Chapter 10 Implementing an Intelligent Security System

10. IMPLEMENTING AN INTELLIGENT
 SECURITY SYSTEM

In this chapter the implementation of an intelligent security system will be presented.

The implementation of an intelligent security system is to be carried out on the basis of the concept presented in Chapter 8 and theoretic framework presented in Chapter 9 The main goal is to emulate an intelligent reaction to "suspicious" actions, which might occur in the information system. The prototype presented in this chapter was mainly developed for protection from computer viruses, worms and Trojan horses, but it is intended to be expanded to other types of misuse of information systems in near future.

The working name of prototype was chosen to be Nisan, which is the name of historically first month of the Hebrew calendar. The month of "Nisan" both in Hebrew and Arabic, inaugurates Spring, the season of new beginnings. The main reason to choose this name was the fact that it is very first version of an intelligent security system prototype, so the name looked convenient and easy to remember.

10.1. The Development Platforms, Programming Languages
 and Tools

The prototype Nisan was mainly developed on Unix platform (Solaris 2.7), but its executive parts are situated on MS Windows 98/NT platform.

The main programming language was Tcl, version 8.0. It is a scripting language developed in the 1980s by John Ousterhout, while he was a professor at the University of California, Berkley. It is currently under the ownership of the Sunscript Group of Sun Microsystems Inc., managed by John Ousterhout. Tcl was chosen because it is easy to use and therefore suitable for developing first prototype. Since it is an interpreted language, every Tcl program is simply one or more files of textual commands that are executed by a Tcl interpreter program. On Unix, the first line of a Tcl script identifies the Tcl interpreter to run; on MS Windows, unique file extensions are used to identify the Tcl interpreter to run. The Sunscript Group at Sun Microsystems provides two basic Tcl interpreter programs: tclsh and wish. Tcl interpreters exist for most major operating systems, effectively making Tcl programs platform-independent. Tools built on Unix can be moved directly to MS Windows, and tools built on MS Windows can be moved directly to Unix workstations.

The interactive development nature of Tcl, combined with the fact that Tcl programs require fewer lines of code than languages like C or C++, makes it fast and easy to develop in. Tcl’s extensible architecture has encouraged many talented programmers to develop new packages of commands, commonly known as extensions. These extensions make developing Tcl applications even easier. Some of them are simply libraries of useful Tk widgets, while others extend Tcl to handle things as diverse as database access, Web programming, object – oriented programming, and multithreading.

However, interpreted languages like Tcl are slower than languages like C or C++ . The Tcl language has only a single datatype: strings [38]. This can make handling large, complex data structures inefficient. When performance is an issue, the Tcl can be used as a “glue” language, that is it can be used for connecting together powerful components built in other languages like C or C++. Therefore for the most complex part of this prototype, i.e. inference engine, the Tcl extension fzy.so, developed by D. Delija in [8], for the fuzzy code library developed originally by E.Cox in C++ [6] was used.

For the fuzzy controller development some other tools were used. FOOL & FOX, the package developed at the University of Oldenburg (FOOL – Fuzzy Organizer OLdenburg), was used on Unix platform for better tuning of fuzzy sets. FOOL offers a graphical user interface (GUI) for constructing the database, which will specify the behavior of fuzzy controller. Specifications are written into a special database file with extension .fol. The other part of the package, FOX, is a universal fuzzy controller, which reads the database *.fol as its behavior specification and then scan the input values, calculate these values as programmed with FOOL and finally write the result into a file. Unfortunately, it was very difficult to integrate FOOL & FOX into Tcl, so it was used as an off-line tool for verification of linguistic variables, their adjectives and rules.

For some unknown reason the graphical presentation of fuzzy sets in FOOL & FOX was not working, so this otherwise powerful tool was unusable for these purposes. For visualization of fuzzy sets was used A-B Flex, a simpler tool for fuzzy simulations, available for MS Windows platform. As its simulation part works on very complicated way with MS Excel, it was used for graphic presentation only, and FOOL & FOX for numerical analysis. However, the results obtained this way were included in definition of fuzzy sets to be implemented in inference rules unit.

10.2. General Structure

The prototype was developed in the way to emulate two hosts sending reports to central host for analysis. Because of the nature of particular attacks (e.g. massive virus infection) it was impossible to obtain real conditions for testing. Several requests were made, but no organization was willing to allow real-time infection by computer viruses on its MS Windows systems, either on standalone or networked computers. So, author of this thesis had to infect her two standalone computers at home running MS Windows 98 (one of them borrowed for short period only for tests with viruses). Generated reports obtained by anti-virus and integrity checker programs were then transferred to remote Unix machine for further processing. The Unix system was chosen for development because the Unix workstation had better performance and the operating system is "immune" to possible infections by viruses, which can infect MS Windows systems.

Emulation on Unix system is based on inter-processes communication and it is carried out by sharing directories and files. The way of implementation is data flow between the processes. The structure of directories corresponds to the modules described in Chapter 8, so that most often particular directory has name corresponding to its concept counterpart. It is supposed that some modules will be physically placed to different hosts, so they also have names of hosts attached to the name of module. The scheme of directories is given on the Figure 10.2.1.

Figure 10.2.1. Structure of directories on emulation host
The executable programs are executed sequentially, one by one, but it is intended to work as daemons in future (constantly present programs). Their functioning is easily checked by logs in check directories. If the message (input file) is processed already its name is recorded in check log, so it will not be processed again. For every executable program there is dedicated library in directory lib. Method of naming is code_name-of-module, e.g. code_filter_1.tcl.

Messages are mostly text files, which are processed by programs and transferred to corresponding directories. All messages have standardized name format :

TYPE_TIME-STAMP_HOST(if needed, otherwise "-")_NAME-OF-MODULE.EXT

where TYPE is an abbreviation of the name of the attack type, e.g. VIR for viruses. An example of such a name is: VIR_670889101_VIRUSI_FILTER-SLOG.TXT

Tcl code for naming convention is contained in lib_names.tcl, which can be found in Appendix C.

10.3. Implementation of Observing Elements

Observing elements on every host consists of three types of elements,which is somewhat different from the concept presented in Chapter 8,: observing agents, corresponding filters and observing transceivers.

Observing agents in this case were anti-virus scanner F-Secure for Windows 95 version 4.09.2220. and integrity checker Integrity Master version 4.21 a, both trial versions. On host “glavni” only F-Secure was installed and on host “virusi” both tools were installed. Both hosts were scanned and checked in regular state and “irregular” state, i.e. with entities infected by computer viruses or worms. The reports of both agents were stored on the hosts and later transferred to Unix emulation host. F-secure gives two types of reports, one general with extension .LOG, which is plain text file and other event-specific with extension .FPT. The later is not plain text file and it had to be converted to such format, before sending it to Unix host. The report from Integrity Master is also a plain text file with extension .REP.

The reports were stored in /report_inc_glavni and /report_inc_virusi directories on Unix host. The examples of reports were as following:

Scan All Hard Disks when Idle
SCANALLH.FPT
A
2000.08.20 14:27 Scan Aborted

Scan All Hard Disks when Idle
SCANALLH.FPT
V
2000.08.20 15:21 Virus Alert: Check the Results!

Scan Folder
SCANAT.FPT
K
2000.08.20 16:14 OK

Scan Folder
SCANAT.FPT
K
2000.08.20 16:15 OK

Figure 10.3.1. Report from F-Secure of type *.LOG on host “glavni”

Scanned at: 2000.08.20 15:21 Virus Alert!

Scanned by: S & R at glavni

F-Secure Anti-Virus for Windows version 4.09

Scan engines used:

F-PROT version 3.07.1204 (signatures database date 2000-05-30)

AVP version 3.133.2223 (signatures database date 2000-05-30)

Search: All Local HDDs

Action: Report Only

Targets: File viruses Boot sector viruses

Files: Executables

Results of virus scanning:

Scanned: 4 drive(s), 41928 file(s), 4 boot sector(s)

Time: 53 min 40 sec

Found: 21 infection(s), 0 suspected infection(s) in 16 file(s)

Disinfected 0 file(s)

c:\internet\eudora\attach\loveletter.zip\love-letter-for-you.txt.vbs

Infection: 'VBS/LoveLetter.gen' (exact) [F-PROT]

Infection: 'I-Worm.LoveLetter' [AVP]

c:\internet\eudora\attach\loveletter.zip

Infection: 'I-Worm.LoveLetter' [AVP]

f:\users\suzana\texts\xine-1.zip\tunnel.zip\da1.com

Infection: 'Test.1030' [F-PROT]

f:\users\suzana\texts\xine-1.zip\tunnel.zip\testb.com

Infection: 'Test.1030' [F-PROT]

f:\users\suzana\texts\xine-1.zip\xine-1.000\jupiter.bin

Infection: 'Sailor_Boot.A' image file (exact) [F-PROT]

f:\users\suzana\texts\xine-1.zip\mme.zip\da1.com

Infection: 'Test.1030' [AVP]

f:\users\suzana\texts\xine-1.zip\mme.zip\testb.com

Infection: 'Test.1030' [AVP]

f:\users\suzana\texts\xine-1.zip

Infection: 'Test.1030' [AVP]

f:\users\suzana\texts\xine-1.zip\viruses.zip\jupiter.bin

Infection: 'Sailor.Boot.a' [AVP]

f:\users\suzana\texts\xine-1.zip\viruses.zip\mars.exe

Infection: 'BinaryImage.Sailor.1108' [AVP]

f:\users\suzana\texts\xine-1.zip\viruses.zip\mercury.com

Infection: 'Sailor.834' [AVP]

f:\users\suzana\texts\xine-1.zip\viruses.zip\venus.exe

Infection: 'Corrupted.Sailor.785' [AVP]

f:\users\suzana\texts\xine-1.zip\viruses.zip\vvd.386

Infection: 'Trojan.Win95.VVD' [AVP]

f:\users\suzana\texts\xine-1.zip

Infection: 'Trojan.Win95.VVD' [AVP]

Infection: 'Trojan.Win95.VVD' [AVP]

f:\users\suzana\texts\mme.zip\da1.com

Infection: 'Test.1030' [F-PROT]

f:\users\suzana\texts\mme.zip\testb.com

Infection: 'Test.1030' [F-PROT]

f:\users\suzana\texts\mme.zip\da1.com

Infection: 'Test.1030' [AVP]

f:\users\suzana\texts\mme.zip\testb.com

Infection: 'Test.1030' [AVP]

f:\users\suzana\texts\mme.zip

Infection: 'Test.1030' [AVP]

Figure 10.3.2. Report from F-Secure of type *.FPT on host “glavni”

Scan All Hard Disks when Idle
SCANALLH.FPT
A
20.08.2000 14:13 Scan Aborted

Scan All Hard Disks when Idle
SCANALLH.FPT
V
20.08.2000 14:18 Virus Alert: Check the Results!

Scan A:
SCANA.FPT
K
20.08.2000 16:18 OK

Scan All Hard Disks when Idle
SCANALLH.FPT
K
20.08.2000 16:23 OK

Scan All Hard Disks when Idle
SCANALLH.FPT
V
20.08.2000 16:48 Virus Alert: Check the Results!

<F-Secure Gatekeeper>: Infected File
@
P
20.08.2000 16:50 D:\VIRUSI\EXPLORE.ZIP_SETUP.EXE

<F-Secure Gatekeeper>: Infected File
@
P
20.08.2000 16:50 D:\VIRUSI\EXPLORE.ZIP_SETUP.EXE

<F-Secure Gatekeeper>: Infected File
@
P
20.08.2000 16:50 D:\VIRUSI\YEKE1204\1204.EXE

<F-Secure Gatekeeper>: Infected File
@
P
20.08.2000 16:50 D:\VIRUSI\YEKE1204\1204.EXE

<F-Secure Gatekeeper>: Infected File
@
P
20.08.2000 16:50 D:\VIRUSI\YEKE1204\A.EXE

<F-Secure Gatekeeper>: Infected File
@
P
20.08.2000 16:50 D:\VIRUSI\YEKE1204\A.EXE

<F-Secure Gatekeeper>: Infected File
@
P
20.08.2000 16:50 D:\VIRUSI\AQL\ABC.EXE

<F-Secure Gatekeeper>: Infected File
@
P
20.08.2000 16:50 D:\VIRUSI\AQL\ABC.EXE

<F-Secure Gatekeeper>: Infected File
@
P
20.08.2000 16:50 D:\VIRUSI\AQL\ABR-1214.EXE

<F-Secure Gatekeeper>: Infected File
@
P
20.08.2000 16:50 D:\VIRUSI\AQL\ABR-1214.EXE

<F-Secure Gatekeeper>: Infected File
@
P
20.08.2000 16:50 D:\VIRUSI\AQL\AC-562.EXE

<F-Secure Gatekeeper>: Infected File
@
P
20.08.2000 16:50 D:\VIRUSI\AQL\AC-562.EXE

<F-Secure Gatekeeper>: Infected File
@
P
20.08.2000 16:50 D:\VIRUSI\AQL\AC-571.EXE

<F-Secure Gatekeeper>: Infected File
@
P
20.08.2000 16:50 D:\VIRUSI\AQL\AC-571.EXE

<F-Secure Gatekeeper>: Infected File
@
P
20.08.2000 16:50 D:\VIRUSI\AQL\ALAB-A.EXE

<F-Secure Gatekeeper>: Infected File
@
P
20.08.2000 16:50 D:\VIRUSI\AQL\ALAB-A.EXE

<F-Secure Gatekeeper>: Infected File
@
P
20.08.2000 16:50 D:\VIRUSI\AQL\ALEX1951.EXE

<F-Secure Gatekeeper>: Infected File
@
P
20.08.2000 16:50 D:\VIRUSI\AQL\ALEX1951.EXE

<F-Secure Gatekeeper>: Infected File
@
P
20.08.2000 16:50 D:\VIRUSI\SD789C\APPEND.EXE

<F-Secure Gatekeeper>: Infected File
@
P
20.08.2000 16:50 D:\VIRUSI\SD789C\APPEND.EXE

<F-Secure Gatekeeper>: Infected File
@
P
20.08.2000 16:50 D:\VIRUSI\BW-1344\APPEND.EXE

<F-Secure Gatekeeper>: Infected File
@
P
20.08.2000 16:50 D:\VIRUSI\BW-1344\APPEND.EXE

<F-Secure Gatekeeper>: Infected File
@
P
20.08.2000 16:51 D:\VIRUSI\KP1250\BOX1.EXE

<F-Secure Gatekeeper>: Infected File
@
P
20.08.2000 16:51 D:\VIRUSI\KP1250\BOX1.EXE

<F-Secure Gatekeeper>: Infected File
@
P
20.08.2000 16:51 D:\VIRUSI\CBA2464\BOX1.EXE

<F-Secure Gatekeeper>: Infected File
@
P
20.08.2000 16:51 D:\VIRUSI\CBA2464\BOX1.EXE

<F-Secure Gatekeeper>: Infected File
@
P
20.08.2000 16:51 D:\VIRUSI\SCTZ1329\BOX1.EXE

<F-Secure Gatekeeper>: Infected File
@
P
20.08.2000 16:51 D:\VIRUSI\SCTZ1329\BOX1.EXE

<F-Secure Gatekeeper>: Infected File
@
P
20.08.2000 16:51 D:\VIRUSI\OHRD1485\BOX1.EXE

<F-Secure Gatekeeper>: Infected File
@
P
20.08.2000 16:51 D:\VIRUSI\OHRD1485\BOX1.EXE

<F-Secure Gatekeeper>: Infected File
@
P
20.08.2000 16:51 D:\VIRUSI\CAR-2050\BOX1.EXE

<F-Secure Gatekeeper>: Infected File
@
P
20.08.2000 16:51 D:\VIRUSI\CAR-2050\BOX1.EXE

<F-Secure Gatekeeper>: Infected File
@
P
20.08.2000 16:51 D:\VIRUSI\TPE13\BOX1.EXE

<F-Secure Gatekeeper>: Infected File
@
P
20.08.2000 16:51 D:\VIRUSI\TPE13\BOX1.EXE

<F-Secure Gatekeeper>: Infected File
@
P
20.08.2000 16:51 D:\VIRUSI\KP1250\BOX10.EXE

<F-Secure Gatekeeper>: Infected File
@
P
20.08.2000 16:51 D:\VIRUSI\KP1250\BOX10.EXE

<F-Secure Gatekeeper>: Infected File
@
P
20.08.2000 16:51 D:\VIRUSI\OHRD1485\BOX10.EXE

<F-Secure Gatekeeper>: Infected File
@
P
20.08.2000 16:51 D:\VIRUSI\OHRD1485\BOX10.EXE

<F-Secure Gatekeeper>: Infected File
@
P
20.08.2000 16:51 D:\VIRUSI\CAR-2050\BOX10.EXE

<F-Secure Gatekeeper>: Infected File
@
P
20.08.2000 16:51 D:\VIRUSI\CAR-2050\BOX10.EXE

<F-Secure Gatekeeper>: Infected File
@
P
20.08.2000 16:51 D:\VIRUSI\EXPLORE.ZIP_SETUP.EXE

<F-Secure Gatekeeper>: Infected File
@
P
20.08.2000 16:51 D:\VIRUSI\EXPLORE.ZIP_SETUP.EXE

<F-Secure Gatekeeper>: Infected File
@
P
20.08.2000 16:51 D:\VIRUSI\BRSC2078\F-PROT.EXE

<F-Secure Gatekeeper>: Infected File
@
P
20.08.2000 16:51 D:\VIRUSI\BRSC2078\F-PROT.EXE

<F-Secure Gatekeeper>: Infected File
@
P
20.08.2000 16:51 D:\VIRUSI\YEKE1204\G.EXE

<F-Secure Gatekeeper>: Infected File
@
P
20.08.2000 16:51 D:\VIRUSI\YEKE1204\G.EXE

<F-Secure Gatekeeper>: Infected File
@
P
20.08.2000 16:51 D:\VIRUSI\YEKE1076\GHOST.EXE

<F-Secure Gatekeeper>: Infected File
@
P
20.08.2000 16:51 D:\VIRUSI\YEKE1076\GHOST.EXE

<F-Secure Gatekeeper>: Infected File
@
P
20.08.2000 16:51 D:\VIRUSI\SD801\GOLD.EXE

<F-Secure Gatekeeper>: Infected File
@
P
20.08.2000 16:51 D:\VIRUSI\SD801\GOLD.EXE

<F-Secure Gatekeeper>: Infected File
@
P
20.08.2000 16:51 D:\VIRUSI\NOV17768\CONVERT.EXE

<F-Secure Gatekeeper>: Infected File
@
P
20.08.2000 16:51 D:\VIRUSI\NOV17768\CONVERT.EXE

<F-Secure Gatekeeper>: Infected File
@
P
20.08.2000 16:52 D:\VIRUSI\FAM\CUSTOMIZ.EXE

<F-Secure Gatekeeper>: Infected File
@
P
20.08.2000 16:52 D:\VIRUSI\FAM\CUSTOMIZ.EXE

Scan All Hard Disks when Idle
SCANALLH.FPT
K
20.08.2000 17:28 OK

Scan All Hard Disks when Idle
SCANALLH.FPT
K
20.08.2000 17:41 OK

Scan Folder
SCANAT.FPT
K
20.08.2000 17:43 OK

Scan Folder
SCANAT.FPT
W
20.08.2000 18:35 2 Warnings

Scan Folder
SCANAT.FPT
K
20.08.2000 18:42 OK

Figure 10.3.3. Report from F-Secure of type *.LOG on host “virusi”

Scanned at: 20.08.2000 16:48 Virus Alert!

Scanned by: Suzana at virusi

F-Secure Anti-Virus for Windows version 4.09

Scan engines used:

F-PROT version 3.07.1204 (signatures database date 2000-05-30)

AVP version 3.133.2223 (signatures database date 2000-05-30)

Search: Drive D:

Action: Report Only

Targets: File viruses Boot sector viruses

Files: Executables

Results of virus scanning:

Scanned: 1 drive(s), 4447 file(s), 1 boot sector(s)

Time: 1 min 56 sec

Found: 1927 infection(s), 51 suspected infection(s) in 1023 file(s)

Disinfected 0 file(s)

d:\users\suzana\texts\xine-1.zip\tunnel.zip\da1.com

Infection: 'Test.1030' [F-PROT]

d:\users\suzana\texts\xine-1.zip\tunnel.zip\testb.com

Infection: 'Test.1030' [F-PROT]

d:\users\suzana\texts\xine-1.zip\xine-1.000\jupiter.bin

Infection: 'Sailor_Boot.A' image file (exact) [F-PROT]

d:\users\suzana\texts\xine-1.zip\mme.zip\da1.com

Infection: 'Test.1030' [AVP]

.

.

.

.

(long list of detected infections)

Figure 10.3.4.One of reports from F-Secure of type *.FPT on host “virusi”

$$$

$$$$$$$$$$$$$$$$$ Processing started on 2000-Aug-20 12:59 $$$$$$$$$$$$$$$$$

Integrity Master 4.21a Serial # TrialVer Licensed for use for trial

Licensed for 60 day evaluation use

Report: C:\IM_HOME\)(0821.REP Integrity data on C:

Integrity Checking: ON D/T changes Ignored, Add/Del report On

Checking C:\IM_HOME

 All directories: Full integrity processing of all files.

 Checking:

 Name and Signature File Update Update

 Status: Type: Extension: Val1: Val2: Size: Date: Time:

 ------- -------- ---------- ---- ---- ---------- ----------- --------

Current directory:\WINDOWS

 Changed File OLD: SYSTEM DAT 8F8D 8F35 3215392 2000-Aug-21 12:48:46

 File NEW: SYSTEM DAT B937 E8FA 3215392 2000-Aug-21 12:58:00

 Changed File OLD: USER DAT 0662 B7C6 217120 2000-Aug-21 12:43:08

 File NEW: USER DAT 7A7E F1F0 217120 2000-Aug-21 12:58:56

 Exclude File WIN386 SWP 33554432 2000-Aug-21 12:57:36

 Changed File OLD: F-PROTW CFG 82E7 2C0A 4589 2000-Aug-20 22:42:38

 File NEW: F-PROTW CFG 82E8 EE88 4589 2000-Aug-21 12:58:08

 Warning! The last file encountered would not open. What this usually means

 is that some other program has this file open. This is normal if you are

 running a multi-tasker such as OS/2, Windows, or a LAN. Otherwise, you may

 have disk problems of some type. When you finish, run CHKDSK and any

 diagnostics you have in order to make sure your disk is OK.

 Changed File OLD: F-PROTW LOG 26D2 11A3 5343 2000-Aug-20 17:43:34

 File NEW: F-PROTW LOG D18D D330 6990 2000-Aug-21 12:56:24

Current directory:\WINDOWS\APPLOG

 Changed File OLD: APPLOG IND E39F B46E 1859 2000-Aug-21 12:43:56

 File NEW: APPLOG IND 409C 1B45 1859 2000-Aug-21 12:58:54

 Changed File OLD: WORDPAD LGC 660F 3614 10847 2000-Aug-20 16:43:56

 File NEW: WORDPAD LGC 9050 6A90 11364 2000-Aug-21 12:53:44

 Added File IM LGC 6113 7132 142 2000-Aug-21 12:58:56

Current directory:\WINDOWS\RECENT

 Added File L0K3 LNK 3BAB A56F 284 2000-Aug-21 12:53:38

 Deleted File SBROTHER LNK 3521 0479 266 2000-Aug-19 18:54:12

Current directory:\IM_HOME

....Changed File OLD: IM PIF ECC5 61CF 545 1998-Dec-31 4:21:00....

.... File NEW: IM PIF EE32 0A70 995 2000-Aug-21 12:53:06....

Current directory:\ALATI

Jerusalem virus detected in file: PS.EXE

 ******** E X T R E M E D A N G E R ! ********

 Signs of Jerusalem virus detected in file: PS.EXE

 This virus will infect:

 .COM files, .EXE files, overlay files

 This virus is known to cause file damage.

 Once executed, this virus remains resident in memory and controls your PC.

 It will prevent your PC from working correctly, or may halt the PC.

 *** IF YOU ARE NOT SURE THAT YOU BOOTED FROM A KNOWN GOOD COPY OF ***

 *** DOS ON A WRITE PROTECTED DISKETTE, POWER OFF, AND RE-BOOT NOW! ***

 Steps to remove the virus:

 o Make sure you complete an "Entire system" check to detect any other infected

 programs. Also note files which may have been damaged by the virus.

 o Delete all infected or damaged files and reload them.

 o Rerun an "Entire system" check to verify no infected files remain.

 o Check any other disk(ette)s which may have been infected

 Could this be a false alarm? (Not really a virus)

 If IM has checked this file before or if more than one file was

 found infected, then it is most likely a REAL VIRUS!

 If this is the first time IM has checked this file and if only one file is

 found infected after checking your entire disk, then it may be a false

 alarm. Although it is unlikely, it IS possible that a legitimate program

 contains code that matches a virus. IF YOU THINK YOU HAVE A FALSE ALARM,

 PLEASE CONTACT US (email to support@stiller.com).

 Some anti-virus programs (e.g., Vsafe, Vwatch) contain unencrypted virus

 fragments which IM may detect in the files or in memory. It's usually safe

 to assume these programs are not infected. There's unfortunately not much we

 can do about anti-virus programs that do this.

****Added File PS EXE 8B6C 3BCD 59232 1985-Nov-13 13:48:36****

 Processing completed successfully - Virus detected!

 Any lines beginning and ending with these characters have special meaning:

 **** file infected by a virus

 >>>> File has been corrupted (file time and date stamps have NOT changed, yet

 the file itself has changed) or is otherwise suspicious (e.g., bad date)

 A change detected in an executable file (a program or overlay)

 Checking complete 2000-Aug-21 13:02 on disk C: (221 directories checked)

--

 3935 files processed: - System sectors:

 -

 1 contain signs of a known virus - Boot: Not checked

 0 are suspicious - Partition: Not checked

 1 corrupted -

 7 changed -----------------------------------

 3 added (directories and files) - PC Config.: Not checked

 1 deleted (directories and files) - System memory: OK

 3934 read and checked - CMOS memory: Not checked

 -

--

 File and system sector statistics are reset after each display.

 NA = Not applicable (this type of system sector is not on this disk)

 Integrity data is usually NOT updated if viruses or hardware errors occur.

 Files with open or read errors are also counted as corrupted.

Figure 10.3.5.One of reports from Integrity Master of type *.REP on host “virusi”

As it can be seen from previous examples, some of reports can be very verbose, which might be good for individual use, but is an obstacle for automated processing of reports. Therefore, first step was to build corresponding filters for every type of reports, which will convert so different formats into standardized formats, that can be used in further processing. It took a lot of time to design filters, mostly because of making decisions what information to reject and what to leave. Once, when it was decided, it was not so difficult to write appropriate Tcl code for filters, which can be seen at Appendix C. The coding of filter_3 for the reports from Integrity Master was the most difficult because of unusual date-time format in report and searching for appropriate pattern recognition to extract important data.

The results of filtering were stored in directories /filters_glavni and /filters_virusi, respectively. Some of resulting files are presented in following pictures. It can be seen that first three fields carry information about host, type of event and type of agent. Following records give type of action, time stamp and type of event. Their format is adapted to be easier processed by Tcl.

GLAVNI VIR SCANNER { Scan All Hard Disks when Idle } {200008201427 } {Scan Aborted }

GLAVNI VIR SCANNER { Scan All Hard Disks when Idle } {200008201521 } {Virus Alert: }

GLAVNI VIR SCANNER { Scan Folder } {200008201614 } {OK }

GLAVNI VIR SCANNER { Scan Folder } {200008201615 } {OK }

Figure 10.3.6. Output from filter_1 for reports of type *.LOG for host “glavni”

GLAVNI VIR SCANNER { Report Only } {200008201521 } {Infected=21 Suspected=0 }

Figure 10.3.7. Output from filter_2 for reports of type *.FPT for host “glavni”

VIRUSI VIR SCANNER { Scan All Hard Disks when Idle } {200008201413 } {Scan Aborted }

VIRUSI VIR SCANNER { Scan All Hard Disks when Idle } {200008201418 } {Virus Alert: }

VIRUSI VIR SCANNER { Scan A: } {200008201618 } {OK }

VIRUSI VIR SCANNER { Scan All Hard Disks when Idle } {200008201623 } {OK }

VIRUSI VIR SCANNER { Scan All Hard Disks when Idle } {200008201648 } {Virus Alert: }

VIRUSI VIR SCANNER { F-SecureGatekeeper } {200008201652 } {54 Infection Stopped }

VIRUSI VIR SCANNER { Scan All Hard Disks when Idle } {200008201728 } {OK }

VIRUSI VIR SCANNER { Scan All Hard Disks when Idle } {200008201741 } {OK }

VIRUSI VIR SCANNER { Scan Folder } {200008201743 } {OK }

VIRUSI VIR SCANNER { Scan Folder } {200008201835 } {2 Warnings }

VIRUSI VIR SCANNER { Scan Folder } {200008201842 } {OK }

Figure 10.3.8. Output from filter_1 for reports of type *.LOG for host “virusi”

VIRUSI VIR SCANNER { Report Only } {200008201648 } {Massive Infection }

Figure 10.3.9. Output from filter_2 for reports of type *.FPT for host “virusi”

VIRUSI VIR INTCHCK { Checking } {200008201259 } {1 Virus Alert }

VIRUSI VIR INTCHCK { Checking } {200008201259 } {1 Change Detected }

VIRUSI VIR INTCHCK { Checking } {200008201259 } {0 File Corrupted }

VIRUSI VIR INTCHCK { Checking } {200008201259 } {Boot: Not checked }

VIRUSI VIR INTCHCK { Checking } {200008201259 } {Partition: Not checked }

VIRUSI VIR INTCHCK { Checking } {200008201259 } {PC Config.: Not checked }

VIRUSI VIR INTCHCK { Checking } {200008201259 } {System memory: OK }

VIRUSI VIR INTCHCK { Checking } {200008201259 } {CMOS memory: Not checked }

Figure 10.3.10. Output from filter_3 for reports of type *.REP for host “virusi”

The main task of observing transceivers was to collect outputs from filters, sort them by time sequence and according to that condition concatenate records from two different filters for scanner, giving that way the complete presentation of certain event. The reports from integrity checker were simply added to the other reports.

An additional record was added to starting sequence, i.e. the “weight” of event according to scanning or integrity checking results. The word “OK” was added if result from scanner was “OK” or “Scan up to date” , also if result from integrity checker was “BOOT: OK”, “Partition: OK”, “PC. Config: OK”, “System Memory : OK” or “CMOS Memory: OK”. The word “Check” was added if result from scanner was “Scan Aborted” or “Infection Stopped”. The word “Warning” was added if result from scanner was “Warnings”, “Virus Alert” or “Scanner out of date”. The same word was added if results from integrity checker were “Virus Alert”, “File Corrupted”, “Change Detected”, “BOOT: Not checked”, “Partition: Not Checked”, “PC Config.: Not checked”, “System Memory: Not checked” or “CMOS Memory: Not checked”. This additional record was added to make the task of controller easier in the next level of processing.

The Tcl code for corresponding transceivers is given in Appendix C. The outputs from transceiver were placed to directories /transceiver_obs_glavni and /transceiver_obs_virusi, respectively. The results are presented on following pictures.

GLAVNI VIR SCANNER Check { 200008201427 } { {Scan All Hard Disks when Idle Scan Aborted } }

GLAVNI VIR SCANNER Warning { 200008201521 } { {Scan All Hard Disks when Idle Virus Alert: } {Report Only Infected=21 Suspected=0 } }

GLAVNI VIR SCANNER OK { 200008201614 } { {Scan Folder OK } }

GLAVNI VIR SCANNER OK { 200008201615 } { {Scan Folder OK } }

Figure 10.3.11. Output from observing transceiver for host “glavni”

VIRUSI VIR INTCHCK Warning { 200008201259 } { Checking {1 Virus Alert } }

VIRUSI VIR INTCHCK Warning { 200008201259 } { Checking {1 Change Detected } }

VIRUSI VIR INTCHCK Warning { 200008201259 } { Checking {0 File Corrupted } }

VIRUSI VIR INTCHCK Warning { 200008201259 } { Checking {Boot: Not checked } }

VIRUSI VIR INTCHCK Warning { 200008201259 } { Checking {Partition: Not checked } }

VIRUSI VIR INTCHCK Warning { 200008201259 } { Checking {PC Config.: Not checked } }

VIRUSI VIR INTCHCK OK { 200008201259 } { Checking {System memory: OK } }

VIRUSI VIR INTCHCK Warning { 200008201259 } { Checking {CMOS memory: Not checked } }

VIRUSI VIR INTCHCK Warning { 200008201637 } { Checking {0 Virus Alert } }

VIRUSI VIR INTCHCK Warning { 200008201637 } { Checking {1 Change Detected } }

VIRUSI VIR INTCHCK Warning { 200008201637 } { Checking {1 File Corrupted } }

VIRUSI VIR INTCHCK OK { 200008201637 } { Checking {Boot: OK } }

VIRUSI VIR INTCHCK OK { 200008201637 } { Checking {Partition: OK } }

VIRUSI VIR INTCHCK OK { 200008201637 } { Checking {PC Config.: OK } }

VIRUSI VIR INTCHCK OK { 200008201637 } { Checking {System memory: OK } }

VIRUSI VIR INTCHCK Warning { 200008201637 } { Checking {CMOS memory: Not checked } }

VIRUSI VIR SCANNER Check { 200008201413 } { {Scan All Hard Disks when Idle Scan Aborted } }

VIRUSI VIR SCANNER Warning { 200008201418 } { {Scan All Hard Disks when Idle Virus Alert: } {Report Only Massive Infection } }

VIRUSI VIR SCANNER OK { 200008201618 } { {Scan A: OK } }

VIRUSI VIR SCANNER OK { 200008201623 } { {Scan All Hard Disks when Idle OK } }

VIRUSI VIR SCANNER Warning { 200008201648 } { {Scan All Hard Disks when Idle Virus Alert: } {Report Only Massive Infection } }

VIRUSI VIR SCANNER Check { 200008201652 } { {F-SecureGatekeeper 54 Infection Stopped } }

VIRUSI VIR SCANNER OK { 200008201728 } { {Scan All Hard Disks when Idle OK } }

VIRUSI VIR SCANNER OK { 200008201741 } { {Scan All Hard Disks when Idle OK } }

VIRUSI VIR SCANNER OK { 200008201743 } { {Scan Folder OK } }

VIRUSI VIR SCANNER Warning { 200008201835 } { {Scan Folder 2 Warnings } {Report Only Infected=0 Suspected=2 } }

VIRUSI VIR SCANNER OK { 200008201842 } { {Scan Folder OK } }

Figure 10.3.12. Output from observing transceiver for host “virusi”

10.4. Implementation of Knowledge Acquisition Elements

The elements of knowledge acquisition subsystem are controllers for different types of attacks, coordinators and dispatcher. The controllers were developed in the way as they physically reside on corresponding host, together with observing elements. Therefore, two controllers were designed, one for host “glavni” and the other for host “virusi”. The main function of a controller is to select the events for which it is designated by priorities. Priorities were given in some way by transceiver in previous step adding the words “Warning”, “Check” or “OK” after the control records in the reports. So, the main task of controller was to check first if there is a word “Warning” on the specific place in the line and to extract all those lines. If there would be no word “Warning” it would extract all lines having “Check” on specific place in line. If there would be even no word “Check” it would proceed “OK” lines to the next level.

The Tcl code for controller can be seen in Appendix C. The outputs of controllers were placed to directories /controller_obs_glavni and /controller_obs_virusi, respectively. The examples of outputs from controllers for previous reports from transceivers are presented on following figures.

GLAVNI VIR SCANNER Warning { 200008201521 } { {Scan All Hard Disks when Idle Virus Alert: } {Report Only Infected=21 Suspected=0 } }

Figure 10.4.1. Output from controller for event VIR(us) for the host “glavni”

VIRUSI VIR INTCHCK Warning { 200008201259 } { Checking {1 Virus Alert } }

VIRUSI VIR INTCHCK Warning { 200008201259 } { Checking {1 Change Detected } }

VIRUSI VIR INTCHCK Warning { 200008201637 } { Checking {CMOS memory: Not checked } }

VIRUSI VIR SCANNER Warning { 200008201418 } { {Scan All Hard Disks when Idle Virus Alert: } {Report Only Massive Infection } }

VIRUSI VIR SCANNER Warning { 200008201648 } { {Scan All Hard Disks when Idle Virus Alert: } {Report Only Massive Infection } }

VIRUSI VIR SCANNER Warning { 200008201835 } { {Scan Folder 2 Warnings } {Report Only Infected=0 Suspected=2 } }

VIRUSI VIR INTCHCK Warning { 200008201259 } { Checking {Boot: Not checked } }

VIRUSI VIR INTCHCK Warning { 200008201259 } { Checking {Partition: Not checked } }

VIRUSI VIR INTCHCK Warning { 200008201259 } { Checking {PC Config.: Not checked } }

VIRUSI VIR INTCHCK Warning { 200008201259 } { Checking {CMOS memory: Not checked } }

VIRUSI VIR INTCHCK Warning { 200008201637 } { Checking {1 Change Detected } }

VIRUSI VIR INTCHCK Warning { 200008201637 } { Checking {1 File Corrupted } }

Figure 10.4.2. Output from controller for event VIR(us) for the host “virusi”

The main task of coordinator is to merge reports from controllers residing on different hosts for given type of event (in this case it is event “virus”). Its task is also to sort the reports by importance of hosts. For example, the host “glavni” was of greater importance than host “virusi” in this case, because author of this thesis keeps her main software on that host (“glavni” is the Croatian word for main) and host “virusi” is intended, among other things, for experiments with viruses, so infection on that host is not so “serious”. (The side – effect of this work was that, although host “glavni” was very carefully infected, scanner has found an unnoticed infection with LoveLetter worm in zipped mail attachment, for which author is still not sure how it was received).

The Tcl code for the coordinator for event VIR(us) is given in Appendix C. The resulting report is placed to the directory /coordinator_vir_in and it is presented on Figure 10.4.2.

GLAVNI VIR SCANNER Warning { 200008201521 } { {Scan All Hard Disks when Idle Virus Alert: } {Report Only Infected=21 Suspected=0 } }

VIRUSI VIR INTCHCK Warning { 200008201259 } { Checking {1 Virus Alert } }

VIRUSI VIR INTCHCK Warning { 200008201259 } { Checking {1 Change Detected } }

VIRUSI VIR INTCHCK Warning { 200008201637 } { Checking {CMOS memory: Not checked } }

VIRUSI VIR SCANNER Warning { 200008201418 } { {Scan All Hard Disks when Idle Virus Alert: } {Report Only Massive Infection } }

VIRUSI VIR SCANNER Warning { 200008201648 } { {Scan All Hard Disks when Idle Virus Alert: } {Report Only Massive Infection } }

VIRUSI VIR SCANNER Warning { 200008201835 } { {Scan Folder 2 Warnings } {Report Only Infected=0 Suspected=2 } }

VIRUSI VIR INTCHCK Warning { 200008201259 } { Checking {Boot: Not checked } }

VIRUSI VIR INTCHCK Warning { 200008201259 } { Checking {Partition: Not checked } }

VIRUSI VIR INTCHCK Warning { 200008201259 } { Checking {PC Config.: Not checked } }

VIRUSI VIR INTCHCK Warning { 200008201259 } { Checking {CMOS memory: Not checked } }

VIRUSI VIR INTCHCK Warning { 200008201637 } { Checking {1 Change Detected } }

VIRUSI VIR INTCHCK Warning { 200008201637 } { Checking {1 File Corrupted } }
Figure 10.4.3. Output from coordinator for event VIR(us)

The main task of dispatcher is to supervise coordinators for different events, collect reports from them and sorts them by importance. As in this case was no other coordinators except the one for event “virus”, dispatcher only has proceeded this report further. The Tcl code for dispatcher is given in Appendix C. The output is placed into directory /dispatcher_ in and it is shown on Figure 10.4.4.

GLAVNI VIR SCANNER Warning { 200008201521 } { {Scan All Hard Disks when Idle Virus Alert: } {Report Only Infected=21 Suspected=0 } }

VIRUSI VIR INTCHCK Warning { 200008201259 } { Checking {1 Virus Alert } }

VIRUSI VIR INTCHCK Warning { 200008201259 } { Checking {1 Change Detected } }

VIRUSI VIR INTCHCK Warning { 200008201637 } { Checking {CMOS memory: Not checked } }

VIRUSI VIR SCANNER Warning { 200008201418 } { {Scan All Hard Disks when Idle Virus Alert: } {Report Only Massive Infection } }

VIRUSI VIR SCANNER Warning { 200008201648 } { {Scan All Hard Disks when Idle Virus Alert: } {Report Only Massive Infection } }

VIRUSI VIR SCANNER Warning { 200008201835 } { {Scan Folder 2 Warnings } {Report Only Infected=0 Suspected=2 } }

VIRUSI VIR INTCHCK Warning { 200008201259 } { Checking {Boot: Not checked } }

VIRUSI VIR INTCHCK Warning { 200008201259 } { Checking {Partition: Not checked } }

VIRUSI VIR INTCHCK Warning { 200008201259 } { Checking {PC Config.: Not checked } }

VIRUSI VIR INTCHCK Warning { 200008201259 } { Checking {CMOS memory: Not checked } }

VIRUSI VIR INTCHCK Warning { 200008201637 } { Checking {1 Change Detected } }

VIRUSI VIR INTCHCK Warning { 200008201637 } { Checking {1 File Corrupted } }
Figure 10.4.4. Output from dispatcher

10.5. Implementation of Organization Level

The elements of organization level are knowledge database, unit of inference rules, problem description unit, problem status unit, reasoning unit and explanation unit. The main communication between the particular units was shown on Figure 8.3.3. and Figure 8.3.4. In this prototype the communication between units was somewhat simplified as it is shown on Figure 10.5.1.

[image: image1.wmf]KNOWLEDGE

DATABASE

INFERENCE

RULES

PROBLEM

DESCRIPTION

PROBLEM

STATUS

DISPATCHER

REASONING

UNIT

COORDINATION

 LEVEL

ORGANIZATION LEVEL

ORGANIZATION

LEVEL

Figure 10.5.1. Scheme of communication on organization level

The report from dispatcher is transferred from /dispatcher_in directory to /problem_desription directory for further processing by simple Tcl script problemdes.tcl.

10.5.1. Knowledge database

Knowledge database of known regular and irregular events for event "virus" is stored in directory /etc/knowledge_database. Its records show all possible outputs from scanner and integrity checker, together with associated risk and priority. Risk abbreviations are VLR = Very Low Risk, LR = Low Risk, MR = Moderate Risk, HR = High Risk, VHR = Very High Risk. Priorities are numbered from 1 to 5, so that 1 corresponds to very high risk and 5 to very low risk. The association of risk and priorities to particular actions was intended to be used in further processing, but it is not of practical use at this moment and presents redundant information. The data format can be seen on Figure 10.5.1.1. which presents code listing of knowdatabase.tcl
#COMENTS

#Types of records:

#Action,Event,Action_on_Event,Results,Risk,Priority

#Examples: Action - Scan A:, Event: Warning,

#Action_on_Event: Report Only, Results: Massive Infection,

#Risk: VHR, Priority: 1

##data format

##ARRAY (Action,Event,Action_on_Event,Results)=(Risk,Priority)
set i {{Scan A:},{Scanner up to date},{},{}}; set VIRKNOW($i) {VLR 5}

set i {{Scan A:},{Scanner out of date},{},{}}; set VIRKNOW($i) {HR 2}

set i {{Scan A:},{OK},{},{}}; set VIRKNOW($i) {VLR 5}

set i {{Scan A:},{Scan Aborted},{},{}}; set VIRKNOW($i) {LR 4}

set i {{Scan A:},{Warnings},{Report Only},{Massive Infection}}; set VIRKNOW($i) {VHR 1}

set i {{Scan A:},{Warnings},{Report Only},{Infected}}; set VIRKNOW($i) {HR 2}

set i {{Scan A:},{Warnings},{Report Only},{Suspected}}; set VIRKNOW($i) {VHR 1}

set i {{Scan A:},{Warnings},{Disinfect},{Massive Infection}}; set VIRKNOW($i) {MR 3}

set i {{Scan A:},{Warnings},{Disinfect},{Infected}}; set VIRKNOW($i) {MR 3}

set i {{Scan A:},{Warnings},{Disinfect},{Suspected}}; set VIRKNOW($i) {MR 3}

set i {{Scan A:},{Warnings},{Rename},{Massive Infection}}; set VIRKNOW($i) {VHR 1}

set i {{Scan A:},{Warnings},{Rename},{Infected}}; set VIRKNOW($i) {HR 2}

set i {{Scan A:},{Warnings},{Rename},{Suspected}}; set VIRKNOW($i) {VHR 1}

set i {{Scan A:},{Warnings},{Delete},{Massive Infection}}; set VIRKNOW($i) {MR 3}

set i {{Scan A:},{Warnings},{Delete},{Infected}}; set VIRKNOW($i) {MR 3}

set i {{Scan A:},{Warnings},{Delete},{Suspected}}; set VIRKNOW($i) {MR 3}

set i {{Scan A:},{Virus Alert},{Report Only},{Massive Infection}}; set VIRKNOW($i) {VHR 1}

set i {{Scan A:},{Virus Alert},{Report Only},{Infected}}; set VIRKNOW($i) {HR 2}

set i {{Scan A:},{Virus Alert},{Report Only},{Suspected}}; set VIRKNOW($i) {VHR 1}

set i {{Scan A:},{Virus Alert},{Disinfect},{Massive Infection}}; set VIRKNOW($i) {MR 3}

set i {{Scan A:},{Virus Alert},{Disinfect},{Infected}}; set VIRKNOW($i) {MR 3}

set i {{Scan A:},{Virus Alert},{Disinfect},{Suspected}}; set VIRKNOW($i) {MR 3}

set i {{Scan A:},{Virus Alert},{Rename},{Massive Infection}}; set VIRKNOW($i) {VHR 1}

set i {{Scan A:},{Virus Alert},{Rename},{Infected}}; set VIRKNOW($i) {HR 2}

set i {{Scan A:},{Virus Alert},{Rename},{Suspected}}; set VIRKNOW($i) {VHR 1}

set i {{Scan A:},{Virus Alert},{Delete},{Massive Infection}}; set VIRKNOW($i) {MR 3}

set i {{Scan A:},{Virus Alert},{Delete},{Infected}}; set VIRKNOW($i) {MR 3}

set i {{Scan A:},{Virus Alert},{Delete},{Suspected}}; set VIRKNOW($i) {MR 3}

set i {{Scan B:},{Scanner up to date},{},{}}; set VIRKNOW($i) {VLR 5}

set i {{Scan B:},{Scanner out of date},{},{}}; set VIRKNOW($i) {HR 2}

set i {{Scan B:},{OK},{},{}}; set VIRKNOW($i) {VLR 5}

set i {{Scan B:},{Scan Aborted},{},{}}; set VIRKNOW($i) {LR 4}

set i {{Scan B:},{Warnings},{Report Only},{Massive Infection}}; set VIRKNOW($i) {VHR 1}

set i {{Scan B:},{Warnings},{Report Only},{Infected}}; set VIRKNOW($i) {HR 2}

set i {{Scan B:},{Warnings},{Report Only},{Suspected}}; set VIRKNOW($i) {VHR 1}

set i {{Scan B:},{Warnings},{Disinfect},{Massive Infection}}; set VIRKNOW($i) {MR 3}

set i {{Scan B:},{Warnings},{Disinfect},{Infected}}; set VIRKNOW($i) {MR 3}

set i {{Scan B:},{Warnings},{Disinfect},{Suspected}}; set VIRKNOW($i) {MR 3}

set i {{Scan B:},{Warnings},{Rename},{Massive Infection}}; set VIRKNOW($i) {VHR 1}

set i {{Scan B:},{Warnings},{Rename},{Infected}}; set VIRKNOW($i) {HR 2}

set i {{Scan B:},{Warnings},{Rename},{Suspected}}; set VIRKNOW($i) {VHR 1}

set i {{Scan B:},{Warnings},{Delete},{Massive Infection}}; set VIRKNOW($i) {MR 3}

set i {{Scan B:},{Warnings},{Delete},{Infected}}; set VIRKNOW($i) {MR 3}

set i {{Scan B:},{Warnings},{Delete},{Suspected}}; set VIRKNOW($i) {MR 3}

set i {{Scan B:},{Virus Alert},{Report Only},{Massive Infection}}; set VIRKNOW($i) {VHR 1}

set i {{Scan B:},{Virus Alert},{Report Only},{Infected}}; set VIRKNOW($i) {HR 2}

set i {{Scan B:},{Virus Alert},{Report Only},{Suspected}}; set VIRKNOW($i) {VHR 1}

set i {{Scan B:},{Virus Alert},{Disinfect},{Massive Infection}}; set VIRKNOW($i) {MR 3}

set i {{Scan B:},{Virus Alert},{Disinfect},{Infected}}; set VIRKNOW($i) {MR 3}

set i {{Scan B:},{Virus Alert},{Disinfect},{Suspected}}; set VIRKNOW($i) {MR 3}

set i {{Scan B:},{Virus Alert},{Rename},{Massive Infection}}; set VIRKNOW($i) {VHR 1}

set i {{Scan B:},{Virus Alert},{Rename},{Infected}}; set VIRKNOW($i) {HR 2}

set i {{Scan B:},{Virus Alert},{Rename},{Suspected}}; set VIRKNOW($i) {VHR 1}

set i {{Scan B:},{Virus Alert},{Delete},{Massive Infection}}; set VIRKNOW($i) {MR 3}

set i {{Scan B:},{Virus Alert},{Delete},{Infected}}; set VIRKNOW($i) {MR 3}

set i {{Scan B:},{Virus Alert},{Delete},{Suspected}}; set VIRKNOW($i) {MR 3}

set i {{Scan Folder},{Scanner up to date},{},{}}; set VIRKNOW($i) {VLR 5}

set i {{Scan Folder},{Scanner out of date},{},{}}; set VIRKNOW($i) {HR 2}

set i {{Scan Folder},{OK},{},{}}; set VIRKNOW($i) {VLR 5}

set i {{Scan Folder},{Scan Aborted},{},{}}; set VIRKNOW($i) {LR 4}

set i {{Scan Folder},{Warnings},{Report Only},{Massive Infection}}; set VIRKNOW($i) {VHR 1}

set i {{Scan Folder},{Warnings},{Report Only},{Infected}}; set VIRKNOW($i) {HR 2}

set i {{Scan Folder},{Warnings},{Report Only},{Suspected}}; set VIRKNOW($i) {VHR 1}

set i {{Scan Folder},{Warnings},{Disinfect},{Massive Infection}}; set VIRKNOW($i) {MR 3}

set i {{Scan Folder},{Warnings},{Disinfect},{Infected}}; set VIRKNOW($i) {MR 3}

set i {{Scan Folder},{Warnings},{Disinfect},{Suspected}}; set VIRKNOW($i) {MR 3}

set i {{Scan Folder},{Warnings},{Rename},{Massive Infection}}; set VIRKNOW($i) {VHR 1}

set i {{Scan Folder},{Warnings},{Rename},{Infected}}; set VIRKNOW($i) {HR 2}

set i {{Scan Folder},{Warnings},{Rename},{Suspected}}; set VIRKNOW($i) {VHR 1}

set i {{Scan Folder},{Warnings},{Delete},{Massive Infection}}; set VIRKNOW($i) {MR 3}

set i {{Scan Folder},{Warnings},{Delete},{Infected}}; set VIRKNOW($i) {MR 3}

set i {{Scan Folder},{Warnings},{Delete},{Suspected}}; set VIRKNOW($i) {MR 3}

set i {{Scan Folder},{Virus Alert},{Report Only},{Massive Infection}}; set VIRKNOW($i) {VHR 1}

set i {{Scan Folder},{Virus Alert},{Report Only},{Infected}}; set VIRKNOW($i) {HR 2}

set i {{Scan Folder},{Virus Alert},{Report Only},{Suspected}}; set VIRKNOW($i) {VHR 1}

set i {{Scan Folder},{Virus Alert},{Disinfect},{Massive Infection}}; set VIRKNOW($i) {MR 3}

set i {{Scan Folder},{Virus Alert},{Disinfect},{Infected}}; set VIRKNOW($i) {MR 3}

set i {{Scan Folder},{Virus Alert},{Disinfect},{Suspected}}; set VIRKNOW($i) {MR 3}

set i {{Scan Folder},{Virus Alert},{Rename},{Massive Infection}}; set VIRKNOW($i) {VHR 1}

set i {{Scan Folder},{Virus Alert},{Rename},{Infected}}; set VIRKNOW($i) {HR 2}

set i {{Scan Folder},{Virus Alert},{Rename},{Suspected}}; set VIRKNOW($i) {VHR 1}

set i {{Scan Folder},{Virus Alert},{Delete},{Massive Infection}}; set VIRKNOW($i) {MR 3}

set i {{Scan Folder},{Virus Alert},{Delete},{Infected}}; set VIRKNOW($i) {MR 3}

set i {{Scan Folder},{Virus Alert},{Delete},{Suspected}}; set VIRKNOW($i) {MR 3}

set i {{Scan All Hard Disks when Idle},{Scanner up to date},{},{}}; set VIRKNOW($i) {VLR 5}

set i {{Scan All Hard Disks when Idle},{Scanner out of date},{},{}}; set VIRKNOW($i) {HR 2}

set i {{Scan All Hard Disks when Idle},{OK},{},{}}; set VIRKNOW($i) {VLR 5}

set i {{Scan All Hard Disks when Idle},{Scan Aborted},{},{}}; set VIRKNOW($i) {LR 4}

set i {{Scan All Hard Disks when Idle},{Warnings},{Report Only},{Massive Infection}}; set VIRKNOW($i) {VHR 1}

set i {{Scan All Hard Disks when Idle},{Warnings},{Report Only},{Infected}}; set VIRKNOW($i) {HR 2}

set i {{Scan All Hard Disks when Idle},{Warnings},{Report Only},{Suspected}}; set VIRKNOW($i) {VHR 1}

set i {{Scan All Hard Disks when Idle},{Warnings},{Disinfect},{Massive Infection}}; set VIRKNOW($i) {MR 3}

set i {{Scan All Hard Disks when Idle},{Warnings},{Disinfect},{Infected}}; set VIRKNOW($i) {MR 3}

set i {{Scan All Hard Disks when Idle},{Warnings},{Disinfect},{Suspected}}; set VIRKNOW($i) {MR 3}

set i {{Scan All Hard Disks when Idle},{Warnings},{Rename},{Massive Infection}}; set VIRKNOW($i) {VHR 1}

set i {{Scan All Hard Disks when Idle},{Warnings},{Rename},{Infected}}; set VIRKNOW($i) {HR 2}

set i {{Scan All Hard Disks when Idle},{Warnings},{Rename},{Suspected}}; set VIRKNOW($i) {VHR 1}

set i {{Scan All Hard Disks when Idle},{Warnings},{Delete},{Massive Infection}}; set VIRKNOW($i) {MR 3}

set i {{Scan All Hard Disks when Idle},{Warnings},{Delete},{Infected}}; set VIRKNOW($i) {MR 3}

set i {{Scan All Hard Disks when Idle},{Warnings},{Delete},{Suspected}}; set VIRKNOW($i) {MR 3}

set i {{Scan All Hard Disks when Idle},{Virus Alert},{Report Only},{Massive Infection}}; set VIRKNOW($i) {VHR 1}

set i {{Scan All Hard Disks when Idle},{Virus Alert},{Report Only},{Infected}}; set VIRKNOW($i) {HR 2}

set i {{Scan All Hard Disks when Idle},{Virus Alert},{Report Only},{Suspected}}; set VIRKNOW($i) {VHR 1}

set i {{Scan All Hard Disks when Idle},{Virus Alert},{Disinfect},{Massive Infection}}; set VIRKNOW($i) {MR 3}

set i {{Scan All Hard Disks when Idle},{Virus Alert},{Disinfect},{Infected}}; set VIRKNOW($i) {MR 3}

set i {{Scan All Hard Disks when Idle},{Virus Alert},{Disinfect},{Suspected}}; set VIRKNOW($i) {MR 3}

set i {{Scan All Hard Disks when Idle},{Virus Alert},{Rename},{Massive Infection}}; set VIRKNOW($i) {VHR 1}

set i {{Scan All Hard Disks when Idle},{Virus Alert},{Rename},{Infected}}; set VIRKNOW($i) {HR 2}

set i {{Scan All Hard Disks when Idle},{Virus Alert},{Rename},{Suspected}}; set VIRKNOW($i) {VHR 1}

set i {{Scan All Hard Disks when Idle},{Virus Alert},{Delete},{Massive Infection}}; set VIRKNOW($i) {MR 3}

set i {{Scan All Hard Disks when Idle},{Virus Alert},{Delete},{Infected}}; set VIRKNOW($i) {MR 3}

set i {{Scan All Hard Disks when Idle},{Virus Alert},{Delete},{Suspected}}; set VIRKNOW($i) {MR 3}

set i {{Scan Network},{Scanner up to date},{},{}}; set VIRKNOW($i) {VLR 5}

set i {{Scan Network},{Scanner out of date},{},{}}; set VIRKNOW($i) {HR 2}

set i {{Scan Network},{OK},{},{}}; set VIRKNOW($i) {VLR 5}

set i {{Scan Network},{Scan Aborted},{},{}}; set VIRKNOW($i) {LR 4}

set i {{Scan Network},{Warnings},{Report Only},{Massive Infection}}; set VIRKNOW($i) {VHR 1}

set i {{Scan Network},{Warnings},{Report Only},{Infected}}; set VIRKNOW($i) {HR 2}

set i {{Scan Network},{Warnings},{Report Only},{Suspected}}; set VIRKNOW($i) {VHR 1}

set i {{Scan Network},{Warnings},{Disinfect},{Massive Infection}}; set VIRKNOW($i) {MR 3}

set i {{Scan Network},{Warnings},{Disinfect},{Infected}}; set VIRKNOW($i) {MR 3}

set i {{Scan Network},{Warnings},{Disinfect},{Suspected}}; set VIRKNOW($i) {MR 3}

set i {{Scan Network},{Warnings},{Rename},{Massive Infection}}; set VIRKNOW($i) {VHR 1}

set i {{Scan Network},{Warnings},{Rename},{Infected}}; set VIRKNOW($i) {HR 2}

set i {{Scan Network},{Warnings},{Rename},{Suspected}}; set VIRKNOW($i) {VHR 1}

set i {{Scan Network},{Warnings},{Delete},{Massive Infection}}; set VIRKNOW($i) {MR 3}

set i {{Scan Network},{Warnings},{Delete},{Infected}}; set VIRKNOW($i) {MR 3}

set i {{Scan Network},{Warnings},{Delete},{Suspected}}; set VIRKNOW($i) {MR 3}

set i {{Scan Network},{Virus Alert},{Report Only},{Massive Infection}}; set VIRKNOW($i) {VHR 1}

set i {{Scan Network},{Virus Alert},{Report Only},{Infected}}; set VIRKNOW($i) {HR 2}

set i {{Scan Network},{Virus Alert},{Report Only},{Suspected}}; set VIRKNOW($i) {VHR 1}

set i {{Scan Network},{Virus Alert},{Disinfect},{Massive Infection}}; set VIRKNOW($i) {MR 3}

set i {{Scan Network},{Virus Alert},{Disinfect},{Infected}}; set VIRKNOW($i) {MR 3}

set i {{Scan Network},{Virus Alert},{Disinfect},{Suspected}}; set VIRKNOW($i) {MR 3}

set i {{Scan Network},{Virus Alert},{Rename},{Massive Infection}}; set VIRKNOW($i) {VHR 1}

set i {{Scan Network},{Virus Alert},{Rename},{Infected}}; set VIRKNOW($i) {HR 2}

set i {{Scan Network},{Virus Alert},{Rename},{Suspected}}; set VIRKNOW($i) {VHR 1}

set i {{Scan Network},{Virus Alert},{Delete},{Massive Infection}}; set VIRKNOW($i) {MR 3}

set i {{Scan Network},{Virus Alert},{Delete},{Infected}}; set VIRKNOW($i) {MR 3}

set i {{Scan Network},{Virus Alert},{Delete},{Suspected}}; set VIRKNOW($i) {MR 3}

set i {{F-Secure Gatekeeper},{Infection Stopped},{},{}}; set VIRKNOW($i) {MR 3}

set i {{Checking},{Virus Alert},{},{}}; set VIRKNOW($i) {HR 2}

set i {{Checking},{Change Detected},{},{}}; set VIRKNOW($i) {HR 2}

set i {{Checking},{File Corrupted},{},{}}; set VIRKNOW($i) {MR 3}

set i {{Checking},{Boot: OK},{},{}}; set VIRKNOW($i) {VLR 5}

set i {{Checking},{Partition: OK},{},{}}; set VIRKNOW($i) {VLR 5}

set i {{Checking},{PC Config.: OK},{},{}}; set VIRKNOW($i) {VLR 5}

set i {{Checking},{CMOS Memory: OK},{},{}}; set VIRKNOW($i) {VLR 5}

set i {{Checking},{Boot: Not Checked},{},{}}; set VIRKNOW($i) {MR 3}

set i {{Checking},{Partition: Not Checked},{},{}}; set VIRKNOW($i) {MR 3}

set i {{Checking},{PC Config.: Not Checked},{},{}}; set VIRKNOW($i) {MR 3}

set i {{Checking},{CMOS Memory: Not Checked},{},{}}; set VIRKNOW($i) {MR 3}

#end

Figure 10.5.1.1. Knowledge database for event "virus"

The report from /description_unit is compared with database. Tcl code for this procedure is given in Appendix C. If the result of comparison is new event, not recorded in database, it is written to virknow.tcl, database of newly recorded events, in the same directory /etc/knowledge_database. At this moment of development the recording of new events serves only as an off-line additional memory. It does not affect further processing yet, but it is intended to be more actively used in the future.

10.5.2. Inference Rules

The unit of inference rules contains a priori built rules for handling various levels of scanning and integrity checking risk. According to these rules the particular plan of actions is chosen. There are basically two fuzzy experts, one for risk evaluation and the other for plan calculation. They had to be separated because of fuzzy engine implementation. It was impossible to have same variables on the both sides of the rules, so there are almost same rules for risk evaluation and an extended set of rules for plan calculation.

The code is organized in the way that main program inference_main.tcl, which is placed in /etc/inference_rules reads the report from /description_unit, calls procedures lib_fuz.tcl, code_inference.tcl and lib_pinf.tcl from directory /lib to perform risk evaluation and plan calculation on the basis of given report, and then places the result in directory /problem_status. The Tcl code of inference_main.tcl is presented on Figure 10.5.2.1.

##COMENTS

MYNAME program name

MYREPOSITORY program repository, DIR where income reports are

MYCHECK program check file, where checks are stored

MYOUT dir where outputs are send

MY_IN_ENTITY entities which can generate input reports

LASTCHECK time of last check
set MYNAME

"VIR_INFERENCE"

set MYHOST

"*"

set MYREPOSITORY
"../../problem_description"

set MYCHECK

"../../check/${MYNAME}.chk"

set MYOUT

"../../problem_status"

set MY_IN_ENTITY
"*"

set MY_EXT

"TXT"

set LASTCHECK 0

set cCONTROL ""
;# current control information
###

set PDIR "../../lib"

set KDIR "."

calls needed procedures

source $PDIR/lib_names.tcl

source $PDIR/lib_fuz.tcl

source $PDIR/code_inference.tcl

source $PDIR/lib_pinf.tcl

set DEBUG 0

###

proc MAIN { } {

global LASTCHECK cCONTROL

global MY_IN_ENTITY MY_EXT

set inrep [scan_for_IN $MY_IN_ENTITY $MY_EXT]

foreach i $inrep {

set cCONTROL [getControl $i]

set rez [Process8 $i]

update_Check $i

}

}

##

set TIMEOUT 1

set HOST ""

set TYPE ""

set UNIT ""

MAIN

#end

Figure 10.5.2.2. Code of inference_main.tcl

Procedure lib_fuz.tcl is Tcl implementation by D.Delija [8] of basic functions for operations with fuzzy sets, such as IS (for truth membership), AND, OR, NOT (fuzzy logic operations), IF (for inference) and DEFUZZ (defuzzification) based on corresponding functions from fuzzy code library developed in C++ by E.Cox [6]. This approach allows easier debugging and better adjustments in process of developing code. Figure 10.5.2.3. shows this procedure.

##

set DEBUG 0
;# debug control variable
##

proc POSITIVE { x } {

if { $x > 0 } { return 1 }

return 0

}

proc NEGATIVE { x } {

if { $x < 0 } { return 1 }

return 0

}

##

#max and min for utility
proc max {x args} {

foreach a $args {

if { $x > $a } { set a $x }

}

return $x

}

proc min {x args} {

foreach a $args {

if { $x < $a } { set a $x }

}

return $x

}

##

proc EQUAL { x y } {

if { $x == $y } { return 1 }

return 0

}

##

definition of functions IS, OR, AND, NOT

##

proc IS { x st } {

return [lindex [FzyGetMembership $st $x] 0]

}

proc OR { args } {

set cmd "FzyCompOR ZADEHOR 0 $args"

return [eval $cmd]

}

proc AND { args } {

set cmd "FzyCompAND ZADEHAND 1 $args"

return [eval $cmd]

}

proc NOT { x } {

return [FzyCompNOT ZADEHNOT 0 $x]

}

##

rule evaluator
##

proc IF { conc T args } {

global DEBUG

if { $DEBUG > 0 } {

catch {

puts "$conc THEN $args"

}

flush stdout

}

upvar 1 _RCNT i
 ; #rule counter

upvar 1 _RULE R
 ; #rule array

upvar 1 _RALFA AA ; #alfa for rule

if [catch { incr i}] { set i 0 }

if [catch { eval $conc } a] { set a $conc }

foreach r $args {

#puts $r

set var [lindex $r 0]

set set [lindex $r 1]

set R($i,$var) "$set"

set AA($i,$var) "$a"

}

set A($i) "$a"

return $a

}

##

do the defuzzification for variable in model
##

proc DEFUZZ { var } {

global DEBUG

if { $DEBUG > 1 } {

flush stdout

}

upvar 1 _RCNT i
 ; #rule counter

upvar 1 _RULE R
 ; #rule array

upvar 1 _RALFA AA ; #alfa for rule

default methods

set implM MINMAX

set corrM MINIMUM

set defzM CENTROID

#for each rule containg VAR

#do the calculation

set rez {}

foreach x [array names R *,${var}] {

if { $DEBUG > 1 } {

puts "Index=$x rule=$R($x) alfa=$AA($x)"

flush stdout

}

new set,get by minimum

set t [FzyCopySet $R($x)]

if { $rez == {} } {

set rez $t

} else {

#do the proposition and remove set

FzyProposition $t $rez $implM $corrM $AA($x)

FzyDeleteSet $t

}

if { $DEBUG > 1 } {

puts "Applied to $t Index=$x rule=$R($x) alfa=$AA($x)"

FzyDrawSet $rez

flush stdout

##gets stdin line
}

}

if { $DEBUG > 1 } {

flush stdout

}

if [catch {FzyDefuzzify $rez $defzM } r] { set r "0 0" }

if { $DEBUG > 1 } {

puts "DRAW"

FzyDrawSet $rez

puts "Result: $r"

flush stdout

}

catch { FzyDeleteSet $rez }

return $r

}

##

Figure 10.5.2.3. Code of lib_fuz.tcl

Next procedure code_inference.tcl initializes global variables for inference rules and sets them to zero by default. These variables are crisp, i.e. their values may be 0 or 1, which means that certain event has happened or not. The report from /problem_description is parsed line by line. Filters are set to detect if related action is present in line. If it is present its global variable is set to 1. The Tcl code for this procedure is given on Figure 10.5.2.4.

#initializes global variables

proc GLOBALINIT { } {

global Scan_A

global Scan_B

global Scan_Folder

global Scan_All

global Scan_Net

global Checking

global F_SecureGatekeeper

global Boot_OK

global Boot_NotChecked

global Partition_OK

global Partition_NotChecked

global PCConfig_OK

global CMOSMemory_OK

global CMOSMemory_NotChecked

global Scan_UpDate

global Scan_OffDate

global Scan_OK

global Scan_Aborted

global ChangeDetected

global FileCorrupted

global InfectionStopped

global PCConfig_NotChecked

global Virus_Alert

global Warnings

global ActDisinfect

global ActDelete

global ActReportOnly

global ActRename

global ResMassiveInfection

global ResInfected

global ResSuspected

#sets to zero

set Scan_A

 0

set Scan_B

 0

set Scan_Folder
 0

set Scan_All

 0

set Scan_Net

 0

set Checking

 0

set F_SecureGatekeeper 0

set Boot_OK

 0

set Boot_NotChecked

 0

set Partition_OK

 0

set Partition_NotChecked
 0

set PCConfig_OK

 0

set CMOSMemory_OK

 0

set CMOSMemory_NotChecked
 0

set Scan_UpDate

 0

set Scan_OffDate

 0

set Scan_OK

 0

set Scan_Aborted

 0

set ChangeDetected

 0

set FileCorrupted

 0

set InfectionStopped

 0

set PCConfig_NotChecked
 0

set Virus_Alert

 0

set Warnings

 0

set ActDisinfect

 0

set ActDelete

 0

set ActReportOnly

 0

set ActRename

 0

set ResMassiveInfection
 0

set ResInfected

 0

set ResSuspected

 0

}

##

#Sets the filter related to global variables.
#Idea is that each global variable set on 1 presents that related action is
#detected in line, line is scanned by ordinary globbing.

#It is separated into proc and use set xx syntax instead of array set

#because of progressive elements removing as action is detected in line.
#if FILTER(X) ~ LINE then set X 1

##

proc SETFILTER { } {

global FILTER

#global array with filter fields, variable name is used as index

set FILTER(Scan_A) { Scan*A: }

set FILTER(Scan_B) { Scan*B: }

set FILTER(Scan_Folder) { Scan*Folder }

set FILTER(Scan_All) { Scan*All }

set FILTER(Scan_Net) { Scan*Net }

set FILTER(Checking) { Checking }

set FILTER(F_SecureGatekeeper) { F*SecureGatekeeper }

set FILTER(Boot_OK) { Boot*OK }

set FILTER(Boot_NotChecked) { Boot*NotChecked }

set FILTER(Partition_OK) { Partition*OK }

set FILTER(Partition_NotChecked) { Partition*Not*Checked }

set FILTER(PCConfig_OK) { PC*Config*OK }

set FILTER(CMOSMemory_OK) { CMOS*Memory*OK }

set FILTER(CMOSMemory_NotChecked) { CMOSMemory_Not*Checked }

set FILTER(Scan_UpDate) { Scan*Up*Date }

set FILTER(Scan_OffDate) { Scan*Off*Date }

set FILTER(Scan_OK) { Scan*OK }

set FILTER(Scan_Aborted) { Scan*Aborted }

set FILTER(ChangeDetected) { Change*Detected }

set FILTER(FileCorrupted) { File*Corrupted }

set FILTER(InfectionStopped) { Infection*Stopped }

set FILTER(PCConfig_NotChecked) { PC*Config*Not*Checked }

set FILTER(Virus_Alert) { Virus*Alert }

set FILTER(Warnings) { Warnings }

set FILTER(ActDisinfect) { Disinfect }

set FILTER(ActDelete) { Delete }

set FILTER(ActReportOnly) { Report*Only }

set FILTER(ActRename) { Rename }

set FILTER(ResMassiveInfection) { Massive*Infection }

set FILTER(ResInfected) { Infected }

set FILTER(ResSuspected) { Suspected }

}

#Tests the line from message if there is action

#if FILTER(X) ~ LINE then set X 1

proc TESTVAR { line } {

global FILTER

#test for each global variable not yet set

foreach f [array names FILTER] {

set fl [string trim $FILTER($f)]

set FL "*$fl*"
;#this is patern

if { [lsearch $line $FL] > -1} {

set CMD "set $f 1"

uplevel #0 $CMD
;#execute on top level

unset FILTER($f)
;#remove detected global variable, return

return

}

}

}

proc Process8 { fl } {

global MYOUT HOST MYNAME

global cCONTROL

GLOBALINIT
;# sets global variables
SETFILTER
;# sets filters

set f [open $fl r]

while { [gets $f line] >=0 } {

set line [string trim [lrange $line 5 end]]

TESTVAR $line
;# each line check actions in it ...

}

close $f

output part, after processing rules in lib_pinf.tcl it gives calculated

plan out together with corresponding risks

set p [GENERAL_RISK]
;# get the Scanning_Risk and IntChecking_Risk
set Sx [lindex $p 0]
;# first is result of Scanning_Risk
set Ix [lindex $p 1]
;# second is result of IntChecking_Risk
set r [expr round([GENERAL_PLAN $Sx $Ix])]
;# get the plan

set fname "${MYOUT}/[doFILEMASK VIR [doTIMESTAMP] $HOST $MYNAME TXT]"

set f [open $fname w]

puts $f "$cCONTROL \{ [doTIMESTAMP] \} \{ $r $Sx $Ix \}"

close $f

return $r

}

#for debug

proc WRITEGLOBAL { } {

global Scan_A

global Scan_B

global Scan_Folder

global Scan_All

global Scan_Net

global Checking

global F_SecureGatekeeper

global Boot_OK

global Boot_NotChecked

global Partition_OK

global Partition_NotChecked

global PCConfig_OK

global CMOSMemory_OK

global CMOSMemory_NotChecked

global Scan_UpDate

global Scan_OffDate

global Scan_OK

global Scan_Aborted

global ChangeDetected

global FileCorrupted

global InfectionStopped

global PCConfig_NotChecked

global Virus_Alert

global Warnings

global ActDisinfect

global ActDelete

global ActReportOnly

global ActRename

global ResMassiveInfection

global ResInfected

global ResSuspected

global FILTER

set FILTER(Scan_A) { Scan*A: }

set FILTER(Scan_B) { Scan*B: }

set FILTER(Scan_Folder) { Scan_Folder }

set FILTER(Scan_All) { Scan_All }

set FILTER(Scan_Net) { Scan_Net }

set FILTER(Checking) { Checking }

set FILTER(F_SecureGatekeeper) { F_SecureGatekeeper }

set FILTER(Boot_OK) { Boot_OK }

set FILTER(Boot_NotChecked) { Boot_NotChecked }

set FILTER(Partition_OK) { Partition_OK }

set FILTER(Partition_NotChecked) { Partition_NotChecked }

set FILTER(PCConfig_OK) { PCConfig_OK }

set FILTER(CMOSMemory_OK) { CMOSMemory_OK }

set FILTER(CMOSMemory_NotChecked) { CMOSMemory_NotChecked }

set FILTER(Scan_UpDate) { Scan_UpDate }

set FILTER(Scan_OffDate) { Scan_OffDate }

set FILTER(Scan_OK) { Scan_OK }

set FILTER(Scan_Aborted) { Scan_Aborted }

set FILTER(ChangeDetected) { ChangeDetected }

set FILTER(FileCorrupted) { FileCorrupted }

set FILTER(InfectionStopped) { InfectionStopped }

set FILTER(PCConfig_NotChecked) { PCConfig_NotChecked }

set FILTER(Virus_Alert) { Virus_Alert }

set FILTER(Warnings) { Warnings }

set FILTER(ActDisinfect) { ActDisinfect }

set FILTER(ActDelete) { ActDelete }

set FILTER(ActReportOnly) { ActReportOnly }

set FILTER(ActRename) { ActRename }

set FILTER(ResMassiveInfection) { ResMassiveInfection }

set FILTER(ResInfected) { ResInfected }

set FILTER(ResSuspected) { ResSuspected }

foreach f [array names FILTER] {

upvar 0 $f F

puts "$f $F"

}

}

Figure 10.5.2.4. Code of code_inference.tcl

The main part of fuzzy reasoning, i.e. inference rules are given in lib_pinf.tcl. It calculates scanning and integrity checking risks according to used global variables. There are five fuzzy sets for scanning risk: Scanning_Risk_Very_Low, Scanning_Risk_Low, Scanning_Risk_Moderate, Scanning_Risk_High and Scanning_Risk_Very_High. There are also three fuzzy sets for integrity checking risk: Int_Risk_Very_Low, Int_Risk_Moderate and Int_Risk_High. Fuzzy sets are created by function FzyCreateSet which is Tcl implementation of the same function from E. Cox's C++ fuzzy code library. An example is shown on Figure 10.5.2.5. together with its graphical presentation obtained by function FzyDrawSet. Sets are defined by their names and coordinates. First list gives the range for x axis. Second list gives pairs of x and y coordinates.

FzyCreateSet Int_Risk_Very_Low COORDINATES {0 10} {0 1 1.5 0 10 0}

FuzzySet: Int_Risk_Very_Low

 Description:

 1.00.

 0.90 .

 0.80

 0.70 .

 0.60 .

 0.50 .

 0.40 .

 0.30 .

 0.20 .

 0.10 .

 0.00 ..

 0---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---0

 0.00 1.25 2.50 3.75 5.00 6.25 7.50 8.75 10.00

 Domained: 0.00 to 10.00
Figure 10.5.2.5. An example of fuzzy set

There are 11 rules for calculation of scanning and integrity checking risks. An example of pseudo code definition of particular rule is as following:

IF [Action IS Scan A: OR Action IS Scan B: OR Action IS Scan Folder OR Action
 IS Scan All Hard Disks when Idle OR Action IS Scan Network]

 AND Event IS Scanner up to date

 AND Event IS OK

THEN Scanning Risk IS Very Low

This rule translated into Tcl code with earlier defined functions, variables and fuzzy sets is as following:

set SCANS [OR $Scan_A $Scan_B $Scan_Folder $Scan_All $Scan_Net]

IF [AND $SCANS $Scan_UpDate $Scan_OK] THEN \

 {Scanning_Risk Scanning_Risk_Very_Low}

Other rules are transferred to Tcl code in similar way, as it is shown later on Figure 10.5.2.6.

There are also eight plans of reactions to particular risk. There are eight fuzzy sets for every particular plan, namely PLAN_1, PLAN_2, PLAN_3, PLAN_4, PLAN_5, PLAN_6, PLAN_7, PLAN_8. These fuzzy sets are also created by function FzyCreateSet. There are two sets of rules for calculation of plans. The rules of the first set are almost indentical to those for risk evaluation in the first part, i.e. when certain combination of actions is concerned. The difference is in the second part of the rule where particular combination of plans is invoked as in following example:

set SCANS [OR $Scan_A $Scan_B $Scan_Folder $Scan_All $Scan_Net]

IF [AND $SCANS $Scan_UpDate $Scan_OK] THEN \

 { PLAN PLAN_1 } { PLAN PLAN_3 } { PLAN PLAN_5}

The other set of plan rules is based on influence of calculated risks. For 15 possible combinations of scanning and integrity checking risks there are 15 rules. An example of the rule in plain language and its translation to Tcl code is as following:

IF Scanning Risk IS Very Low AND Integrity Checking Risk IS Very Low

THEN Plan IS Plan_1 (the plan for very low risk)

IF [AND [IS $Sx Scanning_Risk_Very_Low] [IS $Ix Int_Risk_Very_Low]] THEN { PLAN PLAN_1 }

The complete code for inference rules is given on Figure 10.5.2.6.
##

#Both functions are fuzzy experts.

#They are separated because of fuzzy engine iplementation.
#It is impossible to have same variables on the both sides of the
#rules, so there are almost same rules for RISK evaluation
#and extended set for PLAN calculation because of risk influence.
##

#Calculates Scanning_Risk and IntChecking_Risk

#based on the variables parsed out of input messages

#Uses global variables

#Returns Scanning_Risk IntChecking_Risk in list
proc GENERAL_RISK { } {

global Scan_A

global Scan_B

global Scan_Folder

global Scan_All

global Scan_Net

global Checking

global F_SecureGatekeeper

global Boot_OK

global Boot_NotChecked

global Partition_OK

global Partition_NotChecked

global PCConfig_OK

global CMOSMemory_OK

global CMOSMemory_NotChecked

global Scan_UpDate

global Scan_OffDate

global Scan_OK

global Scan_Aborted

global ChangeDetected

global FileCorrupted

global InfectionStopped

global PCConfig_NotChecked

global Virus_Alert

global Warnings

global ActDisinfect

global ActDelete

global ActReportOnly

global ActRename

global ResMassiveInfection

global ResInfected

global ResSuspected

###

catch {

load ../../lib/fzy.so ;# fzy.so is fuzzy engine with Tcl interface
}

###

#creation of fuzzy sets
catch {

FzyCreateSet Int_Risk_Very_Low COORDINATES {0 10} {0 1 1.5 0 10 0}

FzyCreateSet Int_Risk_Moderate COORDINATES {0 10} {0 0 3.5 0 5 1 6.5 0 10 0}

FzyCreateSet Int_Risk_High COORDINATES {0 10} {0 0 7.5 0 10 1}

FzyCreateSet Scanning_Risk_Very_Low COORDINATES {0 10} {0 1 1.5 0 10 0}

FzyCreateSet Scanning_Risk_Low COORDINATES {0 10} {0 0 1 0 2.5 1 4 0 10 0}

FzyCreateSet Scanning_Risk_Moderate COORDINATES {0 10} {0 0 3.5 0 5 1 6.5 0 10 0}

FzyCreateSet Scanning_Risk_High COORDINATES {0 10} {0 0 7.5 0 9.5 1 10 0}

FzyCreateSet Scanning_Risk_Very_High COORDINATES {0 10} {0 0 8.5 0 10 1}

FzyCreateSet PLAN_1 COORDINATES {0 10} {0 0 1 1 2 0 10 0}

FzyCreateSet PLAN_2 COORDINATES {0 10} {0 0 1 0 2 1 3 0 10 0}

FzyCreateSet PLAN_3 COORDINATES {0 10} {0 0 2 0 3 1 4 0 10 0}

FzyCreateSet PLAN_4 COORDINATES {0 10} {0 0 3 0 4 1 5 0 10 0}

FzyCreateSet PLAN_5 COORDINATES {0 10} {0 0 4 0 5 1 6 0 10 0}

FzyCreateSet PLAN_6 COORDINATES {0 10} {0 0 5 0 6 1 7 0 10 0}

FzyCreateSet PLAN_7 COORDINATES {0 10} {0 0 3.5 0 7 1 10 0}

FzyCreateSet PLAN_8 COORDINATES {0 10} {0 0 7 0 8 1 9 0 10 0}

}

###

#Calculation of risks
VERY LOW RISK
Scanning_Risk
Rule 1.

set SCANS [OR $Scan_A $Scan_B $Scan_Folder $Scan_All $Scan_Net]

IF [AND $SCANS $Scan_UpDate $Scan_OK] THEN \

 {Scanning_Risk Scanning_Risk_Very_Low}

IntChecking_Risk
Rule 2.
IF [AND $Checking $Boot_OK $Partition_OK $PCConfig_OK $CMOSMemory_OK] THEN \

{ IntChecking_Risk Int_Risk_Very_Low}

LOW RISK:
Scanning_Risk
Rule 3.
IF [AND $SCANS $Scan_Aborted] THEN \

 {Scanning_Risk Scanning_Risk_Low}

MODERATE RISK:
Scanning_Risk
Rule 4.
IF [AND $SCANS \

[OR $Warnings $Virus_Alert] \

[OR $ActDisinfect $ActDelete] \

[OR $ResMassiveInfection $ResInfected $ResSuspected]] THEN \

{ Scanning_Risk Scanning_Risk_Moderate }

Rule 5.

IF [AND $F_SecureGatekeeper $InfectionStopped] THEN \

{ Scanning_Risk Scanning_Risk_Moderate }

IntChecking_Risk
Rule 6.
IF [AND $Checking \

[OR $Boot_NotChecked $Partition_NotChecked $PCConfig_NotChecked $CMOSMemory_NotChecked]] THEN \

{ IntChecking_Risk Int_Risk_Moderate }

Rule 7.

IF [AND $Checking $FileCorrupted] THEN \

{ IntChecking_Risk Int_Risk_Moderate }

HIGH RISK:
Scanning_Risk
Rule 8.
IF [AND $SCANS $Scan_OffDate] THEN {Scanning_Risk Scanning_Risk_High}

Rule 9.
IF [OR $SCANS \

 [OR $Warnings $Virus_Alert] \

 [OR $ActReportOnly $ActRename] \

 $ResInfected] THEN \

{ Scanning_Risk Scanning_Risk_High}

IntChecking_Risk

Rule 10.
IF [AND $Checking \

 [OR $Virus_Alert $ChangeDetected]] THEN \

{ IntChecking_Risk Int_Risk_High }

VERY HIGH RISK:
Scanning_Risk
Rule 11.
IF [OR $SCANS \

 [OR $Warnings $Virus_Alert] \

 [OR $ActReportOnly $ActRename] \

 [OR $ResMassiveInfection $ResSuspected]] THEN \

{ Scanning_Risk Scanning_Risk_Very_High}

Defuzzification
set Sx [lindex [DEFUZZ Scanning_Risk] 0]

set Ix [lindex [DEFUZZ IntChecking_Risk] 0]

return "$Sx $Ix"

}

#end GENERAL_RISK

###

#Calculates PLAN

#based on the variables parsed out of input message

#Uses global variables
#Returns the plan number

proc GENERAL_PLAN { Sx Ix } {

global Scan_A

global Scan_B

global Scan_Folder

global Scan_All

global Scan_Net

global Checking

global F_SecureGatekeeper

global Boot_OK

global Boot_NotChecked

global Partition_OK

global Partition_NotChecked

global PCConfig_OK

global CMOSMemory_OK

global CMOSMemory_NotChecked

global Scan_UpDate

global Scan_OffDate

global Scan_OK

global Scan_Aborted

global ChangeDetected

global FileCorrupted

global InfectionStopped

global PCConfig_NotChecked

global Virus_Alert

global Warnings

global ActDisinfect

global ActDelete

global ActReportOnly

global ActRename

global ResMassiveInfection

global ResInfected

global ResSuspected

###

VERY LOW RISK
Scanning_Risk plans
Rule 1.

set SCANS [OR $Scan_A $Scan_B $Scan_Folder $Scan_All $Scan_Net]

IF [AND $SCANS $Scan_UpDate $Scan_OK] THEN \

 { PLAN PLAN_1 } { PLAN PLAN_3 } { PLAN PLAN_5}

IntChecking_Risk plans
Rule 2.

IF [AND $Checking $Boot_OK $Partition_OK $PCConfig_OK $CMOSMemory_OK] THEN \

{ PLAN PLAN_1 } { PLAN PLAN_2 } { PLAN PLAN_4} { PLAN PLAN_7 } { PLAN PLAN_8}

LOW RISK:
Scanning_Risk plans
Rule 3.
IF [AND $SCANS $Scan_Aborted] THEN \

 { PLAN PLAN_2 } { PLAN PLAN_3 } { PLAN PLAN_5}

MODERATE RISK:
Scanning_Risk plans
Rule 4.
IF [AND $SCANS \

[OR $Warnings $Virus_Alert] \

[OR $ActDisinfect $ActDelete] \

[OR $ResMassiveInfection $ResInfected $ResSuspected]] THEN \

 { PLAN PLAN_4 } { PLAN PLAN_6}

Rule 5.

IF [AND $F_SecureGatekeeper $InfectionStopped] THEN \

 { PLAN PLAN_4 } { PLAN PLAN_6 }

IntChecking_Risk plans
Rule 6.

IF [AND $Checking \

[OR $Boot_NotChecked $Partition_NotChecked $PCConfig_NotChecked $CMOSMemory_NotChecked]] THEN \

 { PLAN PLAN_3 } { PLAN PLAN_4} { PLAN PLAN_8 } { PLAN PLAN_7}

Rule 7.

IF [AND $Checking $FileCorrupted] THEN \

 { PLAN PLAN_3 } { PLAN PLAN_4} { PLAN PLAN_7 } { PLAN PLAN_8}

HIGH RISK:
Scanning_Risk plans
Rule 8.
IF [AND $SCANS $Scan_OffDate] THEN { PLAN PLAN_7 }

Rule 9.
IF [OR $SCANS \

 [OR $Warnings $Virus_Alert] \

 [OR $ActReportOnly $ActRename] \

 $ResInfected] THEN \

 { PLAN PLAN_7 }

IntChecking_Risk plans

Rule 10.

IF [AND $Checking \

 [OR $Virus_Alert $ChangeDetected]] THEN \

 { PLAN PLAN_8 } { PLAN PLAN_5} { PLAN PLAN_6 } { PLAN PLAN_7}

VERY HIGH RISK:
Scanning_Risk plans
Rule 11.
IF [OR $SCANS \

 [OR $Warnings $Virus_Alert] \

 [OR $ActReportOnly $ActRename] \

 [OR $ResMassiveInfection $ResSuspected]] THEN \

 { PLAN PLAN_8 }

###

#Calculates PLAN

#based on the Scanning_Risk and IntChecking_Risk
IF [AND [IS $Sx Scanning_Risk_Very_Low] [IS $Ix Int_Risk_Very_Low]] THEN { PLAN PLAN_1 }

IF [AND [IS $Sx Scanning_Risk_Very_Low] [IS $Ix Int_Risk_Moderate]] THEN { PLAN PLAN_3 }

IF [AND [IS $Sx Scanning_Risk_Very_Low] [IS $Ix Int_Risk_High]] THEN { PLAN PLAN_5 }

IF [AND [IS $Sx Scanning_Risk_Low] [IS $Ix Int_Risk_Very_Low]] THEN { PLAN PLAN_2 }

IF [AND [IS $Sx Scanning_Risk_Low] [IS $Ix Int_Risk_Moderate]] THEN { PLAN PLAN_3 }

IF [AND [IS $Sx Scanning_Risk_Low] [IS $Ix Int_Risk_High]] THEN { PLAN PLAN_5 }

IF [AND [IS $Sx Scanning_Risk_Moderate] [IS $Ix Int_Risk_Very_Low]] THEN { PLAN PLAN_4 }

IF [AND [IS $Sx Scanning_Risk_Moderate] [IS $Ix Int_Risk_Moderate]] THEN { PLAN PLAN_4 }

IF [AND [IS $Sx Scanning_Risk_Moderate] [IS $Ix Int_Risk_High]] THEN { PLAN PLAN_6 }

IF [AND [IS $Sx Scanning_Risk_High] [IS $Ix Int_Risk_Very_Low]] THEN { PLAN PLAN_7 }

IF [AND [IS $Sx Scanning_Risk_High] [IS $Ix Int_Risk_Moderate]] THEN { PLAN PLAN_7 }

IF [AND [IS $Sx Scanning_Risk_High] [IS $Ix Int_Risk_High]] THEN { PLAN PLAN_7 }

IF [AND [IS $Sx Scanning_Risk_Very_High] [IS $Ix Int_Risk_Very_Low]] THEN { PLAN PLAN_8 }

IF [AND [IS $Sx Scanning_Risk_Very_High] [IS $Ix Int_Risk_Moderate]] THEN { PLAN PLAN_8 }

IF [AND [IS $Sx Scanning_Risk_Very_High] [IS $Ix Int_Risk_High]] THEN { PLAN PLAN_8 }

Defuzzification

set REZ [DEFUZZ PLAN]

set PLAN [lindex $REZ 0]

return $PLAN

}

#end GENERAL_PLAN

Figure 10.5.2.6. Code of lib_pinf.tcl

All fuzzy sets used in previous evaluations are shown on Figure 10.5.2.7.

 FuzzySet: Int_Risk_Very_Low

 Description:

 1.00.

 0.90 .

 0.80

 0.70 .

 0.60 .

 0.50 .

 0.40 .

 0.30 .

 0.20 .

 0.10 .

 0.00 ..

 0---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---0

 0.00 1.25 2.50 3.75 5.00 6.25 7.50 8.75 10.00

 Domained: 0.00 to 10.00

 FuzzySet: Int_Risk_Moderate

 Description:

 1.00 .

 0.90 . .

 0.80 . .

 0.70 . .

 0.60

 0.50 . .

 0.40 . .

 0.30 . .

 0.20 . .

 0.10 . .

 0.00........................

 0---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---0

 0.00 1.25 2.50 3.75 5.00 6.25 7.50 8.75 10.00

 Domained: 0.00 to 10.00

 FuzzySet: Int_Risk_High

 Description:

 1.00

 0.90 ..

 0.80 ..

 0.70 .

 0.60 ..

 0.50 ..

 0.40 .

 0.30 ..

 0.20 .

 0.10 ..

 0.00..

 0---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---0

 0.00 1.25 2.50 3.75 5.00 6.25 7.50 8.75 10.00

 Domained: 0.00 to 10.00

 FuzzySet: Scanning_Risk_Very_Low

 Description:

 1.00.

 0.90 .

 0.80

 0.70 .

 0.60 .

 0.50 .

 0.40 .

 0.30 .

 0.20 .

 0.10 .

 0.00 ..

 0---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---0

 0.00 1.25 2.50 3.75 5.00 6.25 7.50 8.75 10.00

 Domained: 0.00 to 10.00

 FuzzySet: Scanning_Risk_Low

 Description:

 1.00 .

 0.90 . .

 0.80 .

 0.70 . .

 0.60 .

 0.50 . .

 0.40 . .

 0.30 . .

 0.20 . .

 0.10 . .

 0.00........ ..

 0---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---0

 0.00 1.25 2.50 3.75 5.00 6.25 7.50 8.75 10.00

 Domained: 0.00 to 10.00

 FuzzySet: Scanning_Risk_Moderate

 Description:

 1.00 .

 0.90 . .

 0.80 . .

 0.70 . .

 0.60

 0.50 . .

 0.40 . .

 0.30 . .

 0.20 . .

 0.10 . .

 0.00........................

 0---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---0

 0.00 1.25 2.50 3.75 5.00 6.25 7.50 8.75 10.00

 Domained: 0.00 to 10.00

 FuzzySet: Scanning_Risk_High

 Description:

 1.00 .

 0.90 .

 0.80 .

 0.70 .. .

 0.60 .

 0.50 .

 0.40 .

 0.30 .. .

 0.20 .

 0.10 .

 0.00.. .

 0---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---0

 0.00 1.25 2.50 3.75 5.00 6.25 7.50 8.75 10.00

 Domained: 0.00 to 10.00

 FuzzySet: Scanning_Risk_Very_High

 Description:

 1.00

 0.90 .

 0.80 .

 0.70 .

 0.60 .

 0.50 .

 0.40 .

 0.30 .

 0.20 .

 0.10 .

 0.00..

 0---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---0

 0.00 1.25 2.50 3.75 5.00 6.25 7.50 8.75 10.00

 Domained: 0.00 to 10.00

 FuzzySet: PLAN_1

 Description:

 1.00

 0.90 .

 0.80 . .

 0.70 .

 0.60 .

 0.50 .

 0.40 . .

 0.30 .

 0.20 .

 0.10 . .

 0.00. ..

 0---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---0

 0.00 1.25 2.50 3.75 5.00 6.25 7.50 8.75 10.00

 Domained: 0.00 to 10.00

 FuzzySet: PLAN_2

 Description:

 1.00

 0.90 .

 0.80 . .

 0.70 .

 0.60 .

 0.50 . .

 0.40 .

 0.30 .

 0.20 . .

 0.10 .

 0.00....... ..

 0---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---0

 0.00 1.25 2.50 3.75 5.00 6.25 7.50 8.75 10.00

 Domained: 0.00 to 10.00

 FuzzySet: PLAN_3

 Description:

 1.00

 0.90 .

 0.80 . .

 0.70 .

 0.60 .

 0.50 . .

 0.40 .

 0.30 .

 0.20 . .

 0.10

 0.00.............. ..

 0---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---0

 0.00 1.25 2.50 3.75 5.00 6.25 7.50 8.75 10.00

 Domained: 0.00 to 10.00

 FuzzySet: PLAN_4

 Description:

 1.00

 0.90 ..

 0.80

 0.70 . .

 0.60 . .

 0.50

 0.40 . .

 0.30 .

 0.20 .

 0.10 . .

 0.00....................

 0---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---0

 0.00 1.25 2.50 3.75 5.00 6.25 7.50 8.75 10.00

 Domained: 0.00 to 10.00

 FuzzySet: PLAN_5

 Description:

 1.00 .

 0.90

 0.80 . .

 0.70 . .

 0.60

 0.50 . .

 0.40

 0.30 . .

 0.20 . .

 0.10

 0.00...........................

 0---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---0

 0.00 1.25 2.50 3.75 5.00 6.25 7.50 8.75 10.00

 Domained: 0.00 to 10.00

 FuzzySet: PLAN_6

 Description:

 1.00

 0.90 ..

 0.80

 0.70 . .

 0.60 . .

 0.50

 0.40 . .

 0.30 .

 0.20 .

 0.10 . .

 0.00.................................

 0---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---0

 0.00 1.25 2.50 3.75 5.00 6.25 7.50 8.75 10.00

 Domained: 0.00 to 10.00

 FuzzySet: PLAN_7

 Description:

 1.00

 0.90

 0.80

 0.70

 0.60

 0.50

 0.40

 0.30

 0.20

 0.10

 0.00......................... ..

 0---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---0

 0.00 1.25 2.50 3.75 5.00 6.25 7.50 8.75 10.00

 Domained: 0.00 to 10.00

 FuzzySet: PLAN_8

 Description:

 1.00

 0.90 .

 0.80 . .

 0.70 .

 0.60 .

 0.50 . .

 0.40 .

 0.30 .

 0.20 . .

 0.10 .

 0.00..

 0---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---0

 0.00 1.25 2.50 3.75 5.00 6.25 7.50 8.75 10.00

 Domained: 0.00 to 10.00

Figure 10.2.5.7. Fuzzy sets

The shapes of fuzzy sets were firstly sketched manually and then verified and tuned by using FOOL & FOX separately. The rules for FOOL & FOX's rulebase were the same as the last set of rules for plans. It was enough for rough tuning of fuzzy sets and then transferring them to Tcl code. The further processing of inference rules code showed that the simulation on FOOL & FOX was quite suitable. The contents of rulebase file for FOOL & FOX is presented on Figure 10.2.5.8.

@FOOLDATA-VERSION 0.2

@PRECISION= 500

@LINGUISTIC_VARIABLES= 3

@LV= scan_risk

@LVOUT= NO

@UNIT= bit

@XSTART= 0.000000

@XEND= 10.000000

@KOMP_OP= 1 1 0.000000

@ADJECTIV= 5

@ADJ= very_low

@FKT= 0 0.000000 0.000000 1.500000 0.000000 1.000000

@ADJ= low

@FKT= 0 2.500000 1.500000 1.500000 0.000000 1.000000

@ADJ= moderate

@FKT= 0 5.000000 1.500000 1.500000 0.000000 1.000000

@ADJ= high

@FKT= 0 9.500000 2.000000 0.500000 0.000000 1.000000

@ADJ= very_high

@FKT= 0 10.000000 1.500000 0.000000 0.000000 1.000000

@LV= intch_risk

@LVOUT= NO

@UNIT= bit

@XSTART= 0.000000

@XEND= 10.000000

@KOMP_OP= 1 1 0.000000

@ADJECTIV= 3

@ADJ= very_low

@FKT= 0 0.000000 0.000000 1.500000 0.000000 1.000000

@ADJ= moderate

@FKT= 0 5.000000 1.500000 1.500000 0.000000 1.000000

@ADJ= high

@FKT= 0 10.000000 2.500000 0.000000 0.000000 1.000000

@LV= plan

@LVOUT= YES

@UNIT= bit

@XSTART= 0.000000

@XEND= 10.000000

@KOMP_OP= 1 1 0.000000

@ADJECTIV= 8

@ADJ= plan_1

@FKT= 0 1.000000 1.000000 1.000000 0.000000 1.000000

@ADJ= plan_2

@FKT= 0 2.000000 1.000000 1.000000 0.000000 1.000000

@ADJ= plan_3

@FKT= 0 3.000000 1.000000 1.000000 0.000000 1.000000

@ADJ= plan_4

@FKT= 0 4.000000 1.000000 1.000000 0.000000 1.000000

@ADJ= plan_5

@FKT= 0 5.000000 1.000000 1.000000 0.000000 1.000000

@ADJ= plan_6

@FKT= 0 6.000000 1.000000 1.000000 0.000000 1.000000

@ADJ= plan_7

@FKT= 0 7.000000 3.500000 3.000000 0.000000 1.000000

@ADJ= plan_8

@FKT= 0 8.000000 1.000000 1.000000 0.000000 1.000000

@RULEBASE= 15

@RULE= IF scan_risk = very_low & intch_risk = very_low THEN plan = plan_1 WITH 1.000000 @END

@RULE= IF scan_risk = very_low & intch_risk = moderate THEN plan = plan_3 WITH 1.000000 @END

@RULE= IF scan_risk = very_low & intch_risk = high THEN plan = plan_5 WITH 1.000000 @END

@RULE= IF scan_risk = low & intch_risk = very_low THEN plan = plan_2 WITH 1.000000 @END

@RULE= IF scan_risk = low & intch_risk = moderate THEN plan = plan_3 WITH 1.000000 @END

@RULE= IF scan_risk = low & intch_risk = high THEN plan = plan_5 WITH 1.000000 @END

@RULE= IF scan_risk = moderate & intch_risk = very_low THEN plan = plan_4 WITH 1.000000 @END

@RULE= IF scan_risk = moderate & intch_risk = moderate THEN plan = plan_4 WITH 1.000000 @END

@RULE= IF scan_risk = moderate & intch_risk = high THEN plan = plan_6 WITH 1.000000 @END

@RULE= IF scan_risk = high & intch_risk = very_low THEN plan = plan_7 WITH 1.000000 @END

@RULE= IF scan_risk = high & intch_risk = moderate THEN plan = plan_7 WITH 1.000000 @END

@RULE= IF scan_risk = high & intch_risk = high THEN plan = plan_7 WITH 1.000000 @END

@RULE= IF scan_risk = very_high & intch_risk = very_low THEN plan = plan_8 WITH 1.000000 @END

@RULE= IF scan_risk = very_high & intch_risk = moderate THEN plan = plan_8 WITH 1.000000 @END

@RULE= IF scan_risk = very_high & intch_risk = high THEN plan = plan_8 WITH 1.000000 @END

@OPERATORS

@CERTAINTY= 1 1 -1.000000

@INFERENCE= 1 1 -1.000000

@ACCUMULATION= 5 24 -1.000000

@AGGREGATION= 0 1 1 -1.000000

@AGGREGATION= 1 1 1 -1.000000

@AGGREGATION= 2 1 1 -1.000000

@AGGREGATION= 3 1 1 -1.000000

@AGGREGATION= 4 1 1 -1.000000

@AGGREGATION= 5 1 1 -1.000000

@AGGREGATION= 6 1 1 -1.000000

@AGGREGATION= 7 1 1 -1.000000

@AGGREGATION= 8 1 1 -1.000000

@AGGREGATION= 9 1 1 -1.000000

@AGGREGATION= 10 1 1 -1.000000

@AGGREGATION= 11 1 1 -1.000000

@AGGREGATION= 12 1 1 -1.000000

@AGGREGATION= 13 1 1 -1.000000

@AGGREGATION= 14 1 1 -1.000000

@DEFUZZIFICATION

@OUTPUT= 1

@METHOD= 1

Figure 10.5.2.8. Rulebase for FOOL & FOX simulation

The output from unit of inference rules is quite simple. It gives the type of event (VIR in this case), the name of unit which gave last report, time stamp, number of chosen plan (rounded because evaluation gives real value), and corresponding values of Scanning_Risk and IntChecking_Risk. These last two values are not necessary, except

for control purposes. The output is written into file in directory /problem_status. According to data given in previous sections, the plan No. 7 was chosen. The output is shown on Figure 10.5.2.9.

- VIR DISPATCHER-IN { 1342167999 } { 7 9.101562 4.960938 }

Figure 10.5.2.9. Output from inference rules unit

10.5.3. Reasoning Unit and Explanation Unit

Reasoning unit is realized by program resoning_unit.tcl, placed in directory /bin. It reads the output from inference rules unit from /problem_status and calls procedure code_pcplan.tcl from /lib, which according to obtained result from inference rules unit, extracts corresponding plan with its commands. In this case command is simple a call of particular batch file plan*.bat, which will be executed later. The result of this extraction is placed into /explanation_unit. Explanation unit serves here as a store place from which particular plan will be read. The code of resoning_unit.tcl is shown on Figure 10.5.3.1, and code of code_pcplan.tcl is shown on Figure 10.5.3.2. The output from the reasoning unit for the previously obtained plan is given on Figure 10.5.3.3.

MYNAME program name

MYREPOSITORY program repository, DIR where income reports are

MYCHECK program check file, where checks are stored

MYOUT dir where outputs are send

MY_IN_ENTITY entities which can generate input reports

LASTCHECK time of last check
set MYNAME

"REASONING"

set MYHOST

"*"

set MYREPOSITORY
"../problem_status"

set MYCHECK

"../check/${MYNAME}.chk"

set MYOUT

"../explanation_unit"

set MY_IN_ENTITY
"*"

set MY_EXT

"TXT"

set LASTCHECK 0

set cCONTROL ""
;# current control info
###

set PDIR "../lib"

calls needed procedures
source $PDIR/lib_names.tcl

source $PDIR/code_pcplan.tcl

###

proc MAIN { } {

global LASTCHECK cCONTROL

global MY_IN_ENTITY MY_EXT

global MYOUT MYNAME

global TYPE HOST

set TYPE
"VIR"

set HOST
"-"

set fname "${MYOUT}/[doFILEMASK $TYPE [doTIMESTAMP] $HOST $MYNAME $MY_EXT]"

set inrep [scan_for_IN $MY_IN_ENTITY $MY_EXT]

foreach i $inrep {

set P [Process9 $i]

set CMD "PLAN_${P} $fname"

puts ">>$CMD<<"

eval $CMD

update_Check $i

}

}

##

set TIMEOUT 1

set HOST ""

set TYPE ""

set UNIT ""

MAIN

#end

Figure 10.5.3.1. Code of resoning_unit.tcl

###

proc Process9 { fl } {

set P 0

set f [open $fl r]

while { [gets $f line] >= 0 } {

set line [lindex $line 4]

scan $line " %d %f %f " P Sx Ix

close $f

return $P

}

close $f

return $P

}

###

#PLAN 0 if error ----
proc PLAN_0 { FL } {

}

#PLAN 1
proc PLAN_1 { FL } {

set f [open $FL w]

puts $f "REM PLAN 1"

puts $f "plan1.bat"

close $f

}

#END PLAN 1
#PLAN 2
proc PLAN_2 { FL } {

set f [open $FL w]

puts $f "REM PLAN 2"

puts $f "plan2.bat"

close $f

}

#END PLAN 2
#PLAN 3
proc PLAN_3 { FL } {

set f [open $FL w]

puts $f "REM PLAN 3"

puts $f "plan3.bat"

close $f

}

#END PLAN 3
#PLAN 4
proc PLAN_4 { FL } {

set f [open $FL w]

puts $f "REM PLAN 4"

puts $f "plan4.bat"

close $f

}

#END PLAN 4
#PLAN 5
proc PLAN_5 { FL } {

set f [open $FL w]

puts $f "REM PLAN 5"

puts $f "plan5.bat"

close $f

}

#END PLAN 5
#PLAN 6
proc PLAN_6 { FL } {

set f [open $FL w]

puts $f "REM PLAN 6"

puts $f "plan6.bat"

close $f

}

#END PLAN 6
#PLAN 7

proc PLAN_7 { FL } {

set f [open $FL w]

puts $f "REM PLAN 7"

puts $f "plan7.bat"

close $f

}

#END PLAN 7
#PLAN 8
proc PLAN_8 { FL } {

set f [open $FL w]

puts $f "REM PLAN 8"

puts $f "plan8.bat"

close $f

}

#END PLAN 8
Figure 10.5.3.2. Code of code_pcplan.tcl

REM PLAN 7

 plan7.bat

Figure 10.5.3.3 The output from reasoning unit

10.6. Implementation of Adaptation Subsystem

The implementation of adaptation unit was very simple. Because all relevant decisions were practicaly made at organization level, mostly by inference rules unit, there were no need for the purposes of this prototype to introduce additional criterion of adaptation. It is intended, however, to be implemented in some future realizations where more active feedback between various parts of this system will be included. Only one of modules from adaptation subsystem, the regulator, was realized as its executive module. In this version it simply transferred the output from /explanation_unit directory to its output directories /output_glavni and /output_virusi for further processing. The Tcl code of regulator is given on the Figure 10.6.1. Output directories contain the same sequence as shown on Figure 10.5.3.3.

MYNAME program name

MYREPOSITORY program repository, DIR where income reports are

MYCHECK program check file, where checks are stored

MYOUT dir where outputs are send

MY_IN_ENTITY entities which can generate input reports

LASTCHECK time of last check
set MYNAME

"REGULATOR"

set MYHOST

"*"

set MYREPOSITORY
"../explanation_unit"

set MYCHECK

"../check/${MYNAME}.chk"

set MYOUT

"../output_glavni ../output_virusi"

set MY_IN_ENTITY
"*"

set MY_EXT

"TXT"

set LASTCHECK 0

set cCONTROL ""
;# current control info
###

set PDIR "../lib"

source $PDIR/lib_names.tcl

###

proc MAIN { } {

global LASTCHECK cCONTROL

global MY_IN_ENTITY MY_EXT

global MYOUT MYNAME

global TYPE HOST

set TYPE
"VIR"

set HOST
"-"

set inrep [scan_for_IN $MY_IN_ENTITY $MY_EXT]

foreach i $inrep {

;#just copy into OUT DIR, at the moment

foreach fname $MYOUT {

exec cp $i $fname

}

update_Check $i

}

}

##

set TIMEOUT 1

set HOST ""

set TYPE ""

set UNIT ""

MAIN

#end

Figure 10.6.1. Code of regulator.tcl

10.7. Implementation of Executive Elements

The executive level consists of executive transceivers and executive agents. The executive transceiver translates the directions from the regulator to instructions understandable by executive agent. For the purposes of this development the transceiver was realized as a group of simple batch files corresponding to particular plans. The protocol which will execute commands from remote Unix host and start particular batch file on local MS Windows host was not specially developed, because it is very platform dependent. The examples of batch files were adapted for the specific platform and agents, which were available for this development. They are presented on Figure 10.7.1. just to show way on which particular plan can be executed. They can be changed easily accordingly to platform and chosen agents.

The executive agents were the same as observing agents, i.e. scanner F-Secure and integrity checker Integrity Master. It has to be noticed here that they cannot be executed exclusively automatically, but in interactive mode, which is understandable, because they were not intended to be included in bigger automated protection systems. Integrity Master also can occasionally crash system on MS Windows 98 platform on which it was installed for testing purposes. Those are specifics of particular agents and can be expected when using tools, which somebody else has developed.

@echo off

REM PLAN_1

REM DO NOTHING

REM Scanning_Risk and IntChecking_Risk Very Low

echo ############################

echo ## ##

echo ## System is OK. ##

echo ## No viruses found. ##

echo ## No anomalies found. ##

echo ## Keeping regular state. ##

echo ## ##

echo ############################

@echo off

REM PLAN_2

REM Does scanning when Scan Aborted is reported

REM Case when Scanning_Risk is Low

echo Scanning again...

c:

cd \progra~1\datafe~1\F-Secure\Anti-V~1

f-prot95.exe /NORMAL=[11915] /BOOT /ARCHIVE /REPORTONLY

REM Alias [11915] means Scan all local drives (Hard, Floppy, CD)

@echo off

REM PLAN_3

REM Case when Scanning_Risk is Very Low or Low

REM IntChecking_Risk is Moderate

echo Integrity Checking and Scanning again...

REM Integrity Checking of entire disks including system sectors

c:

cd \IM_HOME

im.exe /CE /DE

REM Start Scanner

c:

cd \progra~1\datafe~1\F-Secure\Anti-V~1

f-prot95.exe /NORMAL=[11915] /BOOT /ARCHIVE /REPORTONLY

@echo off

REM PLAN_4

REM Case when Scanning_Risk is Moderate

REM IntChecking_Risk is Very Low or Moderate

echo Restore from last backup

echo Integrity Checking and Scanning again...

REM Restart and restore from backup

c:

cd \system

restore.bat

REM Start Integrity Checker

c:

cd \IM_HOME

im.exe /CE /DE

REM Start Scanner

c:

cd \progra~1\datafe~1\F-Secure\Anti-V~1

f-prot95.exe /NORMAL=[11915] /BOOT /ARCHIVE /REPORTONLY

@echo off

REM PLAN_5

REM Scanning_Risk is Very Low or Low

REM IntChecking_Risk is High (possibly reports virus)

echo Scanning and Integrity Checking again...

REM Start Scanner with disinfect option

c:

cd \progra~1\datafe~1\F-Secure\Anti-V~1

f-prot95.exe /NORMAL=[11915] /BOOT /ARCHIVE /DISINF /DISINFREP

REM Start Integrity Checker

c:

cd \IM_HOME

im.exe /CE /DE

@echo off

REM PLAN_6

REM Scanning_Risk is Moderate

REM IntChecking_Risk is High

echo Restore from last backup

echo Scanning and Integrity Checking again...

REM Restart and restore from backup

c:

cd \system

restore.bat

REM Start Scanner with disinfect option

c:

cd \progra~1\datafe~1\F-Secure\Anti-V~1

f-prot95.exe /NORMAL=[11915] /BOOT /ARCHIVE /DISINF /DISINFREP

REM Start Integrity Checker

c:

cd \IM_HOME

im.exe /CE /DE

@echo off

REM PLAN_7

REM Scanning_Risk is High

REM IntChecking Risk may be Very Low, Moderate or High

echo Update scanner if necessary

echo Restore from last backup

echo Scanning and Integrity Checking again...

REM Update scanner if necessary

c:

cd \progra~1\datafe~1\F-Secure\Anti-V~1

update.bat

REM Restart and restore from backup

c:

cd \system

restore.bat

REM Start Scanner with disinfect option

c:

cd \progra~1\datafe~1\F-Secure\Anti-V~1

f-prot95.exe /NORMAL=[11915] /BOOT /ARCHIVE /DISINF /DISINFREP

REM Start Integrity Checker

c:

cd \IM_HOME

im.exe /CE /DE

@echo off

REM PLAN_8

REM Scanning_Risk is Very High (e.g. Massive Infection)

REM IntChecking Risk may be Very Low, Moderate or High

echo Update scanner if necessary

echo Restore from last backup

echo Scanning and Integrity Checking again...

REM Update scanner if necessary

c:

cd \progra~1\datafe~1\F-Secure\Anti-V~1

update.bat

REM Restart and restore from backup

c:

cd \system

restore.bat

REM Start Scanner with disinfect option

REM Delete files if disinfection fails

c:

f-prot95.exe /NORMAL=[11915] /BOOT /ARCHIVE /DISINF /DISINFDEL

REM Start Integrity Checker

c:

cd \IM_HOME

im.exe /CE /DE

Figure 10.7.1. Examples of possible batch files for particular plans

10.8. Lessons Learned

The development process of this prototype was extremely interesting. There are many lessons, which can be learned in attempts to transfer theory to practice. Some problems can appear where least expected, but this very fact is the one which makes every development process exciting and gives opportunity to learn more. I may say that finishing this prototype I am just on the beginning of new phase, just as its working name suggests.

First lesson, which had to be learned is about using already existing security tools as agents. No matter how they might be advanced and successful in performing their main tasks, their reports are far from being standardized. It may be discussed how much particular tool is user friendly by generating verbose reports, but it is certainly the main obstacle in its incorporating into a bigger automated system. Therefore, lot of time was spent on designing proper formating of existing reports so they could be easily handled in whole processing by different levels. That time could certainly be spent in better way. The solution of problem is not easy. The producers of security tools (not only anti-virus products) should agree about standard form of their output reports. There are some efforts of that kind among the producers of intruder detection tools, but those projects are still in beginning phase. In developing this prototype the intent was to have uniform form of messages traveling between different levels inside the prototype, but so far this tool does not produce much of output reports and work is yet to be done on making them standard. The open question is which standard they should follow.

The second lesson to learn was how to make prototype as efficient as possible. Some modules, which seemed to be necessary in theory, appeared to be not so practical in real implementation. Yet this prototype is still in development phase and is better to have redundant elements in theory than find that they are missing in practice. The role of knowledge database will certainly have to be revised. Memory of some kind is always needed and that idea cannot be rejected. It can only be better realized than it is currently. Also, some elements of adaptation subsystem might appear unnecessary at the moment, but the fact is that prototype in its present version is made to be rather "paranoid" about event of infection by computer viruses. Therefore, not much additional adaptation was needed, but in further practical use more tuning to get proper reaction will certainly be needed.

The third important lesson was about communication between diferent modules. Presently it is conducted through sharing of files and directories between processes, but this type of communication has security flaws itself. Yet it was very easy to implement and to make prototype working it was sufficient. However, in further realizations some more secure types of communication will have to be considered.

(continued...)

modules

/output_glavni - output from regulator to executive transceiver on host "glavni"

/output_virusi - output from regulator to executive transceiver on host "virusi"

/transceiver_ex_glavni - executive transceiver for host "glavni"

/transceiver_ex_virusi - executive transceiver for host "virusi"

executable code:

/bin - general binaries

/bin_glavni - binaries for the host "glavni"

/bin_virusi - binaries for the host "virusi"

libraries:

/lib - dedicated libraries

cheking:

/check - general checking

/check_glavni - checking for the host "glavni"

/check_virusi - checking for the host "virusi"

/tmp - temporary directory

modules:

/report_inc_glavni - incoming reports from host "glavni"

/report_inc_virusi - incoming reports from host "virusi"

/filters_glavni - filters for host "glavni"

/filters_virusi - filters for host "virusi"

/transceiver_obs_glavni - observing transceiver for host "glavni"

/transceiver_obs_virusi - observing transceiver for host "virusi"

/controller_obs_glavni - controller for host "glavni"

/controller_obs_virusi - controller for host "virusi"

/coordinator_vir_in - coordinator for event "viruses"

/dispatcher_in - dispatcher input

/problem_description

/etc

 /knowledge_database

 /inference_rules

/problem_status

/reasoning_unit

/explanation_unit

/criterion_unit

/adaptation_unit

/regulator

(continued...)

10 - 46

