

	Forward-Chaining
 A commonly use of modus 	used paradigm in logic is forward-chaining: that is, repeated ponens:
1. {a^b,r=>	q^t,q=>s,s^q=>done,r^m}>{a,b,r=>q,q=>s,s^q=>done,r,m}
2. {a,b,r=>c	l,q=>s,s^q=>done,r,m,q}
3. {a,b,r=>0	q,q=>s,s^q=>done,r,m,q,s}
4.{a,b,r=>q	,q=>s,s^q=>done,r,m,q,s,done}
Note that we can put sentences into a "normal form" using only ^, => and ~. As a result, we can make forward chaining complete	
2/18/04	CS 435, Copyright G.D. Hager

Similar	ly, We Can Backward Chain
• Given {a,b,r=	>q,q=>s,s^q=>done,r,m}, prove "done":
2. s<=q ===>	q ====> prove s, prove q > prove q • prove r < "a given"
•	reates a tree of desired subproofs which must minate with a fringe of "givens"
Hard to make this complete in general, although we will see a case where this is a complete inference procedure	
2/18/04	CS 435, Copyright G.D. Hager

	The Resolution Rule
 Suppos Proceet contrad Use a s 	f a=>b and a as givens se we want to prove b d by contradiction: assert ~b and show it leads to a liction special normal form: CNF> a conjunct of disjuncts b, a, ~b
 Note th that y is 	at if we have x v y, \sim x in the set, then it must be the case true
	a v b,a> b; but b, ~b> empty clause tradiction!!
2/18/04	CS 435, Copyright G.D. Hager

Но	ow Can We Interpret FOL?
 A mapp e.g. For eac deno 	e <i>U</i> of objects sing c that relates constants to elements of <i>U</i> c(John) = th function symbol f of n arguments, a function f^{U} : $U^n \Diamond U$ ote I[M](f) th predicate P of n arguments, a subset P^U of U^n I[M](P)
For interpret	etation, assume wff's that are uniquely named
 Consider a substitution s to be a list of pairs x/u where x is a variable in the language and u is an element of U a [s] is the sentence a with all of the variable assignments given in s 	
2/18/04	CS 435, Copyright G.D. Hager

	Resolution Strategies
	nit Preference always try to resolve with single literals
	et of support Start with negated query and only resolve against descendents of that query
_	 put Resolution Every resolution combines an input sentence (KB or query) with some other sentence linear resolution is a slight generalization
	ubsumption only keep the most general set of sentences around
2/18/04	CS 435, Copyright G.D. Hager