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9. MODELING AN EXPERT SYSTEM

In this Chapter theoretical models for the expert system of an intelligent security system will be introduced.

It was stated in the Chapter 5 that binary logic is an obstacle for present security tools. While it makes computing easy, it can be a drawback considering security requirements. For that reason, the other types of logic, such as fuzzy logic, will be taken into consideration.

9.1. Fuzzy Logic

Fuzzy logic is a class of multivalent, generally continuous-valued logic based on the theory of fuzzy sets. Fuzzy logic is concerned with the set theoretic operations allowed on fuzzy sets, how these operations are performed and interpreted, and the nature of fundamental fuzziness.[6]

Fuzzy logic is a calculus of compatibility. Unlike probability, which is based on frequency distribution in a random population, fuzzy logic deals with describing the characteristics of properties. Fuzzy logic describes properties that have continuously varying values by associating partitions of these values with a semantic label. Much of the descriptive power of fuzzy logic comes from the fact that these semantic partitions can overlap. This overlap corresponds to the transition from one state to the next. These transitions arise from the naturally occurring ambiguity associated with the intermediate states of semantic labels.

Fuzziness is a measure of how well an instance (value) conforms to a semantic ideal or concept. Fuzziness describes the degree of membership in a fuzzy set. This degree of membership can be viewed as the level of compatibility between an instance from the set's domain and the concept overlying the set. Some measurements have minimal fuzziness or ambiguity, those that fall at the extreme edges of a fuzzy region, since they are highly compatible with the set's concept. In between, these properties have varying degrees of ambiguity. They can belong to different fuzzy sets simultaneously.

Crisp set is the term, which is usually applied to classical (Boolean) sets where membership is either [1] (totally contained in the set) or [0] (totally excluded from the set). Crisp sets, unlike fuzzy sets, have distinct and sharply defined membership edges. An intrinsic property of a crisp set is the well-defined behavior of its members. In particular, crisp sets obey the geometry of Boolean and Aristotelian sets. This means that the universe of discourse for a set and its complement is always disjoint and complete. Thus the relation A(~A=( (also known as the Law of the Excluded Middle) is always obeyed.

Fuzzy set differs from conventional or crisp set by allowing partial or gradual memberships. A fuzzy set has three principal properties: 

· the range of values over which the set is mapped, this is called the domain and must be monotonic real number in the range [-(, +(];

· the degree of membership axis that measures the value's membership in the set;

· the actual surface of the fuzzy set, i.e. the points that connect the degree of the membership with the underlying domain.

The fuzzy set's degree of membership value is a consequence of its intrinsic truth function. This function returns a value between [0](not a member of the set) and [1] 

(a complete member of the set) depending on the evaluation of the fuzzy proposition "X is a member of fuzzy set A". In many interpretations, fuzzy logic is concerned with the compatibility between a domain's value and the fuzzy concept. This can be expressed as "How compatible is X with fuzzy set A?".

The negation of a fuzzy set is the complement of the fuzzy set. The complement of the fuzzy space is usually produced by the operation 1-(A(x). The fuzzy complement indicates the degree to which an element (x) is not a member of the fuzzy set (A). Unlike conventional crisp sets, an element is not either in or out of a fuzzy set, thus the complement also contains members that have partial exclusions.

Degree of membership is the degree to which a variable's value is compatible with the fuzzy set. The degree of membership is a value between [0] (no membership) and [1] (complete membership) and is drawn from the truth function of the fuzzy set. The term truth function is often used interchangeably with degree of membership.

Truth function is a view that the degree of membership axis of a fuzzy set or region acts as a function (A = T(x) for each unique value selected from the domain. The function returns a unique degree of membership in the fuzzy region. It is called a "truth" function since it reflects the truth of the fuzzy proposition "x is a member of fuzzy set A".

Hedge is a term, basically linguistic in nature, which modifies the surface characteristics of a fuzzy set. A hedge has an adjectival or adverbial relationship with a fuzzy set. Hedges can:

· approximate a scalar or another fuzzy set (near, close to, around, about, approaching); 

· intensify a fuzzy set (very, extremely); 

· dilute a fuzzy set (quite, rather, somewhat); 

· create a complement of fuzzy set (not);

· intensify or diffuse through contrasting (positively, generally).

The definition and calibration of hedges play an important part in the construction and validation of fuzzy systems.

Fuzzy numbers are numbers that have fuzzy properties. Models deal with scalars by treating them as fuzzy regions through the use of hedges. A fuzzy number generally assumes the space of a bell or triangular curve with the most probable value for the space at the center of the curve. Fuzzy numbers obey the rules for conventional arithmetic but also have some special properties. 

Fuzzy operators are the class of connecting operators, notably AND and OR, that combines antecedent fuzzy propositions to produce a composite truth value. The  
traditional Zadeh fuzzy operators use the min-max rules, but several other alternative operator classes exist. Fuzzy operators determine the nature of the implication and inference process and thus establish the nature of fuzzy logic for that implementation.

Min-Max rule is the basic rule of implication and inference for fuzzy logic that follows the traditional Zadeh algebra of fuzzy sets. There are two statements of this rule pertaining to different elements in the fuzzy logic process.

The min-max rule of implication specifies how fuzzy unions and intersections are performed. When two fuzzy sets are combined with the intersection operator (AND), the resulting fuzzy space is found by taking the minimum of the truth functions across the compatible domains. When two fuzzy sets are combined with the union operator (OR), the resulting fuzzy space is found by taking the maximum of the truth functions across the compatible domains.

The min-max rule of inference specifies in a fuzzy system how conditional and unconditional fuzzy assertions (propositions) are combined. An unconditional assertion is applied to the consequent fuzzy region under generation by taking the minimum of the unconditional's fuzzy space and the consequent's fuzzy space at each point in the region. A conditional fuzzy proposition first has its truth reduced to the maximum truth of the rule's premise, then it is applied to the consequent fuzzy region under generation by taking the maximum of the conditional's fuzzy space and the consequent's fuzzy space at each point in the region.

Rules are statements of knowledge that relate the compatibility of fuzzy premise propositions to the compatibility of one or more consequent fuzzy space. The rules most often have the IF...THEN structure. 

The rule: 

                  IF x is high, THEN y is decreased; 

is interpreted as a correlation between two fuzzy states such that the rule should be read as:

                  [to the degree that] x is high,

                   y is [proportionally] decreased;

or, perhaps, in a slightly more formal statement considering the idea of fuzzy compatibility:

                  [to the degree that]x

                   is [compatible with the concept] high,

                   make y [compatible with the concept] decreased.

The proportionality needs not to be linear. In fact, the correspondence or compatibility function between an antecedent fuzzy region and a consequent fuzzy state is determined by:

· the shape of the fuzzy sets,

· the connector (implication) operators,

· the preponderance of truth in antecedent,

· the technique for transforming the consequent fuzzy region from the current fuzzy state.

9.2. Fuzzy Expert System

The organization level, as described in Chapter 8, may be structured to form an expert system. That concept will be worked out in the terms of fuzzy logic.

9.2.1. Designing a Fuzzy Expert System

In developing an expert systems (or any other system) there are few steps to perform [27]:

· the problem must be clearly defined as well as the purpose of the project,

· the range of the possible conclusions, which may be reached in addressing particular instances of the project, should be laid out,

· the input and output data, which will be needed to reach the conclusions and thus achieve the predefined purpose, should be defined,

· the reasoning process, which the expert goes through to relate input to proper output data, should be defined,

· backtracking and revision of earlier steps is to be performed.

In designing a fuzzy expert system there are also other aspects to be considered. There are several choices for the input data, breaking down into two categories: crisp (non-fuzzy) or fuzzy. The operation on input data, which is very interesting for an expert system, is comparison, because the rules will be often based on comparisons of the input data to values.

If the input data are strings, the only comparison, which can be made is crisp (non-fuzzy) checking of two strings for equality or inequality.

If the input data are numbers, the comparison may be crisp or fuzzy. If the comparison is crisp, the two numbers can be compared by using comparison operators: < (less than), <= (less than or equal to), = (equal), > = (greater than or equal to), > (greater than) and <> (not equal). The number compared can be an input value or a number computed from input values. The number compared to can be a fixed value, another input value or a value computed from input values.

If the comparison is fuzzy, there are two major types of comparisons, depending on whether the input number is to be compared to a fixed standard using fuzzy set or to a number derived from an input number using approximate comparisons.

An input number, or a number derived from an input number, can be categorized using word descriptors such as "Large" or "Small" by the fuzzification procedure.

This procedure permits writing rules using such phrases as "x is Large" or "y is Small".

Approximate comparisons can use phrases such as "x ~= about 5", where symbol ~= 

means "approximately equal to". A full range of approximate numerical comparisons is available: ~<, ~<=, ~=, ~>=, ~>, and ~<> corresponding to the equivalent crisp comparisons.

The use of word descriptors is especially useful when is known in advance what the descriptive word mean. The approximate comparisons are very useful when there are not certainty about what either of the numbers being compared are until the program is running.

As the process proceeds from defining overall aims through specific conclusions which may be reached to definition of data required, it will probably be necessary to start building up a multi-step reasoning process with intermediate conclusions. Such a multi-step reasoning process is almost always to be expected in expert systems. The initial data lead to preliminary conclusions as output from the rules. These in turn serve as input to succeeding rules, quite possibly leading to acquiring more data, or take a fresh look at the problem using the old data.

9.2.2. Rule-Based Reasoning 

Having some data and some conclusions, which are to be evaluated, it is necessary to lay out reasoning process, which connects data to conclusions.

The formalism used by fuzzy expert production systems is a set of rules of the type:

IF (certain specified patterns occur in the data)

THEN (appropriate actions are to be taken, including modifying old data or 
             asserting new data)

The IF part of the rule (left-hand side of the rule) is known technically as the antecedent or LHS. The THEN part of the rule (right-hand side of the rule) is called the consequent or RHS. The antecedent consists of tests to be made on existing data. The consequent holds actions to be taken if the data pass the tests in the antecedent.

For specific data, which satisfy the antecedent, the inference process should compute the confidence (membership degree, truth function) that the entire antecedent is true. This antecedent confidence, together with the confidence in the rule itself, should become the confidence with which actions specified by the consequent are taken. In particular, any data modified or created by the consequent should have that confidence attached.

A rule is fireable if the data yield an antecedent confidence above the rule firing threshold. To be actually fired, the rule must also be turned on for firing and the rule must be picked for firing. 
The flexibility offered by the rule paradigm for formalizing thinking is very convenient. The antecedent can include reasoning in terms of words rather than numbers, approximate comparisons, and qualifiers (hedges) applied to word descriptors. The consequent can include a large variety of actions, including modifying or deleting the data, reading or writing data files, writing or reading from the screen, turning rules or block of rules on or off, etc.

9.2.3. Reasoning Patterns and Rule-Firing Schemes

The confidence that the rule is active and the antecedent is true is called the posterior confidence. That term is used since it cannot be determined until the antecedent confidence is known as well as the rule confidence. The posterior confidence of an instance of a rule is the minimum of the rule confidence and the antecedent confidence. The rule fireability is determined solely by the antecedent confidence. The posterior confidence does not come into consideration until the actual firing of the rules is concerned.

The backbone to any expert system is the inference engine, which processes the rules and data and decides what to do next.

There are two possibilities for rule firing: serial and parallel. Serial rule firing corresponds to deductive logic, and it involves firing one rule at a time, and reevaluating rule firing after each step. The parallel rule firing corresponds to inductive logic, and it fires all fireable rules effectively at once. Which type is better depends partly on the problem, partly on how the input data are acquired.

Serial rule firing with backtracking has been widely used in artificial intelligence. This mode amounts to a depth-first search of a decision tree. As a rule is fired, a number of other possibilities may open up. A newly fireable rule will correspond to each of the possibilities. The most likely rule for firing is selected, the others are put on the stack for future reference, and the selected possibility is verified. In the case of success, more possibilities may open up, and other rules may become newly fireable. The whole process is repeated again, i.e. the most likely rule is selected, the others are put on the stack, and the selected one is verified. This process is repeated until a final answer is verified or until a possibility is rejected. If a possibility is rejected in any stage, and no new rules become fireable, the rules stacked for future reference are retried. The last one stacked is popped off the stack, fired and verified. The process of popping a previously saved possibility off a stack is called backtracking, and is very important for this reasoning process. The process of a depth-first search is shown on the Figure 9.2.1.
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Figure 9.2.1. Depth-First Search of a Decision Tree with Backtracking

The alternate reasoning strategy is parallel rule firing. It is much more akin to inductive pattern recognition than is serial rule firing. This strategy is particularly useful when multiple fuzzy sets are employed. The data makes rules fireable or not. In one round of parallel firing all fireable rules are fired, no fireable but unfired rules are left over for backtracking. The sequence of operations in round of parallel rule firing is:

· a list is made of rules made newly fireable by the data;

· these rules are fired and a list prepared of data modifications called for;

· only those data modifications permitted by the truth maintenance system are carried out.
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This sequence is shown on the Figure 9.2.2.

Figure 9.2.2. A Round of Parallel Rule Firing

9.2.4. Fuzzification and Defuzzification

Fuzzification is the process of translation of input numbers into confidences in a fuzzy set of word descriptors. That is done by membership (or truth) functions. The  mapping of numeric values into confidence levels for word descriptors usually involves ambiguities. For example if words very low, low, medium, high and very high, are used to express e.g. degrees of risk, some expert will call a certain risk "low", and another will say "medium". For that reason, the overlapping membership functions are used, so the descriptors "low" and "medium" will both carry non-zero truth values. It is generally mistake to try to resolve such ambiguities, since all descriptors with non-zero truth values have some degree of validity. 

The use of overlapping membership functions is extremely important in fuzzy reasoning problems. In fuzzy process control, two adjacent membership functions tend to cross at about half of full confidence. In fuzzy reasoning it is usually advisable to have adjacent membership functions cross at full confidence.

The shape of membership function may be linear or curvilinear (s-shape or bell shape). The shape of membership functions follows definite patterns: as the input number increases, the membership function either start at full confidence and come down to zero; start at zero, come up to full confidence, and then decline to zero again; or start at zero, come up to full confidence and stay there.

The Figure 9.2.3. shows an example of the membership functions for a fuzzy set of Risk descriptors, such as Small, Medium and High.

Defuzzification is the reverse process of fuzzification. It is intuitive that fuzzification and defuzzification should be reversible, that is, if a number is fuzzified into a fuzzy set and immediately defuzzified, the same number should be get back again. 
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Figure 9.2.3. Membership Function for a Fuzzy Set of Risk Descriptors

Defuzzification or decomposition is the process of deriving the expected value of a model solution variable from a consequent fuzzy region. There are several common types of decomposition available in fuzzy system modeling, including composite moments, composite maximum, composite mass, reduced entropy and plateau positioning

Composite mass is a defuzzification method that produces the expected value for a consequent variable by examining the area of the fuzzy consequent that has the highest intersection density of premise fuzzy sets. This will be the area where is the preponderance of rules executed, thus establishing the "most votes" for a value from this region. The composite mass decomposition technique applies the rules of evidence in determining a value for the solution variable.

Composite maximum is a defuzzification method that produces the expected value for a consequent variable by examining the edges of the fuzzy space across the fuzzy region's domain. Composite maximum takes the point with the maximum truth value along this edge and uses the domain value at that point as the solution value. If the region is a single-edged plateau, the point of the left-most edge is selected. This defuzzification method responds to the maximum truth value of any rule that fires in the model.

Composite moments is a defuzzification method that produces the expected value for a consequent variable by calculating the center of gravity (or first moment of inertia) for the consequent fuzzy region. This is also called the centroid method. Composite moments is widely used in process control and robotics since it tends to smooth out the solution variable's fuzzy region, eliminating the abrupt value jumps that are often associated with boundary movements in the composite mass and maximum methods.
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