
B.Tech Seminar Report

on

A Study of a model Cosmology

Submitted for the partial fulfillment of the requirements

for the degree of

Bachelor of Technology

by

More Surhud Shrikant

01026020

under the guidance of

Prof. Urjit A. Yajnik

(Department of Physics)

Department of Physics

Indian Institute of Technology

Bombay

November 17, 2003



Acceptance Certificate

This is to certify that the Seminar report entitled A study of a model

Cosmology is based on the work carried out by More Surhud Shrikant.

Prof Urjit A. Yajnik



Approval Certificate

This is to certify that the Seminar report entitled A study of a model

Cosmology and submitted by More Surhud Shrikant is approved.

[GUIDE] [CHAIRMAN] [EXAMINER]



4

Abstract

Recent advances in Cosmology have taken us closer to understand

our Universe better. We study preliminary General relativity and its

application to Cosmology. Initially we develop the background for

the Friedmann models and analyse their behaviour. Later we modify

them to incorporate recent observations from the Cosmic Background

Explorer(COBE), Wilkinson Microwave Anisotropy Probe, Supernova

Cosmology Project and Hi-z Supernova project. We also examine the

possibility of stringy matter as being a part of our Universe motivated

by particle physics considerations and as a possible explanation for

the Ultra High Energy Cosmic Rays.
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Chapter 1

The Construct

For understanding this vast universe of ours, how it came into ex-

istence and what is its future, we need mathematical constructs or

models. Through these models we expect to explain the observed

phenomenon, explain the current state of the universe its start and its

end.

The first assumption that we make while constructing models for

the universe is that it is homogenous and isotropic. Well you will

say where can you see the uniformity, the Sun is obviously different

from the earth on which we live, the stars look different in two dif-

ferent directions of the sky. What I ask you to see is not these local

differences. Let me modify the previous statement a bit. We expect

the universe to be highly homogenous and isotropic at the largest of

scales. The observations of the universe at intergalactic scales shows

these properties. If you scan any part of the sky and have a count of

the number of galaxies in the direction you will roughly see the same

number of galaxies. That is why we say that the universe is isotropic.

Also no point is special. And as the Universe exhibits isotropy at ev-

ery point and it is homegenous around us so it must be homogenous

everywhere.

We have been using the words Isotropy and homogeneity very freely.

But what exactly do we mean by them. Homogeneity is the property
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that makes every point indistinguishable from every other point and

isotropy is the property that makes every direction to be indistinguish-

able from every other. Homogeneity is invariance under translations

while isotropy is invariance under rotations. We can have homogenous

manifolds without being isotropic, e.g. the surface of a cylinder. We

also have the example of a paraboloid. If you sit at the vertex we

have isotropy around that point but we do not have the paraboloid

to be homogenous. But if we have a manifold to be isotropic and

homogenous around one point then it is homogenous around every

point.

Also we note that our universe is far from static but at every point

of time we have homogeneity and isotropy. So how does this help?

This observation helps us know that our Universe can be described as

a manifold of the type R × Σ. R represents a real variable while Σ

represents a 3 dimensional isotropic and homogenous manifold which

is also called a maximally symmetric space. This R can be taken as

representing cosmic time.

The metric measures distances between two points in spacetime and

characterizes the spacetime. For such a spacetime we should have the

metric as

ds2 = −dt2 + a2(t)γij(u)duiduj (1.1)

Here γij is a maximally symmetric metric on Σ and a(t) represents

how big it is at any point of time. Also we note that we have no cross

terms involving space and time in the metric above. And we have

spacelike coordinates scaled by a function of time. Such coordinates

are called comoving and observers at constant ui and uj are called

comoving. The function a(t) is called the scale factor.

For a maximally symmetric γij the Riemann tensor of the 3d space

satisfies

Rijkl = k(γikγjl − γilγjk) (1.2)
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where k is some constant. Contracting the tensor using the fact that

the trace of the metric is three gives us the Ricci tensor given by

Rjl = 2kγjl (1.3)

A maximally symmetric metric is also spherically symmetric and from

our knowledge of the Schwarzschild solution we have

dσ2 = γijduiduj = e2β(r)dr2 + r2(dθ2 + sin2θdφ2) (1.4)

Using this metric we calculate the diagonal components of the Ricci

tensor as

R11 =
2
r
∂1β (1.5)

R22 = e−2β(r∂1β − 1) + 1 (1.6)

R33 = (e−2β(r∂1β − 1) + 1)sin2θ (1.7)

Using equation 1.3 we solve for β to get

β = −1
2
ln(1− kr2) (1.8)

which gives

ds2 = −dt2 + a2(t)
[
dr2 1

1− kr2
+ r2(dθ2 + sin2θdφ2)

]
(1.9)

This is called the Robertson Walker metric.

Here k takes the values 1, -1 or 0 depending upon the curvature of

space that we are talking about. The connection coefficients can be

calculated using

Γσ
µν =

1
2
gσρ(∂µgνρ + ∂νgρµ − ∂ρgµν) (1.10)

Calculating the connection coefficients we proceed to calculate the

components of the Ricci tensor which come out to be

Rµν = 0 for µ 6= ν (1.11)
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R00 = −3
ä

a
(1.12)

R11 =
aä + 2ȧ2 + 2k

1− kr2
(1.13)

R22 = r2(aä + 2ȧ2 + 2k) (1.14)

R33 = R22sin
2θ (1.15)

On contracting the Ricci tensor we get the Ricci scalar as

R =
6
a2

(aä + ȧ2 + k) (1.16)

This forms the numbers for various further calculations which we

shall do. In the next chapter we will see the Einstein’s equations and

derive some special relations connecting the properties of matter in

the universe and then we shall use them to extract information about

the development of the Universe from the Robertson Walker metric.



Chapter 2

The Energy Momentum

tensor

In this section we will try to understand the Energy Momentum

Tensor. The energy momentum tensor denoted by Tµν is the flux of

the four momentum pµ across the surface of constant xν . Confused?

Let us see what it means. Consider a parallelopiped with a slanted

surface. Suppose that we have fluid flowing through its surface. The

force acting on one of the faces say yz plane due to the motion of the

fluid in the x direction is proportional to the area it covers.

∆F = σn̂da (2.1)

Clearly we must have sigma to be a second rank tensor so that when

it acts on a vector we get a vector. Also let us consider what it means

in terms of components.

∆F i = σij∆aj (2.2)

which gives the definition of σij as

σij =
∆F i

∆aj
(2.3)

Now consider what ∆F i is. The fluid at the face is dragged alongwith

the fluid due to the flow. The change in momentum is vi and the mass

10
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of the element is ρ∆V which gives

σij =
∆V ρvi

∆xi∆xk∆t
(2.4)

which leads to the definition of the stress energy tensor as

σij = ρvivj (2.5)

This when generalised to four space is called the stress energy tensor.

Thus as we can see from equation 2.4 the ijth component of energy

momentum tensor gives the flux of momentum in the xi direction

across a surface of constant xj .

We will model matter as a perfect fluid. A fluid which looks isotropic

in its rest frame is called a perfect fluid. Also another definition of

perfect fluid says that it is fluid which has no viscosity and no heat

conduction. It turns out that the two definitions are equivalent. Such

type of fluid can be completely described by its pressure and density.

To get the feeling for the definition of the energy momentum tensor

above let us start with the most simple type of fluid: Dust. If particles

are at rest with respect to each other we call such matter as dust.

Because we have all the particles at rest w.r.t. each other, in a general

frame we have a velocity field given by Uµ(x). Define the number flux

vector as Nµ = nUµ where n is the number density in the rest frame.

So we have N0 as the number density in the arbitrary frame and N i

describes the flux of particles in the xi direction.

Now consider the rest frame. In the rest frame the energy density

of matter is given by

ρ = nm (2.6)

It completely specifies dust in the rest frame. Also note that the n is

the 0 component of Nµ and m is the 0 component of pν . This gives

us a clue as to what the energy momentum tensor might be. Consider

Tµν
dust = p⊗N (2.7)
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which is

Tµν
dust = pµNν = nmUµUν = ρUµUν (2.8)

Now let us consider a general perfect fluid. Because perfect fluids

are isotropic in their rest frame we must have

T 11 = T 22 = T 33 (2.9)

Also since there is no net flow along any orthogonal direction as we

do not have viscosity we must have

Tµν = 0 µ 6= ν (2.10)

leaving only two independent parameters in the energy momentum

tensor, one of T ii and T 00. We call T 00 as ρ and T ii as the pressure(p).

Now this is true in the rest frame but we want a formula independent

of the frame. Our first guess considering the energy momentum tensor

for dust which had p=0 is (ρ + p)UµUnu. Now because we want the

tensor to acquire the form diag (ρ, p, p, p), we must add a term pgµν

so the final form of the Energy Momentum tensor is

Tµν = (ρ + p)UµUν + pgµν (2.11)

The trace of the tensor is given by lowering one index and identifying

it with the other to give

Tµ
µ = −ρ + 3p (2.12)

Another interesting property of the energy momentum tensor is

∇µTµ
ν = 0 (2.13)

The zero component of this equation represents the conservation of

energy equation while the other components represent the conserva-

tion of momentum along respective directions. The zeroth component

gives

− ∂

∂t
ρ = −3

ȧ

a
(p + ρ) = 0 (2.14)
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And finally the celebrated Einstein’s equation relating the energy

momentum tensor (property of matter) to the properties of space (it’s

Curvature) is given by

Rµν −
1
2
Rgµν = 8πGTµν (2.15)

Note that the left hand side denotes the properties of space while the

right hand side the property of matter.This equation can be recasted

as

Rµν = 8πG(Tµν −
1
2
gµνT ) (2.16)

The µν = 00 equation gives using the values derived in the first chapter

−3
ä

a
= 4πG(ρ + 3p) (2.17)

The µν = ij equation yields

ä

a
+ 2

(
ȧ

a

)2

+ 2
k

a2
= 4πG(ρ− p) (2.18)

Using these equations we get(
ȧ

a

)2

=
8
3
πGρ− k

a2
(2.19)

These equations will form the basis for extracting the knowledge of

the Universe. These equations contain the information about the past,

present and future of the Universe.



Chapter 3

Friedmann models

We shall now use the equations derived in the previous chapter to

study the behaviour of various types of Universes and then try to

match them with our own Universe.

Consider the conservation of energy equation(Eq 2.14) that we wrote

down. It relates the energy density to the scale factor. To proceed fur-

ther we need a relation between the pressure and the energy density.

All the perfect fluids obey an equation of state:

p = wρ (3.1)

Substituting in Equation 2.14 we get,

∂

∂t
ρ = −3

ȧ

a
ρ(1 + w) (3.2)

Integrating the equation we get

ρ = Ca−3(1+w) (3.3)

For ordinary matter like stars and galaxies the energy density is far

more than the pressure and we can safely assume w=0 for all pur-

poses. Hence we can see that the matter density in matter dominated

14
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Universes (Universes having primarily matter) follows

ρ = Ca−3 (3.4)

The above relation can be interpreted also in the following way. As

the Universe scales with time every spatial dimension scales as the

scale factor a. So the volume goes up by a3 and so the energy density

goes down as the same factor. For electromagnetic radiation and all

relativistic particles we have w=1
3 and hence we have for Radiation

dominated Universes:

ρ = Ca−4 (3.5)

The extra factor a comes from the consideration that as the universe

scales the radiation gets redshifted with a factor of a.

Now consider equation 2.18(
ȧ

a

)2

=
8
3
πGρ− k

a2
(3.6)

Here we introduce some new definitions:

The Hubble Constant:

H =
ȧ

a
(3.7)

The deceleration parameter:

q = −aä

a2
(3.8)

The critical density

ρcritical =
8
3

πG

H2
(3.9)

And the density in units of the critical density:

Ω =
ρ

ρcritical
(3.10)
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With the help of the definitions here the equation 3.6 becomes

1 = Ω− k

a2H2
(3.11)

So that if we have ρ = ρcritical then the value of k should be equal to

0 implying a flat space. So critical density is the density required for

a flat Universe.

The fluids we have considered till now have w ≥ 0. Hence the

equation 2.16 implies that ä ≤ 0. This imples that the Universe is

decelerating and hence it must have been accelerating faster at earlier

times. And going back in time we necessarily reach a singularity where

a=0. This is an unavoidable singularity and can be attributed to the

perfect symmetry that we assumed in getting these equations. But it is

not just these symmetries that have made us reach this singularity.The

Singularity theorems predict that Universes with ρ > p ≥ 0 essentially

begin at a singularity.

This was the looking back! The future of such universes is governed

by the curvature of the space. Consider the case for k ≤ 0. The

equation 3.6 rewritten gives:

ȧ2 =
8
3
πGρa2+ | k | (3.12)

Now as the right hand side above is greater than zero and that we

know that today ȧ > 0. Hence ȧ can never be negative as it can

never pass through a zero. So in the flat and open cases we have ever

expanding Universes.

Also one notices the fact that

d

dt
(ρa3) = a3(ρ̇ + 3ρ

ȧ

a
) = −3pa2ȧ (3.13)

where the last equality comes from using the conservation of energy

equation 2.14. This implies that ρa3 continously decreases. Now as

the universe expands continously we will have a →∞. So ρa2 has to
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Figure 3.1: The Friedmann models of the Universe with different spatial
geometries.

tend to zero. This implies that ȧ2 →| k |. implying that for the flat

case a approaches a constant value asymptotically and for the open

case we have that ȧ approaches 1 i.e later a(t) scales linearly with

time.

For the open case we have

ȧ2 =
8
3
πGρa2 − 1 (3.14)

Now a cannot go to infinity as then R.H.S bec omes negative(noting

that ρa2 → 0). So a(t) should go through a maximum. At the maxi-

mum as we have ä < 0, a(t) goes to the negative side and the Universe

faces a Crunch. All these results can be summarised in the form of

the graphs as shown. These are called the Friedmann models of the

Universe.

Einstein initially was interested in finding out ȧ = 0 solutions to

his equations. This is possible only in a closed universe with k = +1

and the matter density appropriately adjusted. But equation 2.17
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prevents ä for any Universe with matter with nonnegative pressures

to be nonzero. So he introduced a modification to his equation by

adding the infamous Λ term.

Rµν −
1
2
Rgµν + Λgµν = 8πGTµν (3.15)

With this introduction we have

−3
ä

a
= 4πG(ρ + 3p) + Λ (3.16)

And the equation involving the Hubble constant(
ȧ

a

)2

=
8
3
πGρ− k

a2
+

Λ
3

(3.17)

This leads to a static Universe even with a nonnegative ρ,p and Λ.The

solution is called the static universe solution. But it faces the following

problem. The solution requires a great fine tuning of the constants

involved and hence any departure from the initial conditions can lead

to a departure from the solution. And also in the meantime Hubble

announced his discovery that the Universe is expanding and then there

was no need of the Λ term.



Chapter 4

Observational data

Starting from the assumptions of Homogeneity and Isotropy we have

reached a stage where we can predict the behaviour of the Universe.

Now let us get to the hard facts about our Universe which we get to

know from various experiments.

Cosmic Microwave Background Radiation Penzias and Wil-

son in 1965 noted an excessive flux at wavelength of 7.5 cm. It could

not be attributed to any specific source and it was present no matter

whichever direction you probe. Moreover it was equivalent to radia-

tion from a black body and the variation of intensity versus ν showed

a perfect Planck curve. Later we had the Cosmic Background Ex-

plorer (COBE) satellite launched exclusively to study this radiation.

It helped us get a better picture and it was found that the curve would

match that of a black body at a temperature of 2.725K. The devia-

tions from the perfect Planck curve are very tiny. This shows that the

radiation is extremely isotropic. This also supports our assumption

that the Universe we observe is homogenous and isotropic.

There are tiny deviations of the order of 10−5K in the CMBR.

These are the deviations which lead to the formation of the galaxies

and clumps of matter that we see today. These tiny fluctuations can

be represented by spherical harmonics and the first peak obtained in

these plots is suggestive of the curvature of space. The results seem to

19
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Figure 4.1: The CMB power spectrum.

suggest with a great degree of accuracy that we live in a flat universe.

The isotropy of the CMBR leads us to the Horizon Problem. The

Universe was opaque before the time when matter decoupled from ra-

diation. The photons were not able to freely move around as they

would find atoms to ionise and then their mean free path would be

very small. But once the temperatures got down the photons were

no longer energetic to ionise the atoms and they started streaming

around freely. This is called the time of last scattering or time of re-

combination. Since then these photons have cooled to a temperature

that manifests itself in the Cosmic Microwave background radiation.

Now if one stretches back the lightcones to this era and assumes a uni-

form expansion then one can see that different parts of the Universe

were not even in causal contact before the last scattering took place.

So if they were not in causal contact how did this equilibrium in tem-

perature between causally separated locations arise? Note that their

temperatures match to 1 part in 10,000. This is called the Horizon

Problem.
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Figure 4.2: The Horizon Problem.

Also is related one more problem and that is of the age of the

Universe. One can solve the differential equations for the scale factor

a and get the age of the universe given the matter density. Also note

that equation 3.11 gives us a relation between the curvature of the

universe and Ω the ratio of the density to that of the critical density.

If we have density exactly equal to that of the critical density we have

flat space, on the other hand Ω < 1 implies an open Universe while

Ω > 1 implies a closed Universe. The age of the Universe depends

upon both the Ω0 and H0 where the subscript 0 denotes the present

value of these numbers.

For a flat case we get that the scale factor a(t) obeys the following

relation

a(t) = K

(
t

t0

) 2
3

(4.1)

giving the age of the universe to be

t0 =
2

3H0
(4.2)
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Figure 4.3: The extremely matched initial conditions.

while for the zero density case a(t) scales linearly with time and we

should have

t0 =
1

H0
(4.3)

And if at present Ω0 is greater than one then the age of the Universe

is lower than that predicted by the critical density case.

Observations of distant Globular clusters suggest an age of around

13.5 Gyr and the value of the Hubble’s constant taken to be the present

value from the HST project(H0 = .72 ± .08 /Gyr) we get that for

our Universe we have H0to ' 1 which is consistent with the empty

universe which we can rule out for matter is still a considerable part

of our Universe.

We can also see that if Ω0 was greater than one the universe will

stop expanding and then the density will start going up. And if it

was smaller than one then the universe will expand and the density

will quickly go to zero. Thus we have Ω0 to be a unstable equilibrium

point if we have nonaccelerating expansion. The requirement that it is

close to one requires a fine tuning of initial conditions to 1 part in 1059



CHAPTER 4. OBSERVATIONAL DATA 23

and even greater at time earlier than a nanosecond after the BigBang.

So if we had a small error in the initial conditions our Universe would

have recollapsed before our formation or accelerated too much for us

preventing me and you to see this present scenario.

The theory of Inflation solves both these problems. It says that

the Universe underwent a period of intensive exponential expansion

for a small amount of time. The Universe then is allowed to be in

causal contact and the inflationary scenario which we did not account

leads to the Horizon Problem. Also the flatness oldness problem is

solved as now the age of the Universe that we see should be less than

that predicted by the nonaccelerating expansion. Inflation theory is

based on the presence of Vacuum energy. Particles and antiparticles

forming out of nothing and then recombining. This creates an energy

density. If we even have a small part of it left behind then it leads

to a cosmological constant much like the Λ term that Einstein had

introduced. One more important thing to get our attention to is that

the theory predicts the formation of a flat space after the intense

expansion. The term that Einstein introduced to balance the Universe

was not to go out. And the role was exactly reversed.

Cosmology with a cosmological constant If we have a nonzero

vacuum energy density, then as the Universe expands the vacuum in-

creases in the same proportion keeping the vacuum energy density

constant. This implies that w = −1 for vacuum energy as ρΛ scales

as a0 = a−3(1+w). If we only have the vacuum energy then since(
ȧ

a

)2

=
8
3
πGρΛ (4.4)

we have the scale factor scaling exponentially as the R.H.S is a con-

stant. That is the Universe expands exponentially in the presence of

the vacuum energy. This energy is henceforth called the dark energy.

We had seen that the matter density and radiation density both go

down as the scale factor increases but since the dark energy density

remains constant one can easily see that over time howsoever small
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the dark energy component is, it wins over the other components and

starts expanding the Universe exponentially. This leads to a universe

which will be dominated by matter until the density falls upto a level

where the vacuum energy starts contributing to the expansion. The

accelerated expansion further kills the matter density and we essen-

tially end up in an empty Universe.

Now let us make a note of all the equation of states of fluids that

can contribute in the large scale structure of the Universe.

Ordinary matter (ρm) w = 0 ρm ∝ a−3 (4.5)

Radiation (ρrad) w =
1
3

ρm ∝ a−4 (4.6)

Dark energy (ρΛ) w = −1 ρm ∝ a0 (4.7)

Curvature (ρc) w = −1
3

ρm ∝ a−2 (4.8)

Note that here we have also included curvature as it acts like providing

an effective energy density.

So in general our energy density will be a linear combination of

these terms i.e

ρ = ρm + ρΛ + ρrad + ρc (4.9)

Our equation for the scale factor then becomes(
ȧ

a

)2

=
8
3
πG(ρm + ρΛ + ρrad + ρc) (4.10)

And due to the proportionalities followed by these densities.(
ȧ

a

)2

=
8
3
πG

(
ρm0a

3
0

a3
+ ρΛ +

ρrad0a0
4

a4
+

ρc0a0
2

a2

)
(4.11)

Now we note that the energy density due to radiation is negligible at

the present moment. The energy density was comparable to that of

matter during the early stages of Universe when matter used to couple

with radiation. But now the radiation part has gone and whatever

remains is seen as the relic background radiation. So we remove the
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term ρrad to get(
ȧ

a

)2

=
8
3
πG

(
ρm0a

3
0

a3
+ ρΛ +

ρc0a0
2

a2

)
(4.12)

We could as well have neglected the curvature term as the CMBR

suggests that k = 0. But we keep it for reasons that will be clear

later.



Chapter 5

Probing the Universe

The measurements of distances to different galaxies comes under a

question immediately once we have the scale factor. The light has left

the galaxy milllions of years before and the Universe has expanded

from then onwards. The light undergoes redshift due to the expan-

sion. In the meanwhile our physical distance to the galaxy has in-

creased though our coordinate distance remained the same.(By co-

ordinate distance we mean the distance as calculated from the r,θ, φ

coordinates in equation 1.9). The actual physical distance then scales

as the scale factor. But the problem is that we do not have access to

spacelike surfaces for measurements and hence cannot measure such

a coordinate distance. So we have to recourse to distance measures

that are accessible through observations.

Following are some of them:

dL =

√
L

4πF
(5.1)

where dL is called the luminosity distance, L the intrinsic luminosity

of the source and F is the measured flux.

dM =
u

θ̇
(5.2)

26
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where dM is the proper motion distance, u the transverse proper ve-

locity and θ̇ is the angular velocity and

dA =
D

θ
(5.3)

where dA is the angular diameter distance, D is the proper size of the

object, θ is the apparent angular diameter. In a Robertson Walker

Universe the proper motion distance reduces to the physical distance

along a spacelike slice. The three things are related by

dL = (1 + z)dM = (1 + z)2dA (5.4)

where z is the redshift of the object defined as

1 + z =
a(t0)
a(t)

(5.5)

and t is the time of emission of the radiation reaching us at t0.

Once the scale factor is specified as a function of time these things

get fixed. With observable quantities in hand we are ready to put

our theory to test. But we must note that these large scale effects

will show up on the large scales and local measurements will not be

affected much. So we have to probe the universe at high redshifts.

One measures distances to other objects through the distance mod-

ulus, m−M , where m is the apparent magnitude and M the absolute

magnitude. The distance modulus is related to the luminosity modu-

lus by

m−M = 5log10[dL(Mpc)] + 25 (5.6)

Now it easy to measure the apparent magnitude but very difficult

to measure the absolute magnitude. So we have to look forward to

events whose physics is very well known. So that one is able to prop-

erly predict the absolute magnitude. The most popular method is

by using standard candles like the Cepheids or galaxies with certain

characteristics.
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Figure 5.1: The Supernova Cosmology Project results: 2003

Supernovae are a way to probe the universe at previous times. The

energy release in the form of light being tremendous in such a process,

these make good tools to probe Universe at the large scale. Supernovae

are rare, and only a few happen in a galaxy like ours in a century.

But better telescopes help us see deep sky objects and one is able to

cover a lot of galaxies at one go. Particularly interesting are Type

Ia supernovae(SNeIa). They are very luminous and can become as

bright as the host galaxy itself. Each of them seem to be of the same

intrinsic luminosity (Absolute Magnitude ∼ 19.5). Also these fit well

in our star life cycle models. Due to great work in standardising these

candles, there are two groups currently functional in examining these

Supernovae, one is the Supernova Cosmology Project and the other

is the High-Z Supernova team. The figures show results for the SCP.

The graph of m-M as a function of z is plotted and one can relate

it back to the parameters we have used namely, ΩΛ and ΩM . The
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curves rule out a matter dominated Universe completely. One then

recourses to obtaining a χ2 fit to the points obtained. The space of the

required parameters is divided in to fine mesh and then χ2 calculated

at each point. The point giving the lowest χ2 describes the empirically

found parameters. The recent results from the Supernova Cosmology

project suggest that we live in a flat Universe with ΩM = .25+0.07
−0.06 and

ΩΛ = .75+0.06
−0.07.



Chapter 6

Investigating stringy

matter

Particle physics considerations suggest the formation of strings at

energies of Grand Unification as defects that arise in an otherwise ho-

mogenous Universe. The dynamics are governed by a scalar potential

function. The characteristics of such strings is the linear density or

the mass per unit length denoted by µ of such strings. In units where

~ and c are taken equal to unity, the dimensions of µ are [M2]. The

energy of formation is then ν ∼ √
µ. Further in time these strings

scale as the Universe scales up. This is called the scaling solution.

Now we note that the ρstr will be µ multiplied by the length by

volume ratio. The length by volume ratio will be proportional to H2
0 .

Hence we have

ρ = µXH2
0 (6.1)

Now we do a rough calculation to to check whether we are on a right

track. We propose the density currently is of the order of

H2
0

G
= ρ = µXH2

0 (6.2)

µ =
1

GX
(6.3)

ν ≈ √µ = 1019Gev
1
X

(6.4)

30
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This implies

X ≈ 105 (6.5)

if the energies have to be of the Grand Unification scale. Such a small

number density is hard enough to be detected. But the effect of the

energy density can affect the dynamics of the Universe.

We now try to explore the possibility of having stringy matter by

putting it in the Friedmann equations that we have derived. Also

the density of the strings ρstr ∝ a−2. This can be interpreted in the

following way. As the scale factor goes up the volume increases but

so does the length of any string which annihilates one of the a in the

denominator. Hence

ρstr = ρstr0

(a0

a

)2
(6.6)

Now we study the behaviour of such a universe. Let us first just ignore

ordinary matter and dark energy and curvature terms in the energy

density. In the presence of just stringy matter equation 3.6 reduces to

ȧ =
8
3
πGρstr0a

2
0 (6.7)

As the right hand side is a constant this implies that the Universe will

be linearly expanding in such a case. If we have a combination of all

the different forms of energy density then in general we have(
ȧ

a

)2

=
8
3
πG

(
ρm0a

3
0

a3
+ ρΛ +

ρstr0a0
2

a2

)
(6.8)

Note that this is of the same form as equation 4.12.

This differential equation has to be solved numerically. Dividing by

H2
0 we have

1 = Ωm + ΩΛ + Ωstr (6.9)

Also we convert the scale factor in units of the scale factor now by

introducing a new variable p.

p =
a

a0
(6.10)
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Figure 6.1: Variation of the scale factor with different amounts of Stringy
matter for Ωstr : ΩΛ = .1, .5,∞ respectively in the three cases. The first case
takes on later due to dark energy component.

Now take H2
0 common from both sides to get(

ṗ

p

)2

= H2
0

(
ΩΛ +

Ωstr

p2
+

Ωm

p3

)
(6.11)

Now one can vary Ωm,Ωstr and ΩΛ and try to obtain the behaviour

of p as a function of time. The plots for various such values obtained

using Scilab are shown in the figure. The figure shows the variation

of scale factor with time. The time is plotted in units of H−1
0 .

This sets up a field to verify the amount of stringy matter. The

variation of the scale factor with time will give us a handle to calculate

the luminosity distances as a function of the redshift following the

procedure of Knop etal.[astro-ph 0309368]. The attempt of a χ2 fit

will essentially give us a range for the value Ωstr can have. The present

uncertainties in the Knop etal data can allow for stringy matter upto

10 percent of that of the dark energy component.
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The possibility of having stringy matter will lead us to the following

fates. If stringy matter is found to dominate even dark energy com-

ponent at present then the Universe will for still some time continue

to coast linearly until it reduces and the dark energy component then

takes on. If we find that stringy matter alone is enough to give the

required expansion rate and its effect then the Universe will continue

to expand to attain a linearly growing rate.

Finally it is also worth mentioning a fact, such Strings are capable

of creating bursts of high energy particles. Such particles are seen to

bombard the earth once in a while. These are called the Ultra High

Energy Cosmic rays (UHECR). The density of the stringy matter also

might help us to predict the amount of such occurrences.
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