressed by a sentence of the form 34 Vx 3Pg,
where A and P are unary relation symbols, x is a first-order variable, and ¢ is first-
order.

Marcinkowsky [Mar99] has shown that directed reachability is not in the
positive first-order closure of monadic NP, which answers a question that was left
open in a previous version of our paper. It follows that a quantifier prefix of the
form 34 Vx 3P is the unique, minimum-length prefix form containing existential
unary second-order quantifiers and arbitrary first-order quantifiers such that, when
placed in front of some first-order formula, the resulting sentence expresses directed
reachability.

5. EHRENFEUCHT-FRAISSE GAMES

Ehrenfeucht-Fraissé games [ Ehr61, Fra54] are tools that have been very useful
in showing that certain properties cannot be expressed by certain types of logics.
For an introduction to Ehrenfeucht-Fraissé games and some of their applications
to finite model theory, see [ AF90, pp. 122-126].

We begin with an informal definition of an r-round first-order Ehrenfeucht—
Fraissé game (where r is a positive integer), which we shall call an r-game for short.
It is straightforward to give a formal definition, but we shall not do so. For ease
in description, we restrict our attention to colored graphs, but everything we say
generalizes easily to arbitrary structures. There are two players, called the spoiler
and the duplicator, and two colored graphs, G, and G,. In the first round, the
spoiler selects a point in one of the two colored graphs, and the duplicator selects
a point in the other colored graph. Let a; be the point selected in G,, and let b,
be the point selected in G,. Then the second round begins, and again, the spoiler
selects a point in one of the two colored graphs, and the duplicator selects a point
in the other colored graph. Let a, be the point selected in G4, and let b, be the
point selected in G,. This continues for r rounds. The duplicator wins if the colored
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subgraph of G, induced by {a,, ..., a,) is isomorphic to the colored subgraph of G,
induced by {(b,, .., b,», under the function that maps a, onto b, for 1 <i<r. That
is, for the duplicator to win, (2) a;=a; iff b;=b,, for each i, j; (b) {a,,a,) is an
edge in G, iff (b;, b;> is an edge in G,, for each i, j; and (c) a; has the same color
as b;, for each i Otherwise, the spoiler wins. We say that the spoiler or the
duplicator has a winning strategy if he can guarantec that he will win, no matter
how the other player plays. Since the game is finite, and there are no ties, the
spoiler has a winning strategy iff the duplicator does not. If the duplicator has a
winning strategy, then we write Gy ~, G,. In this case, intuitively, G, and G, are
indistinguishable by an r-game.

The following important theorem (from [ Ehr61, Fra541) shows why these games
are of interest. If & is a class of colored graphs, then let & be the complement of
&, that is, the class of colored graphs not in %.

THEOREM 5.1. & is first-order expressible iff there is r such that whenever G, € &
and G, € &, then the spoiler has a winning strategy in the r-game over Gy, G,.

Fagin [Fag75] introduced an Ehrenfeucht-Fraiss¢é game corresponding to
monadic NP. Let G,, G, be structures (here, Gy, and G, are not colored), and let
¢, r be positive integers (where ¢ represents the number of colors and r the number
of rounds). We call this game the asymmetric (c, r)-game over G,, G,. The rules are
as follows.

1. The spoiler colors G, with the ¢ colors.
2. The duplicator colors G, with the ¢ colors.
3. The spoiler and duplicator play an r-game on the colored G,, G,.

The winner is decided as before. Of course, the isomorphism must respect colors.

We call the game asymmetric, since unlike the first-order game, the rules are
asymmetric in G,, G,, in that the spoiler must color G,. We have the following
theorem, analogous to Theorem 5.1.

THEOREM 5.2 [Fag75]. & is in monadic NP iff there are c, r such that whenever
Goe¥ and Gy e, then the spoiler has a winning strategy in the asymmetric
(c, r)-game over Gy, G,.

Ajtai and Fagin [AF90] introduced a variation of the asymmetric (c, r)-game
and showed that it also characterizes monadic NP. As in [FSV95] we call this
variation the Ajtai-Fagin game. It is played over a class & of structures, rather
than over a pair of structures. Note that we can view the asymmetric (c, r)-game
as a game over a class #: in the first move, the duplicator chooses G, € & and
G, ¢ <, and the game then proceeds as in the asymmetric (c, r)-game over G, G,.
The Ajtai-Fagin variation interchanges two of the moves. In the Ajtai-Fagin
(c,r)-game over &, the duplicator chooses G, € &, the spoiler colors G,, the
duplicator chooses G; ¢ ¥ and colors it, and the spoiler and duplicator play an
r-game on the colored G,, G,; the winner is determined as before. The Ajtai-Fagin
game is seemingly easier for the duplicator to win, because he can base his choice
of G, on the spoiler’s coloring of G,. (See [Fag97] for a discussion of a precise
sense in which the Ajtai-Fagin game is easier for the duplicator to win.)
Nevertheless, Ajtai and Fagin [ AF90] show that'.# is in monadic NP iff there are
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¢, r such that the spoiler has a winning strategy in the Ajtai-Fagin (c, r)-game over
&. Thus, using the Ajtai-Fagin game, it is potentially easier to show that certain
properties are not in monadic NP. In fact, every paper on monadic NP except the
first two ([Fag75] and [dR871]) uses the Ajtai-Fagin game rather than the asym-
metric (¢, r)-game to prove lower bounds. For example, using the Ajtai-Fagin game
(together with another tool described in Section 6), [FSV95] gives a very simple
proof that connectivity is not in monadic NP. Unfortunately, we cannot use the
idea behind the Ajtai-Fagin game to simplify the Ehrenfeucht—Fraissé games that
we use to prove our main results. This occurs for two reasons. First, both of the
games that we use have a symmetric coloring round, in that the spoiler can choose
which one of Gy or G, to color, and the duplicator must then color the other.
Second, one of these games involves a first-order (point-choosing) game before the
structures are colored. For both reasons, the spoiler must know what both
structures G, and G, are before the spoiler’s coloring step occurs.

6. HANF’S TECHNIQUE

In this section, we state a result from [FSV95] which provides a simple but very
useful sufficient condition for guaranteeing that 4 ~, B for two structures A4, B. The
proof is based on a technique of Hanf [ Han65].

Let 4 be an Z-structure, where ¥ = {P,, .., P,}, and where R, is the interpreta-
tion in A of the relation symbol P;, for 1 <i<s. Let a and b be two points in (the
universe of) 4. We say that a and b are adjacent (in A4) if either a =5 or there is
some R; and some tuple ¢ such that ¢ € R; and such that @ and b are entries in the
tuple ¢. Intuitively, two points @ and b are adjacent if they are either identical or
directly related by some relation of 4. The degree of a point a is the cardinality of
the set of points adjacent to a but not equal to a.

Essentially following Hanf, we define the neighborhood Nbd(d, a) of radius d about
a recursively as follows:

Nbd(1, a) = {a}
Nbd(d+ 1, a)={x | x is adjacent to some b € Nbd(d, a)}

It is helpful to think of these neighborhoods as open spheres. Thus, intuitively,
Nbd(d, a) consists of all points whose distance from « is strictly less than d. Note
that because a is adjacent to itself, we have that Nbd(d, a) < Nbd(d + 1, a).

Also following Hanf, we define the d-zype of a point a to be the isomorphism type
of the neighborhood of radius d about a with a as a distinguished point. Thus, the
points @ in 4 and b in B have the same d-type precisely if the substructure of 4
induced by Nbd(d, a) is isomorphic to the substructure of B induced by Nbd(d, b),
under an isomorphism mapping a to b.

Let d, m be positive integers. We say that #-structures 4 and B are (d, m)-
equivalent if for every d-type 7, either 4 and B have the same number of points with
d-type 7, or else both have at least m points with d-type 7. Intuitively, 4 and B are
(d, m)-equivalent if for every d-type 7, they have the same number of points with
d-type 7, where we can count only as high as m.
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The following result is proved in [ FSV957], based on the proof of a similar result
of Hanf [Han65]. This version of Hanf’s result from [FSV95] is useful in the
context of finite structures, whereas Hanf’s original result is not.

THEOREM 6.1. Let r, f be positive integers. There are positive integers d, m, where
d depends only on r, such that whenever A and B are (d, m)-equivalent structures
where every point has degree at most f, then A~ B.

We remark that the proof of this result in [ FSV957] describes an explicit winning
strategy for the duplicator.

7. ONE CYCLE VERSUS TWO CYCLES

A directed cycle of length n consists of points o, for 0 <i<n and edges {a;, ;. ;>
for 0 <i<n, where subscripts are reduced modulo n. Because of our convention
that structures are directed, “cycle” will always mean “directed cycle” when used in
the context of structures. A result that will be useful later in the paper is that, for
every c, r, there is a cycle C such that the duplicator has a winning strategy in the
asymmetric (¢, r)-game over the structures C, C® C (where 4 @ B is the disjoint
union of the structures 4 and B, and where we view different occurrences of C as
being structures with disjoint universes). Actually, this result is implicit in the proof
of Theorem 3 of Fagin [Fag75]. However, Theorem 3 in [Fag75] is stated in a
weaker form, from which we can conclude only that there are two cycles C and C',
possibly of different lengths, such that the duplicator wins the asymmetric (c, r)-
game over C, C® C'. For completeness, we give here a proof of the stronger result
we use. As an added benefit, the proof given here is considerably simpler than
the proof in [Fag75], because we are able to use a tool, Hanfs technique
(Theorem 6.1), which was developed since the appearance of [Fag75]. Whereas
Fagin described the duplicator’s pebbling strategy explicitly, we use Hanf’s tech-
nique to show that a strategy exists.

THEOREM 7.1. Let ¢, r be positive integers. There are arbitrarily large cycles C
such that the duplicator has a winning strategy in the asymmetric (c, r)-game over
C,CacC

This theorem follows immediately from the next lemma by taking C to be an
arbitrary cycle of length n where n >t and z divides n.

LemMA 7.2. Let c,r be positive integers. There exist positive integers t, z, such
that if C is a cycle of length n with n>t and C' is a cycle of length divisible by z,
then the duplicator has a winning strategy in the asymmetric (c,r)-game over
C,.ChC.

Proof. Assume without loss of generality that ¢ >2. Given c, r, let d, m be the
integers obtained from Theorem 6.1 for this r and f =2 (since we are dealing only
with cycles, all points have degree 2). Values for ¢ and z will be determined as the
proof proceeds.

It is convenient to give different names to different occurrences of cycles. Let 4
be a cycle and n its length. Let g, «;, .., o, _; be the points in order around A4,
so there is an edge from «; to «;,; for 0 <i<n; here and subsequently, subscripts
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are reduced modulo n to belong to the interval [0,n—1]. Suppose that the
spoiler colors the points of 4 with ¢ colors. Let y(«;) denote the color of «;, and
let x(A) denote the colored structure 4. Assuming that n>2d (we require ¢ > 2d),
the d-type of the point «;, in y(4) is fully described by the following vector of 2d — 1
colors:

<X(“i—(d—1)), e X(2 1), 2(25), 2&ip1)s ooy X(“i+(d—1))>- (1)

Let 7, denote the d-type of «,.

Let N = ¢*?~! be the number of d-types. Say that d-type 7 is rare if it occurs less than
m times as a d-type of a point of y(4). Say that t is frequent if it is not rare. The total
number of occurrences of rare d-types is at most (m — 1)N. Since this is some constant
depending on ¢ and r, but not on »n or the coloring, it follows, as we shall show, that
for n sufficiently large, there must be two points a, and a, with 0 < p < g < n such that:
(1) 7, = 1,45 (2) 1, is frequent for all i with p <i<g¢; (3) «, and a, are at least distance
d apart, that is, a, ¢ Nbd(d, a,); and (4) ¢ — p <dN. To see this, note that there is a
t depending on d, N, and the number of rare d-types (i.e., depending on ¢ and r), such
that for all n> ¢ and all colorings of 4 with ¢ colors, there is a point «, such that 7,
is frequent for 0 <i<dN, and a, and a,, 4y are at least distance d apart. Among the
dN + 1 points «, , ; for 0 <i<dN, some subset of d+ 1 points must have the same
d-type. Two points in this subset must be at least distance d apart.

Choose z so that z is divisible by every integer from 2 to dN. Let B be a cycle of
length n and B’ be a cycle of length »n’' divisible by z. Note that n’ >2d since
z2dN>2d. Let B, for 0<i<n (resp., f; for 0<i<n') be the points in order around
B (resp., B'). The duplicator’s coloring of B is copied from 4, that is, y(8,) = x(«;) for
all i. The duplicator’s coloring of B’ is obtained by repeating the color sequence
x(05), x(%p 1), -y x(24_y) around B for n’/(q — p) times. Since g — p < dN, the choice
of z ensures that »’ is divisible by (¢ — p). More precisely, x(f;)= x(a,. ;) Where
j=imod (¢— p)and 0 < j < g — p. Let x(B) and y(B’) denote the structures Band B,
respectively, after being colored as just described. Let 7} be the d-type of f; in x(B').
Since 7, =1, and a, and o, are at least distance d apart, it is easy to see that the
SEqUENce 7,, T, 4 1, -, T4 Of d-types repeats around x(B') in the same cyclic way that
the colors repeat, that is, 7; =, , , where j=imod (¢4 — p) and 0 < j<g— p. Since 1,
is frequent for p < i < g, all d-types occurring in x(B') are frequent. It follows that y(.A4)
and x(B) @ x(B') are (d, m)-equivalent, since each rare d-type occurs exactly the same
number times in y(B) as it does in y(4) and it does not occur in y(B’) at all, and since
each frequent d-type occurs at least m times in y(B). It follows from Theorem 6.1 that
x(A) ~, x(B) @ x(B'), so the duplicator wins. ||

8. THE BOOLEAN CLOSURE OF MONADIC NP

In this section we investigate the expressive power of the Boolean closure of
monadic NP. In addition to establishing results about the Boolean closure of
monadic NP, the results and techniques in this section are useful in the next section
on the power of closed monadic NP. The main result of this section establishes a
limit on the power of the Boolean closure of monadic NP. We show that there is
an undirected graph property in the positive first-order closure of monadic NP that
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is not in the Boolean closure of monadic NP. We actually show that this property
is expressible by a sentence of the form Vx Vyy where ¥ is a monadic NP formula;
so, in some sense, this property is not too far from monadic NP. Another (relatively
easy) result of this section is that there is an undirected graph property that belongs
to the Boolean closure of monadic NP, but does not belong to monadic NP nor
to monadic co-NP. We begin with this result. Its proof uses, in a simple way, a
technique of splitting structures into disjoint parts and describing different
Ehrenfeucht-Fraissé game strategies for different parts; this technique is used later
in a more complicated way. Let the property “There are exactly two connected
components” be the class of undirected graphs that have exactly two connected
components.

THEOREM 8.1. The property “There are exactly two connected components”
belongs to the Boolean closure of monadic NP, but does not belong to monadic NP
nor to monadic co-NP.

Proof. Let & be the property “There are exactly two connected components”.
We now show that % belongs to the Boolean closure of monadic NP. We first
observe that, for each k >2, there is a monadic NP sentence y, that says that G has
at least k connected components. The sentence y, is similar to the sentence
described in Section 4 for nonconnectivity. The sentence p, says that there exist
k nonempty sets A, .., 4;, where the sets are pairwise disjoint, and such that
there is no edge between a point of 4; and a point of A; for 1<i<k. Thus,
& is expressed by the sentence y, A 173, a Boolean combination of monadic NP
sentences.

To show that % does not belong to monadic co-NP, it suffices to show that the
complementary property & does not belong to monadic NP. Using Theorem 5.2,
we need only show that for every c, r there are Gp € & and G, € & such that the
duplicator has a winning strategy in the asymmetric (c, r)-game over Gy, G,. Let
c,r be given. By Theorem 7.1, there is a cycle C such that the duplicator has a
winning strategy in the asymmetric (¢, r)-game over C, C@® C. So we need only take
Gy=Cand G,;=CHC.

To show that & does not belong to monadic NP, we again use Theorem 5.2, the
difference being that now we must choose G, € & and G, € &. For a given ¢, 1, let
C be as above. Now we take Go,=C@® C and G, = C® CP C. We split G, and G,
into disjoint pieces as follows. Let Gy = Gg=C, G)=C, and G| =C® C. To show
that the duplicator has a winning strategy in the asymmetric (¢, r)-game over
G,, G,, it is clearly sufficient to show that (1) the duplicator has a winning strategy
in the asymmetric (c, r)-game over Gy, G}, and (2) the duplicator has a winning
strategy in the asymmetric (c, r)-game over Gg, Gi. For (1), this is obvious because
G, and G are isomorphic. For (2), this follows by the choice of C. ||

We now define a game that (as we shall show) corresponds to properties that are
in the Boolean closure of monadic NP. Let G,, G; be structures, and let ¢, r be
positive integers (where ¢ represents the number of colors and r the number of
rounds). We call this game the symmetric (c, r)-game over G,, G,. The rules are as
follows.
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1. The spoiler colors either G, or G, with the ¢ colors.
2. The duplicator colors the other structure with the ¢ colors.

3. The spoiler and duplicator play an r-game on the colored G, G,.

The winner is decided as before. Again, the isomorphism must respect colors.

The difference between the symmetric and asymmetric games is that in the
asymmetric game, the spoiler must color G, and the duplicator G,, whereas in the
symmetric game, the spoiler can color either structure and the duplicator then
colors the other structure. Clearly, the duplicator has a winning strategy in the sym-
metric (c, r)-game over G,, G, iff (1) the duplicator has a winning strategy in the
asymmetric (c, r)-game over G,, G, and (2) the duplicator has a winning strategy
in the asymmetric (c, r)-game over G,, G,. We have the following theorem,
analogous to Theorem 5.2.

THEOREM 8.2. & is in the Boolean closure of monadic NP iff there are c, r such
that whenever Gy & and G, € P, then the spoiler has a winning strategy in the
symmetric (c, r)-game over G,, G,.

Proof. Assume first that & is in the Boolean closure of monadic NP. Thus,
there is a sentence ¢ that is a Boolean combination of monadic NP sentences, such
that every member of & satisfies ¢, and no member of & satisfies ¢. By converting
@ to disjunctive normal form, we can assume without loss of generality that ¢ is
of the form V7, A72, ¢, ;, where each ¢, ; is a monadic NP sentence or a
monadic co-NP sentence. Since m, and m, are finite, there are k, r such that every
@, ; 1s of the form 34, ---34,.¢ (if ¢, ; is monadic NP) or VA4, ..-VA, ¥ (if @, ;is
monadic co-NP), where the 4,’s are unary, where k' <k and where ¥ has quan-
tifier depth at most r. Let ¢ =2*. We now show that whenever G, € ¥ and G, € &,
then the spoiler has a winning strategy in the symmetric (c, r)-game over G,, G;.

Assume that G, € & and G, € &. By definition of ¢, every member of & satisfies
@, and no member of & satisfies ¢. In particular, Go=¢, and G, #¢. Since
Gol=¢, there exists i, such that GoE=AJ2, ¢, ;. Since G, ¢, it follows
that G, AJ2, ¢, ;- Therefore, there exists j, such that G, = ¢, ;. Since Gol=
A2y @, 5 1t follows that Gy =9, ;.- ‘

There are two cases, depending on whether ¢, ; is a monadic NP sentence or
a monadic co-NP sentence. If ¢, ; is a monadic NP sentence, then it follows by
standard arguments (see, for example, [ Fag97]) and our choice of ¢, r that the
spoiler has a winning strategy in the asymmetric (¢, r)-game over Gy, G,. Similarly,
if ¢, ,, is 2 monadic co-NP sentence, then the spoiler has a winning strategy in the
asymmetric (c, r)-game over G,, G,. So in either case the spoiler has a winning
strategy in the symmetric (c, r)-game over Gy, G, which was to be shown.

We now prove the converse. By standard arguments (such as those in [ Fag97]),
it is not hard to show that for every structure G, and every choice of c, r, there is
a sentence o(G,, ¢, r) that is a conjunction of sentences of the form 34, ---34,.¢
and of negations of sentences of this form, such that k =[log ¢ and ¥ is of quan-
tifier depth at most », and such that the duplicator has a winning strategy in the
symmetric (c, r)-game over G,, G, iff G,E=0(G,, ¢, r). Furthermore, for a given
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choice of ¢, r, there are only a finite number of distinct inequivalent such sentences
o(Gy, ¢, 1).

Assume now that there are ¢, r such that whenever G, € & and G, € &, then the
spoiler has a winning strategy in the symmetric (c, r)-game over G,, G,. Let ¥’ be
a finite subset of & such that for every G, € &, there is Gye &' with ¢(G,, ¢, r)
equivalent to o(Gp, ¢, r) (such a set &’ exists, because of our earlier observation
that for a given choice of ¢, r, there are only a finite number of distinct inequivalent
sentences of the form o(G, ¢, r)). Let x4 be the disjunction Vees o(Gy, ¢, r). To
show that % is in the Boolean closure of monadic NP, we need only show that
every member of & satisfies #, and no member of & does.

Assume that Gyoe.%”. By definition of 0(Gy,c, r), it follows easily that
Gy =0(Gy, ¢, r). Now a(G,, ¢, r) is equivalent to some disjunct o(Gy, ¢, r) of u.
Hence, G, =g, as desired. Assume now that G, € &. The proof is complete if we
show that G,}ru. Assume by way of contradiction that G,|u. Then
G, =0(Gy, ¢, r) for some disjunct o(Gy, ¢, r) of u. Therefore, by definition of
o( Gy, ¢, r), the duplicator has a winning strategy in the symmetric (¢, r)-game over

*, G;. But this contradicts our choice of ¢, r, since Gpe ¥ and G, e Z. |

We now define a property that we shall show is in the positive first-order closure
of monadic NP but not in the Boolean closure of monadic NP. Let G be a directed
graph. A subset M of the vertices of G is called a module [Spi92] (or an
autonomous set [MR84] or a partitive set [ Gol80]) if the members of M are
indistinguishable as far as the vertices outside of M are concerned. That is, if u is
a vertex of G outside of M, and if v,, v, are in M, then (a) {u, v, is an edge of
G iff {u, v,) is an edge of G, and (b) {vy, u) is an edge of G iff (v,, u) is an edge
of G. Note that the set of all vertices of G and every singleton set (consisting of a
single vertex of G) is automatically a module. An induced subgraph H of G is an
inner factor of G [ Gol80] if the set of vertices of H is a module of G. Intuitively,
G is obtained by starting with another graph G’ and replacing a fixed vertex x of
G’ by H. To clarify this intuition, we give some notation (from [ Gol80]) that will
be useful later. Let Hy, be a graph, with exactly n vertices vy, .., v,, and let
H,, .., H, be n graphs. We assume for convenience in our definitions that no two
graphs H;, H, share a vertex; whenever we want to apply the definitions with some
of the H;’s being the same graph, we assume that we simply replace the graphs if
necessary by isomorphic copies where the universes are disjoint. We write
Hy [ H,, .., H,] for the result of replacing vertex v, with the graph H,, for 1 <i<n,
and for each i, j, putting an edge from each vertex of H, to each vertex of H, iff
{v;, v;» is an edge of H,.* More formally, if H; has vertices ¥, and edges E,, for
0<i<n, then the set of vertices of H,[H,, .., H,] is U7_; V;, and the set of
edges is

<O E,~>U<C} C) {{x,y>|xeV,, yeV, and (v, uj)eEo}>. 2)

i=1 iml j1

*In spite of the notation, the graph Ho[ Hy, .., H,] depends not just on Hy, H, ..., H,, but also on
the specific ordering v,, ..., v, of the vertices of H,.
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We shall also need the definitions of module and inner factor for undirected
graphs. The definitions are in the same spirit as the definitions above for directed
graphs. A subset M of the vertices of an undirected graph G is a module if, for all
vertices u ¢ M and all vertices v,, v, € M, there is an edge between u and v, iff there
is an edge between u and v,. Again, an induced subgraph H of G is an inner factor
of G if the set of vertices of H is a module of G. For undirected graphs Hy, H,, ..,
H,, the set of edges of Ho[ H,, .., H,] is given by (2) where the directed edges
{(x,y)y and (v, v;> are replaced by the undirected edges (x, y) and (v;, v)),
respectively.

In general, there are multiple ways to “decompose” a graph into the form
Ho[H,, .., H,]. In [Gol80], for each such decomposition, the graph H, is called
the outer factor, and the graphs H,, .., H, are called the inner factors. Thus, for us,
an induced subgraph of a graph is an inner factor precisely if it is an inner factor
of some decomposition.

The property we now consider is as follows: “At most one connected component
has each of its inner factors connected”. It is important to note that this is a
property of undirected graphs. Therefore, to determine whether a directed graph has
this property, we first view it as an undirected graph by ignoring the directions of
the edges as explained in Section 2, and then determine if at most one connected
component of this undirected graph has each of its inner factors connected. The
distinction between directed and undirected graphs is important here, because a set
M of vertices of a directed graph G might not be a module of G, but be a module
of the undirected graph obtained from G by ignoring the directions of the edges.
(As it turns out, however, for the particular directed graphs used in the proof of the
next result, the modules of the directed graph are identical to the modules of the
associated undirected graph.)

THEOREM 8.3. The property “At most one connected component has each of its
inner factors connected” is not in the Boolean closure of monadic NP.

Proof. Let & be the property “At most one connected component has each of
its inner factors connected”. By Theorem 8.2, we need only show that for every ¢, r,
there are G, € ¥ and G, € & such that the duplicator has a winning strategy in the
symmetric (c, r)}-game over Gy, G;.

So let ¢, r be given. By Theorem 7.1, there is @ >5 such that if 4 is a cycle of
length a, then the duplicator has a winning strategy in the asymmetric (c, r)-game
over A, A@® A. Again by Theorem 7.1, there is b>5 such that if B is a cycle of
length b, then the duplicator has a winning strategy in the asymmetric (c®, r)-game
over B, B@® B.

Let A be a cycle of length a, and let B be a cycle of length b. Let S be the graph
B[ A, .., A]. Thus, intuitively, S is a cycle of cycles. Let D be the graph
B[A®DA, .., A® A]. Intuitively, D is a cycle of pairs of cycles. We have chosen the
names so that S stands for “single” and D for “double”.

Let G, be the graph consisting of the disjoint union of one copy of S and b +1
copies of D, and let G, be the graph consisting of the disjoint union of two copies
of S and rb°” copies of D. Let 4, D, S be the undirected graphs obtained from
A, D, S respectively, by ignoring the directions of the edges. It is not hard to see



682 AJTAIL FAGIN, AND STOCKMEYER

that Gy € & and G, € . This follows from the fairly straightforward fact that the
only inner factors of $ (other than singleton graphs and § itself) are copies of A,
and at least one inner factor of D is the nonconnected graph A @ A.°

Since G, € & and G, € &, it follows from Theorem 8.2 that the proof is complete
if we show that the duplicator has a winning strategy in the symmetric (¢, r)-game
over Gy, G,. As we noted earlier, to prove this, it is sufficient to show that (1)
the duplicator has a winning strategy in the asymmetric (¢, r)-game over G,, G,
and (2) the duplicator has a winning strategy in the asymmetric (c, r)-game over
Gy, Gg.

We first show that the duplicator has a winning strategy in the asymmetric (c, r)-
game over G,, G,. Let G be the subgraph of G, consisting of the single copy of
S in Gy, and let G} be the subgraph of G, consisting of the rb*+ 1 copies of D
in G,. Similarly, let G} be the subgraph of G, consisting of the two copies of S in
G,, and let G] be the subgraph of G, consisting of the rb™ copies of D in G;. Thus,
G, is the disjoint union of Gy and Gg, and G, is the disjoint union of G and Gj.
To show that the duplicator has a winning strategy in the asymmetric (c, r)-game
over G,, Gy, it is clearly sufficient to show that (1) the duplicator has a winning
strategy in the asymmetric (¢, r)-game over Gy, G;, and (2) the duplicator has a
winning strategy in the asymmetric (¢, r)-game over Gy, Gj.

We now show that the duplicator has a winning strategy in the asymmetric (c, r)-
game over Gg, G}. Assume that the spoiler colors G; with the ¢ colors. Let us call
each coloring of an inner factor 4 with the ¢ colors a “supercolor”. Thus, there are
at most ¢” supercolors. We think of the spoiler’s coloring of G; (with ¢ colors) as
a supercoloring of B, that is, a coloring of B where each point of B is colored with
a supercolor. By definition of b, the duplicator has a winning strategy in the asym-
metric (c?, r)-game over B, B@® B. The supercoloring that the duplicator would use
in his winning strategy to supercolor B® B in the asymmetric (c“, r)-game over
B, B® B, based on the spoiler’s supercoloring of B, translates into a coloring (using
¢ colors) of G}. This is how the duplicator colors G}.

In the r-game over the colored Gy, G, the duplicator makes use of his winning
strategy in the r-game over the supercolored B, B® B. Let us refer to the points in
B and B® B as supernodes. We can think of each supernode as being supercolored
with one of the ¢® supercolors. By construction, the duplicator has a winning
strategy in the r-game over the supercolored B, B&® B. The duplicator uses this
strategy to select supernodes, based on the spoiler’s choices of supernodes. “Within”
a supernode (that is, on the cycle 4 that corresponds to that supernode), the
duplicator selects corresponding points in the two structures Gy and Gj. For
example, assume that the spoiler selects a point u in Gj. This point is on a cycle
(call it 4,) that corresponds to some supernode ' of B. Let v’ be the supernode
that the duplicator would now pick in B@® B in his winning r-game strategy over
the supercolored B, B® B, based on the spoiler selecting . The duplicator then
selects a point v in G} that lies on the cycle (call it 4,) that corresponds to the
supernode v’, and in particular selects that point v that is in the same position in

5 Here we use the fact that a5 and b > 5, since, for example, if b =4, then the graph consisting of
two copies of A that are “nonadjacent” in $ together form an inner factor of $.
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Ay as u is in A,. It is straightforward to see that the duplicator thereby wins the
r-game over the colored Gy, G}. This completes the proof that the duplicator has
a winning strategy in the asymmetric (c, r)-game over Gy, G.

We now show that the duplicator has a winning strategy in the asymmetric
(c, r)-game over Gg, G]. Assume that the spoiler colors G§ with the ¢ colors. Since
there are at most ¢ ways to color 4@ A (with the ¢ colors), there are at most b~
ways to color D. Since there are rb“ + 1 copies of D in G?, it follows easily that
there exists a set Y of r+ 1 copies of D in Gg that are all colored the same. Let Z
be the set of all but one of the b + 1 copies of D in G§, where the missing copy
of D is one of the members of Y. The duplicator then colors the rb copies of D
in G7 by mimicking the colorings of the b members of Z.

In the r-game over the colored Gj, G], the duplicator essentially mimics the
moves of the spoiler. The point is that since the set Y as defined above contains at
least r + 1 members, there is some member of Y with no point selected from it in
the r rounds. The simple details are left to the reader. This concludes the proof that
the duplicator has a winning strategy in the asymmetric (¢, r)-game over Gg, G,
and hence concludes the proof that the duplicator has a winning strategy in the
asymmetric (c, r)-game over G, G,.

We now show that the duplicator has a winning strategy in the asymmetric
(c, r)-game over G,, G,. We “divide up” G, into subgraphs G, and Gj in a different
manner than before. Specifically, let Gj be the subgraph of G, consisting of a single
copy of D in G,. Let G§ be the subgraph of G, consisting of the rest, that is,
the single copy of S and rb” copies of D in G,. We also divide up G, into sub-
graphs G| and Gy in a different manner than before. Specifically, let G} be the
subgraph of G, consisting of a single copy of S in G,. Let G} be the subgraph of
G, consisting of the rest, that is, one copy of S and b copies of D in G,. As
before, G, is the disjoint union of Gy and Gg, and G, is the disjoint union of G}
and Gj.

Like before, to show that the duplicator has a winning strategy in the asymmetric
(c, r)-game over G, G,, it is clearly sufficient to show that (1) the duplicator has
a winning strategy in the asymmetric (c, r)-game over G}, G, and (2) the
duplicator has a winning strategy in the asymmetric (c, r)-game over G}, G. The
proof of (2) is trivial, since G and Gy are isomorphic. So we need only prove (1).
That is, we need only prove that the duplicator has a winning strategy in the
asymmetric (c, r)-game over S, D.

Now intuitively, S is a cycle (of length ) of cycles 4, whereas D is a cycle (of
the same length b) of pairs 4 @ 4 of cycles. It is easy to see how the duplicator can
use the winning strategy in the asymmetric (c, r)-game over A, A® A to get a
winning strategy in the asymmetric (c, r)-game over S, D. Essentially, the duplicator
views the (c, r)-game over S, D as b disjoint copies of the (c, r)-game over A, AD A
played in parallel. The straightforward details are left to the reader. |}

We now show that the property “At most one connected component has each of
its inner factors connected” belongs to the positive first-order closure of monadic
NP, and, moreover, can be expressed by a sentence of the form Vx Vya) where  is
a monadic NP formula.
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Recall that, for a given graph G, the notation ind(X) stands for the subgraph of
G induced by the set X of points, and CC(x) stands for the connected component
of G that contains the point x.

THEOREM 8.4. The property “At most one connected component has each of its
inner factors connected” can be expressed by a sentence of the form Yx Vyy where
is a monadic NP formula.

Proof. Clearly, the following high-level sentence expresses the property stated in
the theorem:

Vx Vy(“x and y are path-connected”
v “CC(x) contains a nonconnected inner factor”

v “CC(y) contains a nonconnected inner factor”).

It suffices to show that each of the three terms in the disjunction can be expressed
by a monadic NP formula. We have already shown in Section 4 that the first term
can be so expressed, so we only have to describe a monadic NP formula for the
second term (the same formula works for the third term by replacing x with y).

Again at a high level, “CC(x) contains a nonconnected inner factor” is expressed
by the following:

There exists a set M of points such that:

(1) M is a module;
(2) ind(M) is nonconnected;
(3) x is path-connected to some point in M; and

(4) for every two distinct points v; and v, in M, the points v, and v, are
connected by a path of length two.

We first argue that this expresses the desired property. Say first that CC(x)
contains a nonconnected inner factor. Let M be the set of points of some noncon-
nected inner factor contained in CC(x). Clearly, (1), (2), and (3) are satisfied. To
see that (4) is satisfied, note that M is properly contained in the set ¥, of points
of CC(x), because ind(M) is nonconnected whereas CC(x) is connected. Let v, and
v, be distinct points of M. Since M is properly contained in ¥V, and CC(x) is
connected, there must be a point- v; e M and a point ue ¥V, — M with an edge
between v; and w. The definition of module implies that there is an edge between
u and v, and an edge between u and v,, so v, and v, are connected by a path of
length two.

Say now that (1)~(4) hold for a set M. It is easy to see that (3) and (4) imply
that ind(M) is contained in CC(x). So, by (1) and (2), ind(M) is a nonconnected
inner factor of CC(x).

To complete the proof, we note that each of (1)(4) can be expressed by a
monadic NP formula. For (2), “ind(M) is nonconnected”, we have shown this in
Section 4. Obviously, (1) and (4) can be expressed in first-order. A monadic NP
formula expressing (3), “x is path-connected to some point in M”, is similar to the
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formula described in Section4 for “x and y are path-connected”. Thus, (3) is
expressed by 34 Iw(we M A path(A, x, w)), where path(A4, x, w) is the first-order
formula described in Section 4, that says that A is a strict path between x and w.

The following theorem is an immediate consequence of Theorems 8.3 and 8.4.

THEOREM 8.5. The property “At most one connected component has each of its
inner factors connected” is in the positive first-order closure of monadic NP but not
in the Boolean closure of monadic NP.

This theorem immediately implies Theorem 1.1, which is one of our main
separation results.

9. THE POWER OF CLOSED MONADIC NP

Properties in closed monadic NP are defined by sentences of the form Qg¢, where
the prefix Q can have an arbitrary interleaving of first-order quantifiers and existen-
tial unary second-order quantifiers, and where ¢ is first-order. Do we gain
expressive power by allowing interleaving? In particular, is there a property in
closed monadic NP that is not in the positive first-order closure of monadic NP?
In this section, we show that the answer is yes: we indeed gain expressive power by
allowing interleaving. In fact, we actually prove a stronger result. We show that
there is a property in closed monadic NP that is not in the first-order closure of
monadic NP.

Let & be the property “At most one connected component has each of its inner
factors connected”. In Section 8, we showed that & is not in the Boolean closure
of monadic NP, but that it is in the positive first-order closure of monadic NP. We
now define a new undirected graph property % to be “There is a cycle C of length
n>=5 and graphs H,, .., H, such that the number of H,’s that satisfy 4, is even, and
the graph is C[ H,, ..., H,]”. Note that this property is well-defined since it does not
matter how the graphs H,, .., H, are substituted for the points of C; all that
matters is that the number of H,’s that satisfy 4 is even. In this section, we show
that property 4 is in closed monadic NP, but not in the first-order closure of
monadic NP.

Before we prove that property % is not in the first-order closure of monadic NP,
we need some preliminary results. First, we give a game that characterizes the first-
order closure of monadic NP. In this game, there are first-order rounds, followed
by a coloring round, followed by first-order rounds. Let Gy, G, be structures, and
let ry, c, r, be positive integers (where r, represents the number of initial first-order
rounds, ¢ the number of colors, and r, the number of remaining first-order rounds).
We call this game the symmetric (ry, c, ry)-game over Gy, G,. The rules are as
follows.

1. There are r, rounds where the spoiler selects a point in G, or G, and the
duplicator selects a point in the other structure.

2. The spoiler colors either G, or G, with the ¢ colors.

3. The duplicator colors the other structure with the ¢ colors.
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4. There are r, more rounds where the spoiler selects a point in G, or G, and
the duplicator selects a point in the other structure.

The winner is decided as before. Again, the isomorphism must respect colors.
The next proposition will be used to characterize the first-order closure of
monadic NP in terms of the symmetric (r,, ¢, r,)-game.

PropPOSITION 9.1. Every FO(MNP) formula is equivalent to a PFO(BOOL
(MNP)) formula, that is, a formula of the form Py where P consists of first-order
quantifiers and y is a Boolean combination of monadic NP formulas.

Proof. 1t is enough to show that (i) the PFO(BOOL(MNP)) formulas are
closed under first-order quantification, and (ii) if ¢, and ¢, are PFO(BOOL
(MNP)) formulas, then —¢, and ¢, A @, are each equivalent to a PFO(BOOL
(MNP)) formula. Since (i) is obvious, we complete the proof by showing (ii). For
i=1,2, write ¢,=P,};,, where P, consists of first-order quantifiers and y, is a
BOOL(MNP) formula. Now —i¢, is equivalent to the PFO(BOOL(MNP))
formula P} —,, where P} is obtained from P; by changing each existential
quantifier to a universal quantifier, and vice versa. And ¢, A @, is equivalent to the
PFO(BOOL(MNP)) formula PPy} A ¥5), where Py, ¥, P,, and ¥, are
obtained from P,, ¥, P,, and ,, respectively, by renaming variables in such a
way that the variables in P} do not appear in ¥, and the variables in P, do not
appear in ¥;. |}

We can now characterize the first-order closure of monadic NP in terms of the
symmetric (r,, ¢, r,)-game.

THEOREM 9.2. & is in the first-order closure of monadic NP iff there are ry, c,r,
such that whenever G, € & and G, € &, then the spoiler has a winning strategy in the
symmetric (r,, c, r,)-game over G,, G,.

Proof. Given Proposition 9.1, the proof is similar to that of Theorem 8.2 by
using fairly standard modifications, which are omitted. Roughly, the idea is that,
given a PFO(BOOL(MNP)) sentence Py as above, the first r, point-selecting
rounds correspond to the first-order quantifiers in P, and the symmetric coloring
round and the final r, point-selecting rounds correspond to the BOOL(MNP)
formula ¥ as in the proof of Theorem 8.2.

We now develop machinery that we will need to prove that property % is not
in the first-order closure of monadic NP. We begin with a lemma that we will make
use of several times. A chain is a (directed) graph with points aq, ..., «,_, such that
the edges are precisely {ag, &), (%1, %2, vy (&, _2, &, _1>. The length of the chain
is n. Note that this length n is equal to the number of points, not the number of
edges. We say that a, precedes a; on the chain if i < j. The left endpoint of the chain
is ag, the next-to-left endpoint is «,, the right endpoint is «,,__,, and the next-to-right
endpoint is «,_,. Let A and B be chains. In an r-game over 4, B, let a, (resp., b,)
be the point selected during round i in 4 (resp., B), for 1 <i<r. A duplicator
strategy is said to be order-respecting if a, precedes a; in A iff b; precedes b; in B,
for each i, j with 1 <i<r and 1 < j<r. A duplicator strategy is said to be endpoint-
respecting if a, is the left (resp., next-to-left, right, next-to-right) endpoint of A4 iff
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b, is the left (resp., next-to-left, right, next-to-right) endpoint of B, for each i with
1<igr.

LemMMA 9.3. Let A and B be chains each of length greater than 2"+'. Then the
duplicator has a winning strategy in the r-game over A, B such that the strategy is
both order-respecting and endpoint-respecting.

Proof. Let A and B be chains each of length greater than 27+, Define numbers
ty ot by t,=1and t;=2t, ,+1, fori=r—1,..,0. It is easy to show by reverse
induction on i that ¢,=2""*'—1 for all i. Let a_, (resp., b_,) denote the left
endpoint of 4 (resp., B), and let a, (resp., by) denote the right endpoint of 4 (resp.,
B). We describe a strategy for the duplicator such that, for i=0, 1, .., r, after i
rounds have been played the following invariant holds. For each j k& with
—1<j<iand —1<k<i:

1. a; precedes a, in A4 iff b, precedes b, in B (in particular, a;=a, iff b;,=b,);
and

2. either the distance between a; and a, is the same as the distance between
b; and by, or else both distances are greater than z;.

Note that the invariant holds for i=0 because 7,<2"*! and because of our
assumption on the lengths of 4 and B. Note that this is an endpoint-respecting
winning strategy because 7, = 1. It is immediate from the first part of the invariant
that the strategy is order-respecting.

For some i with 0<i<r, say that i rounds have been played, and that the
invariant holds. Say that the spoiler selects a point a,, , from A4 (the case where the
spoiler selects from B is completely symmetric). If a; , ;, = a, for some j < i, then the
duplicator selects b, ; = b;. Say then that a,,, lies strictly between adjacent points
a; and a; where j, k <i(when we say that a, and a, are adjacent, here we mean that
there is no a, with 1</ < that is strictly between a; and a,). Let d(x, y) denote
the distance between points x, y. If &(a;, a;) = 6(b;, by), then the duplicator selects
b, .1 between b; and b, such that (b, b, ,) =d(a;, a,,,). If d(a;, ax) # (b;, by),
then the distances d(a;, a;) and d(b;, by) are both greater than t,=2¢,,,+1. lfa,,,
is within distance ¢, from a; (resp., a,), then the duplicator selects b, , between
b, and b, to be at the same distance from b, (resp., b,). The final case is that a, .,
is farther than 7, , from both a; and a,. Since d(b;, b)) >1t,=2t; ;+1, there is a
point between b, and b, that is farther than ¢, from both b, and b,. Let b, be
such a point; this is the duplicator’s selection. In each case, the invariant holds
fori+1. 1|

As an intermediate step in showing that property &, is not in the first-order
closure of monadic NP, we now give a lemma about a certain type of game played
on two-colored cycles. A black/white cycle is a (directed) cycle with each point
colored either black or white. We think of the direction of the edges as giving a
“clockwise” orientation to a directed cycle. Let r, t, M be positive integers, and let
A and B be black/white cycles. The rules of the (r, t, M)-black/white game over A, B
are as follows. The game has r rounds. In each round the spoiler selects a point
in one structure and the duplicator responds by selecting a point in the other
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structure. Let a; (resp., b;) be the point selected during round i in A4 (resp., B), for
1<i<r. The duplicator wins if:

1. a; has the same color as b,, for 1 <i<r;

2. a;=a;iff b;=b;, for all i, j;

3. The sequences a,, .., a, and b,, .., b, appear in the same order around the
two cycles. More precisely, there is a permutation =z: {1, ..,r} — {1, ..,r} with
n{1) =1 such that, starting at a, (resp., b,) and moving in the clockwise direction
around the cycle 4 (resp., B), the points occur in the order a,q), .., @, (resp.,
Br1ys - bagn)® and

4. For each pair of adjacent (in the n order) selected points in one structure
and the corresponding pair in the other structure, either the distance between them
is the same in both structures, or both distances are “large” (greater than ¢) and
congruent to each other mod M. More precisely, for 1 <i<r, let £, (resp., £}) be the
distance from @,;._1y t0 @, (resp., from b,;_, to b,;,) moving in the clockwise
direction, where n#(0) = n(r). Then, for 1 <i<r, either

(a) £;={(}, or
(b) ¢;,>¢t and £;>1¢, and £, =7¢;mod M.

LEMMA 94. Let r,t, M be positive integers. There are arbitrarily large black/
white cycles A and B of the same size such that an even (resp., odd) number of points
of A (resp., B) are colored white, and the duplicator has a winning strategy in the
(r, t, M)-black/white game over A, B.

Proof. Let N=tM. In particular, N>¢ and N=0mod M. By increasing ¢ if
necessary, we can make N arbitrarily large. Define a colored chain to be a chain
where each of the points is colored black or white. Define C, to be a colored chain
of N points, where every point is colored black. Define C; to be a colored chain of
N points, where the first point (x, above) is colored white, and the remaining
points are colored black. Thus, C, contains exactly i white points, for i=0, 1. Let
k be an odd number (whose existence is guaranteed by Lemma 9.3) such that if 4
and B are chains of length at least k, then the duplicator has an order-respecting,
endpoint-respecting winning strategy in the r-game over 4, B. Let 4 be the black/
white cycle constructed by “stringing together” k+ 1 consecutive C,’s, followed by
k consecutive Cy’s. These 2k + 1 chains are strung together by placing an edge from
the right endpoint of each chain to the left endpoint of the next chain, and finally
by placing an edge from the right endpoint of the last copy of C, to the left
endpoint of the first copy of C;. Let B be defined similarly, except that there are
k consecutive Cy’s, followed by k+ 1 consecutive Cy’s. Since k is odd, it follows
that 4 has an even number of white points, and B has an odd number of white
points, We now show that the duplicator has a winning strategy in the (r, ¢, M)-black/
white game over 4, B.

Similarly to before, certain groups of points of 4 and B are viewed as supernodes.
We think of A4 as a cycle consisting of a chain of k + 1 supernodes that correspond

¢ We note that some of the a,’s (and similarly the b,’s) might be identical. In the definition of =, the
“order” of identical points can be chosen arbitrarily.



THE CLOSURE OF MONADIC NP 689

to C, (let us call this chain 4’), followed by a “chain of k supernodes that
correspond to C, (let us call this chain 4”). Similarly, we think of B as a cycle con-
sisting of a chain of k supernodes that correspond to C, (let us call this chain B’),
followed by a chain of k + 1 supernodes that correspond to C, (let us call this chain
B"). By our choice of k, the duplicator has an order-respecting, endpoint-respecting
winning strategy in the r-game over A', B’ (where we think of the spoiler and
duplicator as selecting supernodes in each round), and similarly the duplicator has
an order-respecting, endpoint-respecting winning strategy in the r-game over
A", B". Note from our definition of “endpoint-respecting” that, for example, if the
spoiler selects, say, the left endpoint of 4’ (that is, the leftmost supernode), then the
duplicator must select the left endpoint of B’. These winning strategies can be com-
bined into a winning strategy in the r-game over A4, B, where again we think of the
players as selecting supernodes. Finally, this winning strategy can be converted into
a winning strategy in the “real” r-game over 4, B (where points, not supernodes,
are selected), by having the duplicator always select corresponding points within
supernodes. Thus, for example, if the spoiler selects the jth point from the left in the
chain (C, or C;) corresponding to the supernode a of 4, and if the winning strategy
on supernodes would cause the duplicator to select the supernode b of B in
response to the spoiler’s selection of the supernode a of A4, then the duplicator
selects the jth point from the left in the chain corresponding to the supernode b of
B. To show that this gives a winning strategy for the duplicator, note first that the
first three conditions for the duplicator to win the black/white game hold. We now
show that the fourth condition also holds. Let us adopt the notation of the fourth
condition. Since the duplicator always selects corresponding points within super-
nodes, and since the length N = Mt of each of the chains Cy, C, associated with a
supernode is congruent to 0 mod M, it follows that ¢, =¢;mod M. There are now
three cases.

Case 1. a,,_,,and a,, are in the same supernode (that is, are both in a chain
corresponding to the same supernode). Then also b,,_,y and b, are in the same
supernode, so from the duplicator’s strategy, we have £;=/¢].

Case 2. a.;_, and a,; are in adjacent supernodes. Then from the duplicator’s
strategy, b, _,, and b, are also in adjacent supernodes, and from the duplicator’s
strategy, again £;=¢].

Case 3. a,,_1 and a,, are in different supernodes that are not adjacent. Then
from the duplicator’s strategy, b,_;) and b, are in different supernodes that are
not adjacent. So, since N > ¢, it follows that £,> ¢ and ¢; > 1. As we already showed,
¢, =¢!mod M. This completes the proof that the fourth condition holds for the
duplicator to win. So indeed, the duplicator has a winning strategy. [

We need one more lemma.

LeMMA 9.5. Let c, r be positive integers. There are positive integers t, M such that
whenever A, B are chains each of length greater than t and whose lengths are con-
gruent mod M, then the duplicator has an endpoint-respecting winning strategy in the
symmetric (c, r)-game over A, B.
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Proof. We first dispose of the issue of requiring the strategy to be endpoint-
respecting. Consider a symmetric (¢, r + 2)-game over 4, B. It is easy to see that any
winning strategy for the duplicator in this game must be endpoint-respecting at
least through the first r point-selecting rounds. Suppose, for example, that after i
rounds, where i < r+ 1, the point g, is the left endpoint o, of 4 and b, is some point
By other than the left endpoint of B. Then on the next round the spoiler can select
the point B;_, such that there is an edge {f;_;, fi>, and the duplicator cannot
respond in a winning strategy since there is no edge directed into a,. Thus, to prove
the lemma it suffices to replace r with r + 2 and show that the duplicator has some
winning strategy in the symmetric (c, r +2) game over 4, B. For simplicity in the
following, we assume that r has already been replaced by r + 2 and do not mention
it further.

Let f =2 (the maximal degree of a point in a chain), and let d, m be as in
Theorem 6.1. We assume without loss of generality that the number ¢ of colors is
at least 2. Assume that the spoiler colors A4 with the ¢ colors. (The case where the
spoiler colors B is completely symmetric.) We shall now mimic part of the proof of
Lemma 7.2

Let ag, «y, ..., @, _; be the points in order in 4, so there is an edge from «; to a,;
for 0<i<n—1. Let y(«;) denote the color of «;, and let y(A4) denote the colored
version of 4. When n > 2d then the d-type of the point «, is described by a vector
of up to 2d—1 colors’ as in (1) in Section 7, along with a description of whether
the point is less than distance d from one of the endpoints of the chain, and if so,
which endpoint and what the distance is. Let 7, denote the d-type of «,.

Let N be the number of d-types. Let M >m be chosen as z was in the proof of
Lemma 7.2, that is, so that M is divisible by every integer from 2 to dN. Let
Ad=MN+1, let ty=(m~+ 4) N4, and let t =1y + 4. As before, say that d-type 7 is
rare if it occurs less than m times as a d-type of a point of y(A). Say that 7 is
Sfrequent if it is not rare.

There are two cases, depending on whether or not the length of the chain 4 is
less than the length of the chain B.

Case 1. The length of A is less than the length of B. By assumption, the length
of A is greater than z. We shall use only the fact that the length of 4 is greater than
ty, rather than the stronger fact that it is greater than #; the fact that we are making
this weaker assumption will be important later on. It is straightforward to see that
we have selected ¢, sufficiently large that the argument in the proof of Lemma 7.2
can be used to show that there must be two points a, and a, with 0 <p <g <n such
that: (1) 7, =1,; (2) 7, is frequent for all i with p<i<gq; and (3) d<q— p<dN. Let
I be the colored chain corresponding to the interval [a,,«, ,]. The duplicator
should color B by taking the coloring of 4 and “replacing” I by multiple repeated
copies of I. More precisely, the duplicator should color B so that the colors, in
order, are

X(“o)a had] X(a’p—l)’ (X(ap)a e X(aq—l))h’ X(aq)’ X((Xq+1), fade] X(an—l)’

7We say “up to”, since if the point is near an endpoint of the chain, there are less points in the
neighborhood of radius d about the point.
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where (x(a,), ., x(®;_;))* represents the coloring of the interval [a,, 1]
repeated A times, and where 4 is chosen so that the total length of the whole color-
ing is equal to the length of B. (This choice of 4 is possible because the lengths of
A and B are congruent mod M, and because M is divisible by ¢ — p.) As in the
proof of Lemma 7.2, the colored versions of 4 and B are (d, m)-equivalent, because
the additional d-types produced by repeating I are all frequent. Therefore, by
Hanf’s technique (Theorem 6.1), the duplicator can now win the remaining first-
order game.

Case 2. The length of A is at least the length of B. Recall that y(4) is the
colored version of 4. Let D be a colored chain (colored with the ¢ colors) such that

(1) D~, x(4);

(2) The length of D is at least #,;

(3) the length of D and the length of x(A4) are congruent mod M; and
(4) the length of D is as small as possible, subject to (1), (2), and (3).

This definition makes sense, because there is some D that satisfies (1), (2), and (3),
namely y(A4).

We now show that the length of D is less than =1ty + 4. Assume not; we shall
derive a contradiction. Let &, d,, ..., §,_, be the points in order in D, so there is
an edge from &, to J,,, for 0<i<v—1. Let us now say that d-type 7 is rare’ if it
occurs less than m+ 4 times as a d-type of a point of D. The differences between
rare and rare’ are: (i) rare refers to d-types in x(A4) whereas rare’ refers to d-types
in D, and (ii) for rare’, we use m+ 4 in the definition rather than m. Say that 7 is
frequent' if it is not rare’. We shall refer to a point in D as rare’ (resp., frequent’)
if its d-type is rare’ (resp., frequent’).

Let us say that a pair of rare’ points is consecutive if there are no rare’ points
between them. We now show that between every consecutive pair of rare’ points
there are less than 4 frequent’ points. Assume not; then there is an interval of
length 4 in D consisting only of frequent’ points. Since 4 = MN + 1, and since N
is the number of d-types, there is some d-type that occurs at least M+ 1 times in
this interval. Let d,, ..., , be M +1 distinct points in the interval with the same
d-type, with i, <i; < --- <i,. We now show that there are two numbers in the set
{io, iy, . ins} that are congruent mod M. Consider the differences between i, and
each of iy, iy, .., iag, that is, iy —ig, i — g, -y ipg— Ip. If these differences are all dis-
tinct mod M, then one of these differences, say i,— i, is congruent to 0 mod M, so
i; =i, mod M, as desired. So assume that two of these differences are equal mod M,
say i,— iy = iy — iy mod M. But then i, =i, mod M, as desired. Thus, in either case,
there are j, k with j<k such that i, =i, mod M. Define the colored chain E by
deleting the interval [6,-}, d,) from D. Thus, E contains the points

lk’

60’ ) 61}—1, 9 5ik+l’ (e 50—13

where each point of E inherits its color from D. By the definition of frequent’, the
d-type of every point in the deleted interval occurs at least m + 4 times in D. Since
the length of the deleted interval is at most 4, each such d-type still occurs at least
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m times in E. It follows that D and E are (d, m)-equivalent, so by Theorem 6.1, it
follows that E ~, x(A). Since i; =i, mod M, it follows that the length of E is con-
gruent to the length of Dmod M, and hence congruent to the length of
x(A4) mod M. The length of E is at least equal to the length of D minus 4. Since by
assumption the length of D is at least t,+ 4, it follows that the length of E is at
least t,. But this violates minimality of D. This contradiction shows that between
every consecutive pair of rare’ points in D there are less than 4 frequent’ points.

Since N is the number of d-types, there are at most (m+ 4 —1) N rare’ points in
D (which clearly include the endpoints of D). We just showed that between every
consecutive pair of rare’ points in D there are less than 4 frequent’ points. So the
total number of points in D is at most (m+ 4 — 1) N4+ 1, which is less than ¢,.
This contradicts our assumption that the length of D is at least ¢, + 4. So the length
of D is less than t,+ 4.

We just showed that the length of D is less than 7=1,+ 4. In particular, the
length of D is less than the length of B. We are now in the situation of the proof
of Case 1, where the length of D is at least #,, the length of D is less than the length
of B, and the lengths of B and D are congruent mod M. By the argument in Case 1,
the duplicator can color B (to obtain x(B)) so that y(B) ~, D. Since also D ~, x(4),
it follows that y(A) ~, x(B). Thus, the duplicator can win the remaining r-round
game. ]

We can now prove the key lower bound of this section.
THEOREM 9.6. Property % is not in the first-order closure of monadic NP.

Proof. By Theorem 9.2, we need only show that for each choice of ry,c,7,,
there are H,, H, such that H, has property % and H, does not, and the duplicator
has a winning strategy in the symmetric (ry,c,ry)-game over Hy, H,. By
Theorems 8.2 and 8.3, there are G,, G; such that G, has property 4 and G, does
not, and such that the duplicator has a winning strategy in the symmetric (c, r,)-
game over Gy, G;. Let us call each coloring of Gy or G, a “supercolor”. Let ¢’ be
the total number of supercolors. Find ¢, M from Lemma 9.5 where the roles of c, r
in the statement of Lemma 9.5 are played by ¢/, r,. Let 4, B be black/white cycles
of length n> 5 guaranteed by Lemma 9.4 where the roles of r, ¢, M in the statement
of Lemma 9.4 are played by r,, t, M. Let oy, @y, ..., 2,_; be the points in order
around A. Each point is colored either white or black. Let A’ be the graph obtained
from A by ignoring the colors. Let H, be the graph 4'[ 4y, .., 4,_;], where 4, is
G, if a, is white in 4, and A, is G, if «, is black in A. Intuitively, each white point
in A is replaced by G,, and each black point in A4 is replaced by G,. Similarly, let
Bos B1s - Bn_1 be the points in order around B, and let B’ be the graph obtained
from B by ignoring the colors. Let H, be the graph B[ B,, .., B,_,], where B; is
G, if B, is white in B, and B; is G, if §; is black in B. Thus, H, has property %,
but H, does not. The proof is complete if we show that the duplicator has a
winning strategy in the symmetric (r,, ¢, r,)-game over H,, H;.

In the first r, rounds the duplicator takes advantage of his winning strategy in
the (ry, t, M)-black/white game over 4, B, as guaranteed by Lemma 9.4. Let us
refer to the points in 4 and B as supernodes. The duplicator uses his strategy from
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Lemma 9.4 to select supernodes, based on the spoiler’s choices of supernodes. For
example, when the spoiler selects a point in H,, that is in the graph 4, correspond-
ing to the supernode a,, let us for now think of this as if the spoiler selected the
supernode «;. The duplicator then selects the supernode f; corresponding to his
strategy as guaranteed by Lemma 9.4. It is important to note that the graph B,
corresponding to the supernode B, in H, is then the same as the graph 4, corre-
sponding to the supernode «; in H,: this is because f§; is white iff «, is white.
“Within” a supernode (for example, on the graph B, that corresponds to the super-
node B; of B), the duplicator then selects the same point as the point within A4; that
the spoiler selected in H,. This describes the duplicator’s strategy in the first r,
rounds.

We now describe the duplicator’s coloring strategy. It is convenient to think for
now as if the spoiler and duplicator selected (certain) supernodes in the first r,
rounds, and are now preparing to supercolor (all) the supernodes.

As in the definition of the (r, t, M)-black/white game, let a,), ., @, (TESP.
br(1)s s Dagryy) e the selected supernodes in clockwise order around 4 (resp., B). In
the coloring round, let us say that the spoiler colors H, (a symmetric argument
would be used if the spoiler colored H,). We think of this as a supercoloring of 4.
The idea now is that for each i with 1 <i<r,, the duplicator supercolors B within
the clockwise interval [ b,,, by 1)) based on the spoiler’s coloring of the clockwise
interval [@.u), @y;41)), using the endpoint-respecting strategy guaranteed by
Lemma 9.5 (of course, the indices i are mod r;). The reason for requiring the
strategy to be endpoint-respecting is so that the strategies used for different
intervals are consistent at the places where two intervals meet. In particular, since
we have assumed r>1 in Lemma 9.5, a,, is supercolored the same as b, for all
i. We now describe how the spoiler actually colors the points of H, based on the
supercoloring of B. Let §; be a point of B, and assume that B; is G, (so that §, is
white in B); the argument is symmetric if B, is G, (so that f, is black in B). What
do we mean when we say that the duplicator supercolors f; with the supercolor y?
Recall that each supercolor represents a coloring of G, or G,. There are two cases,
depending on whether y represents a coloring of G, or a coloring of G,. If y
represents a coloring of G, then the duplicator simply colors the inner factor B, (a
copy of G,) at B, using y. So assume that y represents a coloring of G,. Now G, G,
were selected so that the duplicator has a winning strategy in the symmetric (c, r,)-
game over G,, G;. The duplicator colors the inner factor B; at §; as he would color
G, in his winning strategy in the symmetric (c, r,)-game over G,, G, if the spoiler
were to color G, with .

We now describe the duplicator’s strategy in the final r, rounds. Again, we first
think in terms of supernodes. Assume, for example, that the spoiler selects a
supernode in the clockwise interval [@.;), @.i41y); then the duplicator selects a
supernode in the corresponding clockwise interval [b,), bau4 1)), Where his selec-
tion is based on his endpoint-respecting winning strategy guaranteed by Lemma 9.5.
In particular, the supernode selected by the duplicator has the same supercolor as
the supernode selected by the spoiler. As for his selection of a point “within” the
supernode, there are two cases. In the first case, the graphs corresponding to both
supernodes are the same (either both G, or both G,), and the duplicator makes the
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identity move: he selects the same point in the graph G, or G, as the spoiler did.
In the other case (one supernode corresponds to G, and the other to G,), the
duplicator’s choice is based on his winning strategy in the symmetric (c, r,)-game
over Gy, G;.

We leave to the reader the straightforward verification that we have described an
overall winning strategy for the duplicator. ||

We now show that property % belongs to closed monadic NP. We first need
some preliminary results showing that two other undirected graph properties
belong to closed monadic NP.

The first preliminary step is to show that the property “Each inner factor is
connected” belongs to the positive first-order closure of monadic NP, and therefore
to closed monadic NP. This result is interesting in its own right, since on the face
of it, it seems that this property should require at least one universal set (unary
second-order) quantifier. Nonetheless, we show that existential set quantifiers
suffice, provided that we can place some first-order quantifiers in front. (It should
perhaps be noted that this property does not belong to monadic NP, without first-
order quantifiers in front. This follows from Theorems 5.2 and 7.1, since (1) the
only inner factors of a single cycle of length n>5 are the cycle itself and single
points, and (2) any nonconnected graph, such as two disjoint cycles, contains a
nonconnected inner factor, namely, the graph itself.)

PROPOSITION 9.7. The property “Each inner factor is connected” belongs to the
positive first-order closure of monadic NP.

Proof. It is more natural to argue that the complementary property, “There
exists a nonconnected inner factor”, belongs to the positive first-order closure of
monadic co-NP, that is, can be expressed by a sentence of the form PR¢, where P
consists of first-order quantifiers, R consists of universal unary second-order
quantifiers, and ¢ is first-order.

If C is a set of points of a graph, a C-free path is a path in the graph that
contains no point of C. If x and y are points of a graph and C is a set of points,
we say that x and y are C-free path-connected if there is a C-free path between x
and y; in particular, neither x nor y belongs to C. Let

Common(x, y)={w|w#x,w# y, and (w, x) and (w, y) are edges}.

Thus, Common(x, y) contains all points, other than x and y, that have an edge with
both x and y.

We argue that the property “There exists a nonconnected inner factor” is
expressed by the following sentence, where x, y, z denote points and C denotes a set
of points:

dx dy vz VC
if C= Common(x, y) then:
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(1) if z is C-free path-connected to either x or y, then there are edges between
z and every point of C, and

(2) x and y are not C-free path-connected.

(C can be eliminated from the sentence since Common(x, y) has a first-order defini-
tion. But it is more convenient to argue about the correctness of the sentence with
C present.) It is easy to see that this sentence can be transformed, by standard
quantifier manipulation, to one of the form required for the positive first-order
closure of monadic co-NP. It is enough to note that “s and ¢ are C-free path-
connected” can be expressed by a monadic NP formula. Such a formula is
3A((A~ C= &) A path(4,s, 1)), where path(4,s,t) is the first-order formula
described in Section 4 that says that A is a strict path between s and ¢. So “s and
t are not C-free path-connected” can be expressed by a monadic co-NP formula. In
transforming the sentence, we use that, if ¥, is a monadic NP formula and ¥, is
a monadic co-NP formula, then (¥, =V,) is equivalent to a monadic co-NP
formula.

It remains to show that this sentence expresses the desired property. Say first that
the graph G has a nonconnected inner factor H. Let M be the set of points of H
(so M is a module), and let 4 and B be a partition of M such that 4 and B are
nonempty and there is no edge between a point of 4 and a point of B. To show
that G satisfies the sentence, choose x € 4 and y € B (arbitrarily). Let C= Common
(%, y) since this is the only instantiation of C that is relevant to the truth of the
sentence. The following claim will be useful.

Claim. If we M and u¢ M, then w and u are not C-free path-connected.

Proof of Claim. Assume for contradiction that there is a path vy, v,, .., v of
points such that v, =w, v,=u, there is an edge between v, and v, for
1<i<k, and v, ¢ C for all i. Since we M and u¢ M, there must be some i with
1 <i<k such that v,e M and v, ¢ M. Since v, is not in M and has an edge
with v, € M, the definition of module implies that v, , has an edge with every point
of M, including x and y. Also, v;,, #x and v,,; # y because v, ¢ M. So v, , €
Common(x, y) = C, contradicting the fact that the path is C-free. This completes the
proof of the claim. [

Using the claim, we can now show that (1) and (2) hold. We first note that
Cn M= . For if there were a point we C N M, then the edges (x, w) and (w, )
would form a path lying within M, contradicting that x and y belong to different
parts of the partition of M into 4 and B. To see that (1) holds for all z, let z be
C-free path-connected to either x or y. Since x, y € M, the claim implies that ze M.
By the definition of module, z has an edge with every point of C, since every point
of C does not belong to M and has an edge with a member x of M. To see that
(2) holds, suppose that x and y are C-free path-connected. Since x and y belong to
different parts of the partition of M into 4 and B, each path connecting x and y
must visit a point u ¢ M. But by the claim, this path cannot be C-free.

Now say that the sentence is satisfied by a graph G. Let x and y be such that the
part of the sentence following 3x 3y is satisfied. Let C= Common(x, y). Let M be
the set of points of G that are C-free path-connected to either x or y. In particular,
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x, yeM and M ~ C= . We argue that M is a module, and ind(M) (the subgraph
of G induced by M) is nonconnected.

To show that M is a module, let v;, v, € M and u¢ M be arbitrary. Assume that
there is an edge (u, v,); we must show that there is an edge (u, v,). We first argue
that u e C. Suppose not, ie., that u¢ C. Now there is an edge between « and v,, and
by definition of M there is a C-free path between v, and either x or y. So there is
a C-free path between u and either x or y, contradicting the choice of u that u¢ M.
So we have ue C. Since v, € M, the definition of M and part (1) of the formula
imply that v, has an edge with every point of C. In particular, there is an edge
(u, v,), which was to be shown.

That ind( M) is nonconnected follows from part (2) of the formula (x and y are
not C-free path-connected) and the fact noted above that M n C= (. For if x were
connected to y by a path that stays within M, this would be a C-free path. |

The next preliminary step is to show that the complement of property % belongs
to closed monadic NP. This follows easily from Proposition 9.7, as we now show.

ProPOSITION 9.8.  The property “At least two connected components have each of
their inner factors connected” belongs to closed monadic NP.

Proof. Clearly, “At least two connected components have each of their inner
factors connected” is expressed by the following:

There exist sets 4 and B of points such that:

(1) A and B are nonempty and disjoint;
(2) both ind(A4) and ind(B) are connected components; and
(3) both ind(A4) and ind(B) have each of their inner factors connected.

To finish the proof, we show that (2) and (3) can be expressed by closed monadic
NP sentences. (Clearly, (1) is first-order expressible.) That ind(X) is a connected
component can be expressed by saying: (i) x and y are path-connected for every x
and y in X; and (ii) there is no edge between a point in X and point not in X. That
ind(X) has each of its inner factors connected can be expressed by a sentence as in
the proof of Proposition 9.7 by restricting everything to points in X. ||

We can now give the following upper bound.
THEOREM 9.9. Property %, belongs to closed monadic NP.

Proof. As we now show, a sentence expressing that G has property £, has the
form

JAIWIAP(Yy A A AYy)

where A, W, P are unary relation symbols and each ¢, is a closed monadic NP
sentence. We now explain what these relations mean in the construction, and the
constraints that are placed on them by the y,’s.

The sentence ¥, says that 4 represents a set of points such that ind(A4) is a cycle of
length at least five. In more detail, y, says that 4 contains at least five points, every



THE CLOSURE OF MONADIC NP 697

point of 4 has an edge with exactly two other points of 4, and ind(4) is connected,
ie., every two points of A are path-connected by a path that stays in 4. We have
noted above that path-connectivity can be expressed by a monadic NP sentence, so
¥, can be a monadic NP sentence. For x € 4, the neighbors of x are the two points
of A that have an edge with x.

Before describing ¥,, we must define some sets that depend on the choice of A.
For x € 4, let M, be the set of points that have an edge with both of the neighbors
of x; in particular, xe M,. The first-order sentence ¥, places the following
constraints on the sets M :

1. each point of G is in M, for exactly one x, and

2. for all x, ye 4 and all u, w, if x# y and ue M, and we M, then there is
an edge between u and w iff there is an edge between x and y.

Assume that y,; and ¥, hold. Let x,, .., x,, be the points of 4. For 1 <i<n, let H;
be the subgraph induced by M, . Let C be the cycle induced by 4. It should be
evident that G = C[H,, ..., H,]. Conversely, if G= C[ H,, .., H,] for some cycle C
and graphs H,, .., H,, then there is a choice of 4 that satisfies y, and ¥, and, for
some naming Xx,, .., x,, of the points in 4, the set M, is the set of points of H,, for
all i. Viewing G as C with the graphs H, substituted for the points of C, let 4
contain one (arbitrary) point from each H,.

The relation W gives a color to each point x, either white if Wx, or black if
—Wx. The sentence y/, says that, for all x, the point x is colored white iff xe 4
and ind(M,) has property %. Recall that we have shown in Theorem 84 and
Proposition 9.8 that both 4 and its complement belong to closed monadic NP.
Also, there is a first-order formula that says “ue M,”. Therefore, it is easy to see
that 5 can be a closed monadic NP sentence.

Finally, the relation P and the formula y, are used to check that 4 contains an
even number of white points. (All points outside of 4 are black.) Think of P as
giving an additional two-coloring to the white points. Say that distinct white points
x and y of A are adjacent if there is a path in 4 between x and y that visits no white
point other than x and y. The formula y, is designed to say that every two adjacent
white points are colored differently by P. Clearly, such a coloring by P exists iff the
number of white points is even. Let N denote the number of white points. The
formula , says that either N, =0, or

Ny =2 A Vx Vy(“x and y are not adjacent white points” v (Px <> —1Py)).

Assuming that 4 contains at least 2 white points, the property “x and y are not
adjacent white points” can be expressed by a monadic NP formula. This formula
says that either x is not white, or y is not white, or x = y, or there exist sets 4, and
A, such that 4, UA4,=A4, A, nA,={x, y}, both 4, and A4, contain a white point
other than x and y, and path(A,, x, y) and path(A4,, x, y). So Y, can be a closed
monadic NP formula. |

The following theorem is an immediate consequence of Theorems 9.6 and 9.9.
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THEOREM 9.10. Property 2, is in closed monadic NP but not in the first-order
closure of monadic NP.

This theorem immediately implies Theorem 1.2, which is one of our main
separation results.

10. CLOSED MONADIC NP VERSUS THE MONADIC HIERARCHY

In this section we give another indication of the expressive power of closed
monadic NP, by showing that closed monadic NP contains properties at arbitrarily
high levels of the monadic hierarchy. Just as monadic NP is a restricted version of
NP, the monadic polynomial-time hierarchy (called the “monadic hierarchy” for
short) is a restricted version of the polynomial-time hierarchy [Sto77]. A X}
formula is a formula of the form Q,;Q,--- Q,p, where Q; consists of existential
(resp., universal) second-order quantifiers if i is odd (resp., even), and ¢ is first-
order. Following Fagin’s [ Fag74] proof that the properties in NP are precisely the
properties expressible by X1 sentences, Stockmeyer [Sto77] observed that the
properties in the class X} of the polynomial-time hierarchy are precisely the proper-
ties expressible by X'} sentences. A monadic X} formula is a monadic X'} formula,
that is, a '} formula where all second-order quantifiers quantify only over unary
relations (ie., sets). Let monadic X} be the class of properties expressible by a
monadic 2} sentence. Similarly, the class monadic IT}, is defined in terms of sentences
0,0, Orp, where Q, consists of universal (resp., existential) unary second-order
quantifiers if  is odd (resp., even), and ¢ is first-order. The monadic ( polynomial-time)
hierarchy is the union of the monadic X'} classes over all k. It is clear that closed
monadic NP is contained in the monadic hierarchy, because every closed monadic
NP sentence Qg, where ¢ is first-order, can be transformed to an equivalent
monadic X} sentence Q'¢’, for some k (depending on Q): Each first-order
quantifier in Q is replaced by a unary second-order quantifier in Q’, and ¢ is
modified to restrict all newly introduced second-order quantifiers to quantify only
over singleton sets. Since the k in this transformation depends on Q, this raises the
question of whether there is a fixed k such that closed monadic NP is contained in
monadic X ,‘:. In this section, we show that the answer is “no™: For each k, there is
a property of undirected graphs that belongs to closed monadic NP, but does not
belong to monadic X}.

Fagin [Fag94] asked whether the monadic hierarchy is strict, ie., whether
monadic Z} does not equal monadic X}, for all k>1. Matz and Thomas
[MT97b] have shown that the monadic hierarchy is strict over graph properties.
(Interestingly, Matz and Thomas’s proof does not use Ehrenfeucht-Fraissé games,
but is automata-theoretic and arithmetical in nature. Their proof method is
described in Section 12.) Building on the work of Matz and Thomas, Schweikardt
[Sch97] shows that, for each k > 1, there is a property in both monadic X} , and
monadic 7}, ; but not in the Boolean closure of monadic X}. See also [MST].
As a step toward their result, Matz and Thomas prove that certain types of sentences
involving a transitive closure operator can express properties arbitrarily high in the
monadic hierarchy; this is useful to us in proving the same thing about the
expressive power of closed monadic NP sentences.
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Following [MT97b], we define the class of FO”V formulas (first-order
formulas with transitive closure). Every first-order formula is a FO™Y formula,
and the FOT™W formulas are closed under Boolean operations and first-order
quantification. In addition, if (u, «', 7) is a FOTM) formula in which the first-order
variables u, «/, Z occur freely, where Z abbreviates a sequence z,, ..., z; of first-order
variables for some k >0, then TC(u, v', ¢)(x, y, Z) is a FOT?D formula in which
x, y, Z are free and u, ' are bound. For S a suitable structure, S=TC(u, v, @)
(x, y, 2} iff there are points u,, u,, ..., 4, (for some n>0) such that x=u,, y=u,,
and SE@(u;, u;,,, Z) for all i with 0 <i<n. A monadic £ TV formula is a formula
of the form Rg, where R consists of existential unary second-order quantifiers, and
@ is a FOT“Y formula. (Matz and Thomas call a formula of this form simply a
279N formula. We attach the adjective “monadic” to be consistent with our other
terminology. The “1” in TC(1) in these notations means that formulas contain a
“l-dimensional” transitive closure operator.)

The result of Matz and Thomas that we use is the following. (See [ MST] for the
proof of a stronger result,)

THEOREM 10.1. For each k > 1, there is a property & of directed graphs such that
& is expressible by some monadic £ 7Y sentence, but & does not belong to monadic
Zr.

To translate this to a result about closed monadic NP, we show the following.

PropPOSITION 10.2. If ¢ is a sentence in the closure of the FOTY formulas under
first-order quantification and existential unary second-order quantification, then o is
equivalent to a closed monadic NP sentence.

Proof. Clearly, it is enough to show that every FOT) formula is equivalent to
a closed monadic NP formula, because the class of closed monadic NP formulas is
closed under first-order quantification and existential unary second-order quan-
tification. ‘

The key observation is that the transitive closure operator is closely related to the
directed reachability property considered in Section 4. Specifically, TC(y, «', @)
(x, y, Z) 1s satisfied by a structure S iff there is a directed path from x to y in the
directed graph whose set of points is the universe of S and whose edge relation E
is defined by Euu' = ¢(u,u',Z). We have shown in Theorem 4.1 that there is a
closed monadic NP formula p that says that “There is a directed path from s to ¢
in the graph with edge relation E”. Write p in the form Q(V71, A7z, p, ;), where
Q contains first-order quantifiers and existential unary second-order quantifiers,
and each p, ; is an atomic formula or its negation. An atomic formula is a formula
containing no logical connectives or quantifiers; thus, if the language contains only
the binary relation symbol E, then the atomic formulas are of the form Evv’, P,
and v=1', where v, v’ are variables, and P is a unary relation symbol contained in
Q. From this it is clear that, if both ¢ and —¢ are equivalent to closed monadic
NP formulas, then TC(u, «, ¢)(x, y, Z) is equivalent to a closed monadic NP
formula. In addition, we shall need the same result for ~TC(w, o/, @)(x, y, 2). It is
enough to note that there is a monadic NP formula p that says that “There is no
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directed path from s to ¢ in the graph with edge relation E”: The formula p says
that there is a set 4 of points such that se€ 4, te 4, and there is no edge directed
from a point of 4 to a point of 4. Thus, if both ¢ and —¢ are equivalent to closed
monadic NP formulas, then both TC(u, «, ¢)(x, y,Z) and " TC(u, v, }x, y, Z)
are equivalent to closed monadic NP formulas.

It is now straightforward to prove that every FO™!) formula is equivalent to
some closed monadic NP formula, by induction on the depth of nesting of the TC
operators in . The transitive closure depth TCD(y) of a FO™Y formula y is
defined recursively as follows: TCD(y) =0 if ¢ is first-order; TCD(—y) = TCD(¥);
TCD(Y, A ¥,) = max{TCD(¥,), TCD(y,) }; TCD(IY) = TCD(Y); TCD(TC(u, ', )
(x, y,2))=14+TCD(¥).

Clearly, a FOTW formula y is equivalent to a closed monadic NP formula if
TCD(y) =0, so let ¥ be a FOT formula with TCD(y) =d>1. We can assume
that ¥ is of the form P(\/71, AT2, ¥, ;), where P contains first-order quantifiers,
and for each i, j, either ¥, ; is first-order or ¥, ; has the form TC(u, v/, @, ;}(x, y, )
or the form —TC(u, o', ¢, ,)x,y,Z) for some FOTW formula ¢,; with
TCD(¢, ;) <d; therefore, also TCD(¢, ;) <d. By the induction hypothesis, both
@, ; and "¢, ; are equivalent to closed monadic NP formulas. Therefore, by the
argument above, both TC(u, ', ¢, )x,y,Z) and —TC(u,u, @, ;)(x, y,Z) are
equivalent to closed monadic NP formulas. Thus, in  we can replace each ¥, ; by
a closed monadic NP formula, so ¥ itself is equivalent to a closed monadic NP
formula. |

It follows immediately from Theorem 10.1 and Proposition 10.2 that for each
k>1 there is a directed graph property that is in closed monadic NP but not in
monadic X}. By encoding directed graphs as undirected graphs (as in [MST]), it
follows further that there is an undirected graph property that is in closed monadic
NP but not in monadic X;. We thus obtain the following result, which is a slight
restatement of Theorem 1.3 in the introduction.

THeOREM 10.3. For each k> 1, there is an undirected graph property that is in
closed monadic NP but not in monadic X7.

Theorem 10.3 was shown independently by Matz and Thomas [MT97a] (see
[MST] for this and more recent improvements). Their argument does not require
Proposition 10.2, since it is based on the fact that transitive closure is used in a
restricted way in the monadic ' T") sentences constructed to prove Theorem 10.1.
Even though Proposition 10.2 is not needed to obtain Theorem 10.3 if one knows
the details of the proof of Theorem 10.1, we feel that Proposition 10.2 is interesting
in its own right as an indication of the power of closed monadic NP.

On the other hand, assuming that NP # co-NP, there is a property in monadic
co-NP (and, therefore, in monadic X'} for all k > 2), but not in closed monadic NP.
An example of such a property is non-3-colorability. We noted in Section 2
that this property belongs to monadic co-NP. Since non-3-colorability is co-NP-
complete [GJS76] and since closed monadic NP is contained in NP, if non-3-
colorability belonged to closed monadic NP then there would be a co-NP-complete
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property in NP, contrary to the assumption that NP # co-NP. To summarize, it
follows from the assumption that NP #co-NP that there is a property in the
monadic hierarchy (and in particular, in monadic co-NP) but not in closed
monadic NP. It is presently open, however, whether there is a property in the
monadic hierarchy but not in closed monadic NP, without making an unproved
complexity-theoretic assumption.

11. THE CLOSED MONADIC HIERARCHY

In the definition of closed monadic NP, we focused on the configuration of the
second-order quantifiers. In the same spirit, we can define a monadic version of X}
where we focus on the pattern of the second-order quantifiers, and allow arbitrary
interleavings of first-order quantifiers among the unary second-order quantifiers.
Thus, let us define closed monadic X}, which bears the same relationship to
monadic X'} as closed monadic NP bears to monadic NP. For integer k > 1, define
a closed monadic X} formula to be a formula of the form Qg, where (a) the prefix
Q can contain an interleaving of unary second-order quantifiers and first-order
quantifiers, (b) the leading second-order quantifier is existential, (c) when we ignore
the first-order quantifiers, there are at most kK — 1 alternations between existential
and universal second-order quantifiers, and (d) ¢ is first-order. Let closed monadic
2P be the class of properties expressible by a closed monadic X} sentence. In par-
ticular, closed monadic X'¥ is precisely closed monadic NP. The closed monadic
hierarchy is the union of closed monadic X} classes over all k. Clearly, for all k,
monadic X'} is contained in closed monadic X}; and every property in the closed
monadic hierarchy is also in the monadic hierarchy (possibly at a higher level).
However, as noted in Section 10, it is an open question whether the entire monadic
hierarchy is contained in closed monadic X'F. Thus, it is an open question whether
the closed monadic hierarchy collapses to the first level. Generally, it is an open
question whether the closed monadic hierarchy is strict, that is, whether closed
monadic X}, does not equal closed monadic £}, for all k>1. (We note that
there are obstacles to settling these questions using the same method that Matz and
Thomas [MT97b] used to prove strictness of the monadic hierarchy. We discuss
this further in Section 12.) In this section we show that if the polynomial-time
hierarchy is strict then the closed monadic hierarchy is strict.

We first note an upper bound on the complexity of properties in closed
monadic Z ;.

ProrosiTiON 11.1.  For all k> 1, closed monadic X' is contained in X}.

Proof. Let & be a property in closed monadic X'}. Therefore, & is expressible
by a closed monadic X'¥ sentence. We show that each closed monadic X'} formula
is equivalent to a X'} formula; that is, we can move all first-order quantifiers to the
right of all second-order quantifiers, while possibly increasing the arity of the
second-order quantifiers, but without changing the number of alternations of
second-order quantifiers. All first-order quantifiers are moved to the right by
repeatedly applying the following replacements. Let x denote a first-order variable



702 AJTAI FAGIN, AND STOCKMEYER

and R denote a relation symbol. Clearly 3x IR can be replaced by IR 3Ix, .
and Vx VR can be replaced by YR Vx. The other two cases require an increase in

the arity of the relation. If R represents an r-ary relation, then Vx 3R is replaced

by ISVx, where S represents an (r+ 1)-ary relation. The r-ary relation R that

corresponds to x is the set of all {yy, ..., y,> such that {x, y,, .., y,> isin S. In the

first-order part of the sentence, we simply replace R by S. The last case is the

logical dual of the preceding one: 3x VR, where R is r-ary, is replaced by VS 3x,

where S is (r+ 1)-ary. Thus, % is expressible by a X'} sentence. But it is known

[Sto77] that the properties expressible by X'} sentences are precisely the properties

inZf. |}

We noted in Section 2 that monadic NP contains an undirected graph property
that is NP-complete. The next result generalizes this to the monadic hierarchy.

THEOREM 11.2. For all k> 1, there is an undirected graph property that belongs
to monadic X}, and is X §-complete.

Before proving this result, we show how it is used to obtain the main result of
this section, concerning strictness of the closed monadic hierarchy.

THEOREM 11.3. Assume k> 1. If L, # X7 then there is an undirected graph
property that belongs to monadic X'}, | but does not belong to closed monadic X¥.
In particular, if the polynomial-time hierarchy is strict, then so is the closed monadic
hierarchy.

Proof. Let & be the undirected graph property, guaranteed by Theorem 11.2,
that belongs to monadic X7, , and is X, ,-complete. Suppose for contradiction
that % belongs to closed monadic X' }. By Proposition 11.1, we would then have a
Z'y s 1-complete property in X'}, contradicting the assumption that ZF_, #XF. |

In the remainder of this section we prove Theorem 11.2. One way to see that
monadic X} contains a X f-complete property is to take a known X P-complete
problem, such as the quantified Boolean formula problem restricted to k blocks of
alternating - quantifiers, proved X}-complete in [Sto77, Wra77], and encode
instances of the problem as structures in such a way that the encoded problem
belongs to monadic X'§. An advantage of this approach is that one does not have
to show that the problem is X }-complete. This is the approach of Makowsky and
Pnueli [MP96] (done independently of us) who encode quantified Boolean for-
mulas as structures over ordered universes. However, encoding the quantified
Boolean formula problem as a graph property over unordered universes leads to a
graph property with a somewhat unnatural definition. Our approach is to obtain
the result for a more natural undirected graph property, a generalization of
3-colorability. Although we must then show that the new property is Z F-complete,
a benefit is that we get a new X j-complete property, which may be of independent
interest.

The undirected graph property that we consider is a generalization of
3-colorability to a k-round game between two players, player 1 and player 2. We let
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1 and 2 denote the integers mod 2, so i mod 2 is 1 (resp., 2) if i is odd (resp., even).
A graph G has the property k-round 3-colorability if player 1 has a winning strategy
in the following k-round game:

« At round i for 1 <i<k, player i mod 2 assigns a color from the set {1, 2, 3}
to every vertex of the graph having degree i.

o At round k, player k mod 2 assigns a color from the set {1,2,3} to every
vertex that has not been colored in a previous round, i.e., every vertex whose degree
is at least k.

o The player who moved last (player k mod 2) wins the game if the entire
coloring is legal, i.e., if every pair of distinct vertices that are connected by an edge
are colored differently.

In particular, a graph is 1-round 3-colorable iff it is 3-colorable in the usual sense.

In the definition of this property, the degrees of vertices are used to partition the
vertices into k sets, where each set contains vertices that are colored during the
same round. Another possibility would be to define a modified k-round 3-coloring
game where an instance of the game consists of a graph together with a partition
of the vertices into k sets ¥V, .., V,; the vertices in the set V; are colored by player
imod 2 during round #, and the winner is determined as in the original k-round
3-coloring game defined above. A drawback of the modified game is that an
instance of the game must somehow specify the vertex partition. For example, the
vertex partition could be specified by k additional unary relations, but then the
property would be a property of a structure over one binary relation and several
unary relations. Alternatively, the partition could be specified by attaching different
types of graph “gadgets” to the vertices, but this would complicate the definition of
the property. By using degrees to specify the sets, the signature of the property is
kept simple (a single binary relation) and the definition of the property is kept
simple as well. We show that k-round 3-colorability is 2 P_complete even when the
degree of the graph is restricted to max{k, 4}. We later note that this degree restriction
cannot be lowered, except possibly for k =2, 3, assuming that the polynomial-time
hierarchy does not collapse. The restriction on maximum degree is not needed to
obtain Theorems 11.2 and 11.3, but we include the further information about degree
restriction since it may be of independent interest, as a result about a new X ;-complete
problem.

Theorem 11.2 is an immediate consequence of the following.

TuroreM 11.4. For each k > 1, k-round 3-colorability belongs to monadic X3, and
is Z P-complete. Moreover, k-round 3-colorability is X i,-complete even when restricted
to graphs of maximum degree at most max{k, 4}.

Proof. We show here that k-round 3-colorability belongs to monadic X ®. Since
the details of the polynomial-time reduction showing X }-completeness lie some-
what outside the main theme of this paper, description of this reduction has been
moved to the appendix.
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We describe a monadic 2} sentence that expresses k-round 3-colorability. The
sentence contains unary relation symbols 4, for 1 <i<k and 1< j<3. For each i,
certain interpretations of the three relation symbols A,;, 4;,, A;3, which we call
proper interpretations, encode the colors of vertices that are supposed to be colored
during round i. An interpretation of 4;,, 4,,, 4,5 is proper if (i) for each vertex u
that is supposed to be colored during round i, exactly one of A;;, 4,5, 4,5 is true
(where A, true means that u is colored j), and (ii) for each vertex u that is not
supposed to be colored during round i, the relations 4;,, 4,,, 4,5 are all false. Since
the round at which a vertex is supposed to be colored is determined by its degree
(either 1,2,3,..,k—1, or at least k), and since for each d there are first-order
formulas that express “the degree of vertex u is d” and express “the degree of vertex
u is at least d”, it is clear that, for each i, there is a first-order formula proper; that
expresses “the interpretation of A4;,, A;,, 4,3 is proper”.

Let E be the edge relation. Let Jegal be a first-order formula expressing that the
coloring encoded by the relations A4,; is legal, assuming that the interpretation of
these relations is proper;.that is, legal is

Vqu( A\ ( V dyun \/ A,-jv>=—1Euv>.

1<j<3 \Mi<i<k 1<i<k

The sentence expressing k-round 3-colorability has the form
3A11 34 12 34 13 VAZI VA22 V‘423 31431 3"432 34 33°°° QkAkl QkAkZ QkAk3¢

where Q, is 3 (V) if k is odd (even), and ¥ is first-order. Recall that in order for
player 1 to win the game, player 1 wants the final coloring to be legal (resp., not
legal) if k is odd (resp., even). First-order formulas i, are defined by reverse induc-
tion on i for 1 <i<k+ 1. First, Y, is legal if k is odd, or —legal if k is even. The
definition of the other y,’s are intended to restrict all second-order quantification
to proper interpretations. Recalling that the relation symbols 4,,, 4,,, 4,5 are
existentially (resp., universally) quantified if i is odd (resp., even), we see this
restriction is accomplished by defining

roper; A Yy, if i is odd
!. prop +1
! (proper,:nﬁ, 1) lfllS even.
+

Then, ¥ is ,. This completes the demonstration that k-round 3-colorability
belongs to monadic XF. |}

Remark. We now discuss the optimality of the degree restriction max{k, 4},
under the assumption that the polynomial-time hierarchy does not collapse. Let
(k, d)-colorability abbreviate k-round 3-colorability restricted to graphs of maxi-
mum degree at most d. It is obvious that (k, d)-colorability belongs to X5, because
there are at most d rounds during which some vertex is actually colored. Therefore,
assuming that the polynomial-time hierarchy does not collapse, (k, d)-colorability
is X 7-complete only if k <d. In other words, the first term in max{k, 4} cannot be
reduced below k (if k>5). Two observations are relevant toward reducing the
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second term, 4, when k< 3. First, if k=1, it is known that (1, 3)-colorability
(ordinary 3-colorability restricted to graphs of maximum degree at most 3) belongs
to P [GIS76]. Second, if k=2, it is easy to see that (2, 2)-colorability belongs to
P, since player 1 wins iff the graph contains two vertices of degree 1 that are con-
nected by an edge. This leaves only two cases where it is not clear whether (k, d)-
colorability is X F-complete, namely (k, d)=(2, 3), (3, 3). We have not seriously
tried to settle these cases.

12. GROWTH ARGUMENTS

The method by which Matz and Thomas [ MT97b] prove strictness of the
monadic hierarchy is based on the growth rates of functions definable by sentences
(for a certain notion of function definability, described below). A “growth argu-
ment” was used earlier by Otto [Ott95] to show that increasing the number of
second-order quantifiers in a monadic NP sentence allows more properties to be
expressed. In this section we note that a version of the main result of Section 9, that
there is a property in closed monadic NP but not in the first-order closure of
monadic NP, can be proved by a growth argument. Growth arguments are done
in the context of grid structures; a grid structure consists of a rectangular array of
points and two successor relations, a vertical successor and a horizontal successor.
As shown in [MT97b, MST], results obtained for grid properties can often be
translated to similar results for graph properties, by encoding grids as graphs.

An (m, n)-grid is a {S,, S,}-structure, where S,, S, are binary relations, where
the set of points is an m x n array (the points are (i, j) for 1 <i<mand 1< j<n),
and S, is the vertical successor relation ({{i, j», i+ 1, j>> €S,;), and S, is the
horizontal successor relation ({ (i, j>, (i, j+ 1)) €S,). If ¢ is a {5}, S,}-sentence
and f is a function from positive integers to positive integers, we say that ¢ defines
fif for each m>1 there is exactly one n, namely n = f(m), such that the (m, n)-grid
satisfies ¢.

Define the iterated exponential functions s, by so(x) = x, and sy ,(x) = 2%, Say
that a function f is at most k-fold exponential if f(m) <s;(cm) for some constant
¢ >0 and for every m. Say that fis at least k-fold exponential if f(m) = s,(cm) for
some constant ¢ >0 and for every m.

Before giving the main result of this section, we outline how growth arguments
were used to prove strictness of the monadic hierarchy.

THEOREM 12.1 [MT97b]. For all k>1:

(1) There is a function that is at least k-fold exponential and that can be
defined by a monadic X%, , , sentence.

(2) If the function f can be defined by a Boolean combination of monadic Xy
sentences, then f is at most k-fold exponential.

It follows from Theorem 12.1 that the monadic hierarchy (over grid properties)
does not collapse to any fixed level. A refinement of the argument, given in
[MT97b], shows that the monadic hierarchy is strict. The proof of part(2) in
[MT97b] is based on automata theory rather than Ehrenfeucht-Fraissé games.
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Schweikardt [ Sch97] then improved part (1) by showing that a certain at least

k-fold exponential function can be defined by a monadic 2 % sentence and by a

monadic 7§ sentence, with the corollary that the Boolean closure of monadic

X?_| is properly contained in the intersection of monadic X P and monadic /T3
A result of Matz and Thomas that we use in this section is:

THEOREM 12.2 [MT97b). For all k > 1, there is a function that is at least k-fold
exponential and that can be defined by a monadic X [V sentence.

Combining Theorem 12.2 with Proposition 10.2 gives:

THEOREM 12.3. For all k, there is a function that is at least k-fold exponential and
that can be defined by a closed monadic NP sentence.

(This result was shown independently by Matz and Thomas [MT97a].)
Theorems 12.1 and 12.3 reveal that the growth method cannot be used to prove
strictness of the monadic closure hierarchy (or even prove that it does not collapse
to the first level) in the same way that the growth method was used to prove
strictness of the monadic hierarchy. This is because the growth method does not
distinguish the closed monadic X} classes for different k, as we now explain. Even
closed monadic X' ¥ sentences can define functions having at least k-fold exponential
growth for arbitrarily large k (Theorem 12.3). And no matter how large k is, for
every closed monadic X} sentence defining a function f, there is an ¢ such that f
has at most /-fold exponential growth (this follows from Theorem 12.1(2)).

The new result in this section is that FO(MNP) sentences can define at most
double-exponential growth.

THEOREM 12.4. If the function f is defined by a FO(MNP) sentence, then f is at
most 2-fold exponential.

The proof of Theorem 124 is outlined below. An immediate corollary of
Theorems 12.3 and 12.4 is:

COROLLARY 12.5. There is a grid property that is in closed monadic NP but not
in the first-order closure of monadic NP.

This is the analog of Theorem 1.2 for grids. By encoding grids as undirected
graphs, separations of certain descriptive complexity classes over grid properties
can be translated to similar separations over undirected graph properties [ MST].
Thus (leaving the details to the interested reader), it follows from Corollary 12.5
that the separation of closed monadic NP from the first-order closure of monadic
NP holds also over undirected graph properties. Thus, the encoding method can be
used to obtain Theorem 1.2 as a corollary of Corollary 12.5.

In a previous version of this paper, we left as open questions whether
PFO(MNP) sentences or FO(MNP) sentences can define functions that are at least
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2-fold exponential. Subsequently, these questions were answered by Matz [ Mat98],
who showed that a PFO(MNP) sentence (and, therefore, a FO(MNP) sentence)
can define a function that is at least 2-fold exponential. He also gives an alternate
(automata-theoretic rather than game-theoretic) proof of Theorem 12.4. By combin-
ing these results with Theorem 12.1(2), Theorem 12.3, and encoding of grids by
undirected graphs, he obtains alternate proofs of Theorems 1.l and 1.2. Matz
[ Mat98] also has results concerning the expressive power of the positive first-order
closure of monadic X'} and the first-order closure of monadic . Some of these
new results extend Theorems 1.1 and 1.2.

In the remainder of this section we sketch the proof of Theorem 12.4. The proof
is similar to (and simpler than) the proof of Theorem 9.6, and like our proof of
Theorem 9.6, it uses Lemma 9.5. We view an (m, n)-grid as a chain of length n,
where each point in the chain is actually a supernode consisting of a column of m
points.

We first need a lemma giving a condition for the duplicator to have a winning
strategy in a certain point-selecting game played on two chains. The winning condi-
tion for the duplicator is similar to the last three parts of the winning condition in
the (r, t, M)-black/white game (the first part is not needed because in the new game
the chains are not initially colored). Let A and B be two chains. Let ¢, M be positive
integers. We say that two sequences {a_,, dy, 4y, -, axy and {b_y, bgy, by, ..., by
of points, where the points a; are selected from 4 and the b, are selected from B,
have the (¢, M)-property if:

I. a,=a;iff b,=0b;, for all i, j

2. The sequences {a_,, ag, a;, ..., 4,y and {b_,, by, by, ..., by appear in the
same order in the two chains. That is, there is a permutation =: {—1, .., k} >
{ —1, .., k} such that, moving from left to right in the chain A4 (resp., B), the points
occur in the order @, _1y, ..., @py (1€SP., by(_1y, s brgiy); and

3. For —1<i<k, let £, (resp., £;) be the distance from a,) to a,;. 1, (resp.,
from b,y to b, 1) Then, for —1<i<k, either (a) £,=/¢], or (b) ¢,>1, and
£;>t,and ¢, =¢; mod M.

The rules of the (r, ¢, M)-chain game over chains 4, B are as follows. The game has
r rounds. In each round the spoiler selects a point in one chain and the duplicator
responds by selecting a point in the other chain. Let a; (resp., b;) be the point
selected during round i in A4 (resp., B). Let a_, (resp., b_,) be the left endpoint of
A (resp., B), and let a4 (resp., by) be the right endpoint of 4 (resp., B). The duplicator
wins if {a_,, ay, ay, ... a,> and {(b_,, by, by, .., b,)> have the (¢, M)-property.

LEMMA 12.6. Let r,t, M be positive integers. If A, B are chains each of length
greater than 2"*"tM and whose lengths are congruent mod tM, then the duplicator
has a winning strategy in the (r, t, M)-chain game over A, B.

Proof. The proof is very similar to the proof of Lemma 9.4, and like that proof
it uses Lemma 9.3. Let 4 be a chain of length n, and B be a chain of length n,
where n,,ng>2"*1tM and n, =nymod tM. Let C be a chain of length tM. If
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n, #0mod tM, let R be a chain of length j where j=n,mod tM and 1< j<iM.
Similar to the proof of Lemma 9.4, we view A4 as a chain A4’ of [ n,/tM"7] super-
nodes, where each supernode corresponds to either C or R. If n, = 0 mod tM, then
all supernodes of A’ correspond to C; otherwise, the rightmost supernode of A’
corresponds to R and the others to C. Define B’ similarly in terms of B. Since
n, = nymod tM, the rightmost supernodes of 4’ and B’ are either both R or both
C, and the other supernodes of both 4’ and B’ are all C. Since n,, ngy>2"*'tM,
the chains 4’ and B’ each have length greater than 2"*'. So by Lemma 9.3, the
duplicator has an order-respecting, endpoint-respecting winning strategy in the
r-game over A', B'. This strategy gives the basis for the duplicator’s winning
strategy in the (r, ¢, M)-chain game over A4, B, in a way identical to that in the
proof of Lemma 9.4. That is, the duplicator uses the strategy of Lemma 9.3 to select
supernodes, and selects points “within” supernodes by selecting corresponding
points. The proof that this is a winning strategy in the (7, t, M)-chain game is
identical to that given in Lemma 9.4. |

Proof sketch for Theorem 12.4. The goal is to show that for every FO(MNP)
sentence @ there is a number z such that, for all m, n, if the (m, n)-grid satisfies ¢
and n>s,(zm), then there exists ' >n such that the (m, n')-grid satisfies . It is
immediate from this that ¢ does not define a function with growth exceeding
s,(zm), since there is not a unique n > s,(zm) such that the (m, n)-grid satisfies ¢.
To obtain the goal it is enough (by Theorem 9.2) to show that for every ry, ¢, ra,
there is z, such that for all m,n with n>s,(zm), there is n’'>n, such that
the duplicator has a winning strategy in the symmetric (r,, ¢/, r,)-game over the
(m, n)-grid and the (m, n’)-grid.

We view an (m, n)-grid as a chain of length n where each point of the chain is
actually a supernode consisting of a column of m points. Note that a coloring of
the grid with ¢’ colors corresponds to a supercoloring of the chain with (c’)™ colors.

Let r,, ¢, r, be positive integers. For a given m, find 7, M from Lemma 9.5 where
the roles of ¢, r in the statement of Lemma 9.5 are played by (c¢’)™, r,. Inspection
of the proof of Lemma 9.5 shows that there is a number z’, depending on ¢’ and r,
but not on m, such that ¢, M < s,(z'm) (intuitively, since each d-type in the proof
of Lemma 9.5 is a vector of at most 2d—1 colors, and since d depends only on
r=r,, the number N of d-types is bounded by a polynomial in the number (c’)™
of colors, and hence is at most exponential in m; by Stirling’s formula, we then see
that ¢ and M are at most double-exponential in m). Choose the number z such that
21+ 1(5,(2'm))? < s5(zm) for all m, thus ensuring that 2" *+'tM < s,(zm).

Let m, n be arbitrary with n > s,(zm), find ¢, M as described above, and note that
n>2"*4M. Let G, be the (m,n)-grid and G, be the (m,n+tM)-grid. The
duplicator’s strategy on G, and G, is as follows. During the first r, rounds, the
duplicator uses the strategy of Lemma 12.6, where the roles of r, t, M are played by
r1, t, M. More precisely, whenever the spoiler selects a point x in one grid, the
column of the duplicator’s response y is determined by the column of x and the
strategy of Lemma 12.6, and the row of y is the same as the row of x. The
duplicator’s coloring strategy and his point-selecting strategy during the last r,
rounds are similar to those described in the proof of Theorem 9.6 (and the proof
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is simpler here since there is only one type of supernode, a column of m points,
rather than two types). Let i} <i,< --- <i, be the indices of the columns of G,
containing some point selected during the first , rounds, including the indices 1
and n of the leftmost and rightmost columns even if no point in these two columns
was selected. Define i} <i, < --- <i} similarly for G,. Since the duplicator used a
winning strategy in the (r,, ¢, M)-chain game, it follows that k =k', and whenever
the spoiler selected a point in column i; of G, the duplicator responded with a point
in column i} of Gy, and vice versa. Assume O0<j<k,¢=i;  —ipand &' =i; ,—i}
The duplicator’s coloring and final point-selecting strategy on the subgrids consist-
ing of columns in the interval [i;, i;,,) in Go and [i}, i},,) in Gy is: (i) the identity
strategy if £=¢', or (ii) based on the strategy guaranteed by Lemma 9.5 if £ # ¢,
since in this case £ >, ¢/ > t, and ¢/ = ¢’ mod M. Further details are similar to those
in the proof of Theorem 9.6 and are left to the reader.

13. CONCLUSIONS AND OPEN QUESTIONS

We have introduced a new descriptive complexity class, closed monadic NP. We
argued on mathematical grounds that closed monadic NP is a natural monadic
subclass of NP: what matters is the configuration of the higher-order quantifiers. In
the case of closed monadic NP, what matters is that all second-order quantifiers are
unary and existential, but it does not matter how first-order quantifiers are
interleaved among the second-order quantifiers. Closed monadic NP is robust, in
that it is closed under first-order quantification and existential unary second-order
quantification, the two types of quantification that appear in the definition of
monadic NP. We have demonstrated the expressive power of closed monadic NP
by showing, for example, that it is a proper extension of the positive first-order
closure of monadic NP (this follows from Theorem 1.2), and that it contains all
properties that can be expressed by monadic X 7<) sentences (Proposition 10.2). A
major open issue is to find lower bounds involving closed monadic NP. Of course,
one way to find such lower bounds, that is, show that a property is not in closed
monadic NP, is to show that the property cannot be expressed in monadic second-
order logic. For example, we noted in Section 3 that Turin [Tur84] has shown
that the perfect matching property cannot be expressed in monadic second-order
logic. While such a result reveals a limitation of unary second-order quantifiers, it
does not reveal a limitation of existential unary second-order quantifiers when
compared to general unary second-order quantifiers. Such a limitation would be
revealed by a “yes” answer to the following question, which was noted previously
in Section 10.

Open Question 1. Is there a property that can be expressed by a sentence of
monadic second-order logic (equivalently, a property in the monadic hierarchy),
but that does not belong to closed monadic NP?

As we noted in Section 10, the answer to this question is “yes” under the
assumption that NP # co-NP, since then non-3-colorability would be such a property,
which is even in monadic co-NP. It is interesting to consider whether Open
Question 1 can be resolved without making any complexity-theoretic assumptions.
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Since closed monadic NP is a subclass of NP, the following refinement of Open
Question 1 is also interesting.

Open Question 2. Is there a property that is in the intersection of NP and the
monadic hierarchy, but that does not belong to closed monadic NP?

In other words, Open Question 2 asks whether closed monadic NP equals the
intersection of NP and the monadic hierarchy. This is because closed monadic NP
is contained in both NP and the monadic hierarchy, as we have already noted. As
far as we know, the assumption NP #co-NP is consistent with either answer to
Open Question 2.

We have also defined the closed monadic hierarchy, a natural monadic version
of the polynomial-time hierarchy, where we focus on the number of alternations of
unary second-order quantifiers and allow arbitrary interleavings of first-order
quantifiers among the unary second-order quantifiers. As noted in Section 11, it is
an open question whether the closed monadic hierarchy is strict.

Open Question 3. Is it true that closed monadic £}, does not equal closed
monadic X} for all k>1?

We showed (Theorem 11.3) that the answer to this question is “yes” under the
complexity-theoretic assumption that the polynomial-time hierarchy is strict.
Moreover, under the assumption that XF #X%_ |, we showed that there is an
undirected graph property that is in monadic Z},, (and therefore in closed
monadic X7, ;) but not in closed monadic Z¥. It would be interesting to settle this
question without making any complexity-theoretic assumptions.

We noted in Section 12 that there are difficulties in using the growth method to
establish a “yes” answer to any of the three questions above, because all closed
monadic X} classes have exactly the same power to define functions having
arbitrarily large-fold exponential growth. It is still possible that looking at grid
properties could be helpful in settling these questions, but the argument must con-
sider details finer than the rough growth rate of the width-versus-height function.

To provide a “yes” answer to any of the questions above by using Ehrenfeucht—
Fraissé game arguments, it seems that we will have to deal with a new complication
to the game. That is, we will have to deal with multiple coloring rounds, interleaved
with pebbling rounds.

APPENDIX

Proof that k-round 3-colorability is Z%-complete when restricted to graphs of
maximum degree at most max{k,4}. We describe a polynomial-time many-one
reduction from a known ZXj-complete problem to k-round 3-colorability with
degree restriction max{k, 4}. This problem, shown to be X F-complete in [Sto77,
Wra77], is the quantified Boolean formula problem restricted to & blocks of alter-
nating quantifiers. To bring out the similarities with k-round 3-colorability, we state
this problem as a game. An instance of k-round QBF is a propositional formula F
in 3CNF form (conjunctive normal form with at most three literals per clause,
where a literal is either a variable or the negation of a variable), together with a
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partition of the Boolean variables appearing in F into k sets Xi,.., X;. The
question is whether player 1 has a winning strategy in the following k-round game:
at round 7 for 1 <i<k, player i mod 2 assigns a truth value to every variable in X;
after all variables have been assigned truth values, the player who moved last
(player k mod 2) wins the game if F is true under the chosen assignment.

The polynomial-time reduction from k-round QBF to k-round 3-colorability with
degree restriction max{k, 4} is based on the reduction in [ GJS76] from the 3CNF
satisfiability problem to the 3-colorability problem with degree restriction 4. Let the
3CNF formula F and the variables-partition X, .., X, be an instance of k-round
QBF. To simplify the description of the reduction, it is done in several steps. The
first step is to reduce k-round QBF to the modified k-round 3-coloring game
described before the statement of Theorem 11.4. In the modified game, an instance
consists of a graph G together with a partition of its vertices into k sets V', ..., V;
vertices in V; are colored by player i mod 2 during round i.

Let x,, ..., x,, be the variables appearing in F. The graph G contains vertices w
and x;, X,, z; for 1 <i<n (among other vertices). For 1 <i< n, the graph contains
the edges shown in Fig. 1. The vertex w is included in the set V; of vertices colored
during round 1, so we can imagine that w is colored before any other vertex is
colored. By convention, let 3 be the color of w. For a vertex v, say that v is “colored
true” if it is colored either 1 or 2, and “colored false” if it is colored 3. The edges
in Fig. 1 ensure that, in any legal 3-coloring of the vertices, x; is colored true iff x;
is colored false. We want to construct the rest of G so that, given any “truth color-
ing” of the vertices x,, .., x,,, the coloring can be extended to a legal 3-coloring of
G iff the corresponding truth assignment to the variables makes F true. For this
purpose, we use a graph H from [ GJS76] and shown in Fig. 2. This graph has the
properties: (1) for any legal 3-coloring of H in which a,, a,, a, are all colored with
the same color y, the vertex y, must be colored y; and (2)for any coloring of
a,, a,, a, such that at least one of these vertices is colored y, the coloring can be
extended to a legal 3-coloring of H in which y, is colored y. Let {a;,, a;, a;5} be
the literals in the jth clause of F for 1 < j<m. (If a clause contains only one or two
literals, then repeat one literal in the clause to produce a clause containing exactly
three literals.) The graph G contains, for 1< j<m, a subgraph on vertices
{¥51, - ¥} isomorphic to the subgraph induced by { y,, .., y¢} in Fig.2. In addi-
tion, a,, is connected to y, for p=1,2,3, and y, is connected to w. Given an
assignment of colors to the vertices w, x,, ..., X,,, the properties of H imply that this
coloring can be extended to a legal 3-coloring of all of G iff the “truth coloring” of
the vertices x,, ..., x,, corresponds to an assignment of truth values to the variables

i

T;

FIG. 1. The part of G representing the variables of F.
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FIG. 2. The graph H.

that makes F true. Recall that the color of w is 3 (false) by convention. For
example, if all the literals in the jth clause are colored 3 (false), then y;; must be
colored 3, but this cannot be a legal 3-coloring because y, is connected to w. The
partition of vertices is obtained from the partition of variables as follows:
Vi=X,u{w}; V,=2X, for 1 <i<k; and ¥, contains all remaining vertices of G.
(The vertex w is colored in the first round to fix a correspondence between truth
values and colors for this and future rounds.) Player £ mod 2 (the player moving
last) wins the k-round QBF game on instance (F, X, ..., X;) iff player £k mod 2 wins
the modified k-round 3-coloring game on instance (G, Vi, .., V}), since in the
former game player k mod 2 wants to make F true and in the latter game player
k mod 2 wants to legally 3-color G.

The next step is to transform (G, V5, .., ¥) to an instance (G, V1, .., V) of the
modified k-round 3-coloring game, where G’ has maximum degree at most- 4. Here
we use a graph from [ GJS76]. For every integer d > 3, a “vertex substitute” graph
H, is described in [GJS76] having the following properties: (1) H, has O(d)
vertices, maximum degree 4 and minimum degree 2; (2) H, has d special vertices
called outlets, and each outlet has degree 2; and (3) H, is 3-colorable, and in any
legal 3-coloring of H, all outlets must be colored the same. The graph G is trans-
formed to G’ by replacing each vertex u of degree d>4 with the graph H,(u), a
copy of H,; the d edges incident to u in G are incident to the outlets of H (u)
in G’, with each outlet receiving one edge. The new vertex partition is obtained as
follows: for 1 < i<k, for every ue V,, if the degree of u is less than 4 (so u was not
replaced by a copy of H,) then ue V], or if the degree of u is d>4 (so u was
replaced by the graph H,(u)), then V; contains some single outlet of H,(u); and V7,
contains all remaining vertices of G'. Note that, since every outlet of H, has
degree 2, every vertex in V; for 1 <i<k has degree at most 3.

The next step is to transform (G, V71, .., V%) to a graph G", an instance of the
original k-round 3-coloring game, where the degree of each vertex determines
the round during which it is colored. As part of this transformation, the degrees of
certain vertices must be increased. To increase the degree of vertex « from d to d’,
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add d' —d new edges incident to u. For each added edge, the other endpoint of the
edge is connected to an arbitrary vertex of a copy of K, ,, the complete bipartite
graph with k vertices in each part of the bipartition. A separate copy of K, , is used
for each added edge. Since each vertex of X, , has degree £, all vertices of the added
K, ,’s will be colored during the last round, round k. Since K, , is 2-colorable,
player k mod 2 will always be able to legally color all the K, ,’s, regardless of how
the rest of the graph is colored. If k=1, then G” = G’ (since the 1-round game is
equivalent to 3-colorability). Assume k > 2.

Vertices in V; for i3 are easy to handle. Recall that all vertices in V7 have
degree at most 3 for 1 <i<k, and all vertices in ¥} have degree at most 4. For
3<i<k and each ue V], if the degree of u is less than i then the degree of u is
increased to i. After this is done, each vertex in V; has degree exactly i for 3<i<k,
each vertex in V) has degree exactly k if k >4, and each vertex in V' has degree
at least k and at most 4 if k<3.

Vertices ue V' u V), require some different gadgets. Figure 3 shows how such
vertices are handled in the two cases k even and k odd. In this figure, a solid square
indicates a vertex whose degree has been increased (if needed) so that its degree is
at least k, so all square vertices are colored during the last round. All edges and
vertices other than u in this figure are added to G’ to obtain G”".

Consider first the case k even, so player 2 colors during the last round, and
player 2 wants the final coloring to be legal. Consider ue V. If player 1 has a
winning strategy in the game on G’ in which u is colored y during round 1, then in

ue VY veVy
1731 us uy U2
k even
u u
u u2 Ug
k odd U1 us
Uyg us us3
u u

FIG. 3. The transformation from G’ to G” for ue Vj u V5. Squares indicate vertices of degree at
least k.
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the game on G” player 1 colors u; and u, with the two colors other than y. (u; and
u, are colored during round 1 because they have degree 1 in this case.) This forces
player 2 to color u with color y during the last round. If player 1 does not have a
winning strategy, then he cannot gain an advantage by coloring u; and u, the same,
since this just gives more freedom to player 2 when he colors u. Now consider
ue VY. Since player 2 wants the final coloring to be legal, he must color u, and u,
differently, thus forcing the color of u. (If k =2, the transformation for u € V7 is not
needed.)

Now consider the case k odd, so player1 colors during the last round, and
player 1 wants the final coloring to be legal. Consider ue V. If player 1 has a
winning strategy in the game on G’ in which u is colored y, then in the game on
G" player 1 colors u; and u, with y. This forces player 1 to color 4 with y during
the last round, and wu, u,, us, u4 can all be legally colored regardless of how player 2
colors u, during round 2. Suppose that player 1 does not have a winning strategy
on G'. If u; and u, are colored the same, then again the color of « is forced. If «,
and u, are not colored the same, then during round 2 player 2 colors u; with the
same color as u,. This forces » to have the same color as u; in any legal 3-coloring.
Since player 2 has a winning strategy, he does not care how u is colored. The situa-
tion this construction avoids is allowing player 1 to delay choosing the color of u
until after round 1. The argument for » € V' in this case, k odd, is identical to the
argument for u € V| in the previous case, k even. This completes the transformation
from k-round QBF to k-round 3-colorability.

It remains to prove the second part of Theorem 11.4 by showing that degree
max{k, 4} suffices. The graph G” in the above construction has maximum degree
at most max{k +1,5}. We first transform G” to a graph G*® having maximum
degree at most max{k, 5}. Each copy of K, , that was added to increase degrees
contains one vertex of degree k+1 (the vertex a at which the copy of K , is
attached to the rest of the graph), and these are the only vertices of degree k + 1
if k > 5. By removing from each copy of K , one edge that is incident on its attach-
ment vertex a, the maximum degree becomes at most max{k, 5}. This reduces the
degree of one vertex in each K, , to k—1 (a vertex in the part of the bipartition
not containing a) thus allowing player (k —1)mod 2 to choose the color of this
vertex. It is easy to see, however, that player k mod 2 can still legally color all
the K ;’s.

The final step is to transform G (having maximum degree at most max{k, 5})
to a graph G™ having maximum degree at most max{k, 4}. That is, for k<4
we must reduce the degree from 5 to 4. We again use the “vertex substitute”
graph H, described in a previous step of the reduction. Each vertex u of degree 5
in G® is replaced by Hs(u), a copy of Hs, and the edges incident to u in G®
are incident to the outlets of Hs(u) in G, with each outlet receiving one edge.
Since k <4, each such vertex # (having degree 5 in G®) is colored during the
last round when the game is played on G®. To ensure that all vertices of Hs(u)
are colored during the last round when the game is played on G@, if v is a
vertex of Hs(u) where the degree of v is less than 4, the degree of v is increased
to 4 using methods already described, so that the resulting graph has degree at
most 4.
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