Artificial Intelligence Logic and Theorem Proving

Professor Hager
http://www.cs.jhu.edu/~hager

Reading: Chapters 6, 7, 9 of R\&N

Unit III: Logic

- One of the original problem areas in Al was mathematical theorem proving: logic theorist, GPS
- first complete inference procedure was computational
- Early on many researchers realized that it was essential to have a "formal" language for talking about knowledge
- logic seems like the obvious language
- These two facts have led logic and logical inference to be generally viewed as essential to symbolic AI
- explicit language for expressing "knowledge"
- formal inference procedures
- nothing "hidden" in the code --- a fully declarative approach

R\&N Notes

- R\&N tries to avoid some of the formal details by extended "intuitive explanations
- I prefer to present some ideas a little more formally
- R\&N uses the wumpus world to illustrate ideas
- I will not use the wumpus world, but you may want to read though it
- R\&N spends a lot of time on propositional logic
- I'll move to first order as quickly as possible

Logic: The Landscape

- Logics consists of two basic pieces:
- syntax --- what is written down; the language
$3<=6, a>b, 4+6=9, p^{\wedge} q, K p=>K K p, \ldots$
- semantics --- the meaning of the language; what it says about the world --- the definition of what it means to be true
$\mathrm{p}, \mathrm{q}, \ldots$ take on values 0 and $1, \mathrm{p}^{\wedge} \mathrm{q}$ true iff both $\mathrm{p}^{\wedge} \mathrm{q}$ are 1
- Two notions of determining what follows from what we know
- $\mathrm{KB}|=\mathrm{a}\rangle \mathrm{KB}$ entails a ; if KB is true, then so is a
- KB $\left.\right|_{-\mathrm{i}} \mathrm{a} \diamond$ inference procedure i derives a from the sentences in KB

Logic: The Landscape

- We can make up any way of creating new sentences from old
$-i$ is sound if $\left.K B\right|_{-}$a implies that $K B \mid=a$
- we only derive statements that are true given what we know
- the record of the derivation is called a proof
- i is complete if $\mathrm{KB} \mid=\mathrm{a}$ implies that $\mathrm{KB} \mid{ }_{-\mathrm{i}} \mathrm{a}$
- if a fact is true, we can derive it
- Soundness is essential (and usually easy)
- Completeness is hard (and sometimes impossible!)

Semantics

- Semantics is the link between what we write (syntax) and what it means (semantics)
- Suppose that S is the set of all sentences in the language (we have to define this)
- Suppose that I is a function that maps every sentence of S to some interpretation of that sentence: M is a model that determines the basic truth values of the primitives:
e.g I[M]: $S \diamond\{$ True,False $\}$
- We will assume all of our languages of compositional: we can recursively define the meaning of sentences in terms of their components

Semantics

- A sentence s is true under an interpretation (alternatively, true in a model M) if $\mathrm{I}[\mathrm{M}](\mathrm{s})=$ True
- I will sometimes write $\mathrm{M} \mid=\mathrm{s}$
- Think about KB |= s as shorthand for forall M such that $\mathrm{M}|=\mathrm{KB}, \mathrm{M}|=\mathrm{a}$
- A sentence s is valid if it is true in all interpretations (true in all models)
- I will sometimes write |= s
- This is really just like the above; we just don't constrain the models we consider
- A sentence s is satisfiable if it is true in some interpretation (or model)
- A sentence s is unsatisfiable if it true in no interpretation

Propositional Logic: An Example

- Atoms: True, False, p, q, dave_is_here, students_sleep_in_AI
- Language: Sent = Atom |
\sim Sent | Sent ${ }^{\wedge}$ Sent | Sent v Sent |
- Model: set of pairs: $\{(p, 1),(q, 0)$, (students_sleeping 1$), .$.
- Atoms:
- $1[\mathrm{M}]$ (True) $=$ True
- $\mid[M](F a l s e)=$ False
- $\mathrm{I}[\mathrm{M}](\mathrm{a})=$ True if $(\mathrm{a}, 1)$ in M ; False otherwise
- Connectives:
- $1[M](\sim s)=$ True if $1[M](s)$ is False; False otherwise
- $[[M](s 1 \mathrm{v} 2)=$ True if either $[[\mathrm{M}](\mathrm{s} 1)$ is true or $[[\mathrm{M}](\mathrm{s} 2)$ is true; False otherwise
- $1[\mathrm{M}]\left(\mathrm{s} 1^{\wedge} \mathrm{s} 2\right)=$ True if both $\mathrm{I}[\mathrm{M}](\mathrm{s} 1)$ is true and $\mathrm{I}[\mathrm{M}](\mathrm{s} 2)$ is true; False otherwise

2/18/04
CS 435, Copyright G.D. Hager

Propositional Logic: An Example

- Atoms: True, False, p, q, dave_is_here, students_wake_up, ...
- Language: Sent = Atom |
\sim Sent | Sent ${ }^{\wedge}$ Sent | Sent v Sent
- Model: a universe U; each element p associated with S_{p}, a subset of U
- Atoms:
- $\mathrm{I}[\mathrm{M}](\mathrm{a})=\mathrm{S}_{\mathrm{a}}$
- $1[\mathrm{M}]($ True $)=\mathrm{U}$
- $1[\mathrm{M}]$ (False) $=\varnothing$
- Connectives:
$-\mathrm{I}[\mathrm{M}](\sim \mathrm{s})=\mathrm{U}-\mathrm{I}[\mathrm{M}](\mathrm{s})$
$-1[M](s 1 \vee s 2)=1[M](s 1) \cup 1[M](s 2)$
$-1[M]\left(s 1^{\wedge} s 2\right)=I[M](s 1) \cap I[M](s 2)$

Propositional Logic: Inference

- We could do inference for propositional logic just by checking models
- 2^{n} potential true values for a sentence with n atoms
- Normally, we (well, computer scientists) manipulate syntax
- many logics (e.g. first order) don't have enumerable models!
- Proof theory is the way that define how we manipulate symbols
- e.g. modus ponens (defining $a=>b$ as $\sim a v b$) - given a and a => b, we conclude b
- modus ponens is sound
- hint: assume this is not the case and work it through ...
- Is modus ponens complete
- yes --- if we provide enough axioms!

2/18/04
CS 435, Copyright G.D. Hager

Forward-Chaining

- A commonly used paradigm in logic is forward-chaining: that is, repeated use of modus ponens:

1. $\left\{a^{\wedge} b, r=>q^{\wedge} t, q=>s, s^{\wedge} q=>\right.$ done,$\left.r^{\wedge} m\right\}->\left\{a, b, r=>q, q=>s, s^{\wedge} q=>\right.$ done $\left., r, m\right\}$
2. $\left\{a, b, r=>q, q=>s, s^{\wedge} q=>\right.$ done $\left., r, m, q\right\}$
3. $\left\{a, b, r=>q, q=>s, s^{\wedge} q=>\right.$ done $\left., r, m, q, s\right\}$
4. $\left\{\mathrm{a}, \mathrm{b}, \mathrm{r}=>\mathrm{q}, \mathrm{q}=>\mathrm{s}, \mathrm{s}^{\wedge} \mathrm{q}=>\right.$ done, $, \mathrm{m}, \mathrm{q}, \mathrm{s}$, done $\}$

Note that we can put sentences into a "normal form" using only \wedge, => and \sim. As a result, we can make forward chaining complete

Similarly, We Can Backward Chain

- Given $\left\{a, b, r=>q, q=>s, s^{\wedge} q=>d o n e, r, m\right\}$, prove "done":

1. done $<=s^{\wedge} \mathrm{q}====>$ prove s , prove q
2. $s<=q===>$ prove q
3. $q<=r===>$ prove $r<-----$ "a given"

In general, this creates a tree of desired subproofs which must eventually terminate with a fringe of "givens"

Hard to make this complete in general, although we will see a case where this is a complete inference procedure

Propositional Logic: Inference

- Natural deduction systems require only one axiom, but more rules
- Generally written in the form of trees
- Example: show that $r^{\wedge}(p=>q)^{\wedge} p \mid-q \vee t$
- Rules:
- modus ponens
- and-elim
- or-intro
- and-intro
- double negation elimination
- unit resolution
- general resolution

The Resolution Rule

- Think of $a=>b$ and a as givens
- Suppose we want to prove b
- Proceed by contradiction: assert ~b and show it leads to a contradiction
- Use a special normal form: CNF --> a conjunct of disjuncts - ~avb, a, ~b
- Note that if we have $\mathrm{x} v \mathrm{y}, \sim \mathrm{x}$ in the set, then it must be the case that y is true
- Thus, $\sim a \operatorname{v} b, a-->b ;$ but b, ~b ---> empty clause <<<contradiction!!

Resolution is Enough

- The idea of resolution is to use a canonical form:
$-r^{\wedge}(p=>q)^{\wedge} p \mid-q \vee t$ is the same as $\mid-\left(r^{\wedge}(p=>q)^{\wedge} p\right)=>q \vee t$
- Put into CNF (a conjunct of disjuncts)
- Apply the resolution rule (a lot)
- Other facts about proposition (and the other logics we care about)
- monotonicity: adding facts doesn't make things that were true untrue
- locality: we don't need to inspect the entire KB to infer something
- Imagine trying to formalize family relationships using PL
- john_sonof_dave, mary_motherof_john
- can we describe an infer the notion of grandmother (or, more generally, ancester)?

First Order Logic

- Propositional logic is often referred to as "0th-order" logic
- you can only talk about facts, not objects in the world
- first order talks about objects
- second order talks about sets of objects (predicates)
- third order talks about sets of sets of objects (predicates on predicates)
-
- Invented by Frege, Peano, 1880's
- Even with first order logics, there are lots of questions as to what to include in the language
- equality
- arithmetic
- sets

FOL: Syntax

- Term: constant | variable | fn (term ${ }_{1}$, term ${ }_{2}$,.. term ${ }_{\mathrm{n}}$)
- ground terms contain no variables
- AtomicSentence: pred (term ${ }_{1}$, term $_{2}, .$. term $_{\mathrm{n}}$)
- Sentence: AtomicSentence | ~Sentence |

Sentence connective Sentence quantifier Sentence (Sentence)

- quantifier: $\forall \mid \exists$ (by convention, scope as far as possible)
- connective: ^ $|\vee| \diamond|\Downarrow\rangle \mid \sim$
- W.L.G, we will assume that all variables are quantified: a wellformed formula (wff -- pronounced "woof")

2/18/04
CS 435, Copyright G.D. Hager

An Example

- $\forall x$ male (x) v female $(x)^{\wedge} \forall x \sim\left(\right.$ male $(x)^{\wedge}$ female $\left.(x)\right)$
- $\forall x y z$ parentof $(\mathrm{x}, \mathrm{y})^{\wedge}$ ancesterof $(\mathrm{y}, \mathrm{z}) \diamond$ ancesterof (x, z)
- $\forall x y$ parentof $(x, y)\rangle$ ancesterof (x, y)
- $\forall x$ parentof $(f a t h e r o f(x), x)^{\wedge}$ parentof($\left.\operatorname{motherof}(\mathrm{x}), \mathrm{x}\right)^{\wedge}$ male $(f a t h e r o f(\mathrm{x}))$ \wedge female(motherof(x))
- $\forall x \exists y 1, y 2$ parentof $(y 1, x)^{\wedge}$ parentof $(y 2, x)^{\wedge} \sim(y 1=y 2)$
- $\forall x, y$ childof $(y, x) \Downarrow\rangle$ parentof (x, y)
- male(john), female(annika), parentof(annika,john)
- E.g. show $\forall x \exists y$ ancesterof (y, x)

A Few Facts

- $\forall x \sim P(x)==\sim \exists x P(x)$
- $\exists x \sim P(x)==\sim \forall x P(x)$
- Equality is semantic --- objects denote the same thing - equivalent to a two place predicate of identical pairs
- Other extensions
- lambda operators
- unique existence \exists !

How Can We Interpret FOL?

- Model:
- Universe U of objects
- A mapping c that relates constants to elements of U
- e.g. $c(J o h n)=$
- For each function symbol f of n arguments, a function $f \cup: U^{n} \diamond U$
- denote $\mathrm{I}[\mathrm{M}](\mathrm{f})$
- For each predicate P of n arguments, a subset P^{U} of U^{n}
- denote $\mathrm{I}[\mathrm{M}](\mathrm{P})$
- For interpretation, assume wff's that are uniquely named
- Consider a substitution s to be a list of pairs x / u where x is a variable in the language and u is an element of U
- $a[s]$ is the sentence a with all of the variable assignments given in s

A Sketch of Interpretation

- Terms:
- $\mathrm{I}[\mathrm{M}, \mathrm{s}]$ (constant) $=\mathrm{c}$ (constant)
- $1[\mathrm{M}, \mathrm{s}]($ variable $)=u$ where x / u is in s
$-\mathrm{I}[\mathrm{M}, \mathrm{s}](\mathrm{f}(\mathrm{t} 1, \mathrm{t} 2, \ldots \mathrm{tn}))=\mathrm{I}[\mathrm{M}](\mathrm{f})(\mathrm{l}[\mathrm{M}, \mathrm{s}](\mathrm{t} 1), \mathrm{I}[\mathrm{M}, \mathrm{s}](\mathrm{t} 2) \ldots \mathrm{I}[\mathrm{M}, \mathrm{s}](\mathrm{tn}))$
- Atomic Sentences
$-\mathrm{I}[\mathrm{M}, \mathrm{s}](\mathrm{P}(\mathrm{t} 1, \mathrm{t} 2, \ldots \mathrm{tn})=$ true if $\langle[[\mathrm{M}, \mathrm{s}](\mathrm{t} 1), \ldots \mathrm{I}[\mathrm{M}, \mathrm{s}](\mathrm{tn})>\in \mathrm{I}[\mathrm{M}](\mathrm{P})$
false otherwise
- Sentences
- $1[M, s](P 1 \vee P 2)=$ true if one of $I[M, s](P 1)$ or $1[M, s](P 2)$ is true
- $1[M, s](\forall x P)=$ true if for every $u \in U, I[M, s \cup\{x / u\}](P)$ is true
- $1[M, s](\exists x P)=$ true there is some $u \in U$ such that $1[M, s \cup\{x / u\}](P)$ is true

Proofs in FOL

- Note that now, except in special cases, our models are infinite in number --enumeration no longer works
- We can use the same general system as with propositional logic, except we need some extra rules (page 266 R\&N or http://plato.stanford.edu/entries/logicclassical/)
- Universal Elimination
- Existential Elimination (there is a bug here)
- Existential Introduction
- occurs check!
- Universal Introduction (if a $\mid-\mathrm{v}$ and x does not occur free in V and a $\mid-\forall x \vee$ would be the normal rule)
- Consider two statements
- $\forall x \exists y p(x, y)=>\exists y \forall x p(x, y)$
- $\exists y \forall x p(x, y)=>\forall x \exists y p(x, y)$
- which is true?
- how could we prove it?

2/18/04
CS 435, Copyright G.D. Hager

Example

- From our previous axiomitization
$\forall x$ male (x) v female $(x)^{\wedge} \sim\left(\operatorname{male}(x)^{\wedge}\right.$ female $\left.(x)\right)$

2. $\forall x y z$ parentof $(\mathrm{x}, \mathrm{y})^{\wedge}$ ancesterof $(\mathrm{y}, \mathrm{z}) \diamond$ ancesterof (x, z)
3. $\forall x y$ parentof $(x, y) \diamond$ ancesterof (x, y)
4. $\forall x$ parentof $(\text { fatherof }(x), x)^{\wedge}$ parentof $(\operatorname{motherof}(x), x)^{\wedge}$ male $(\text { fatherof }(\mathrm{x}))^{\wedge}$ female(motherof(x))
5. $\forall x \exists y 1, y 2$ parentof $(y 1, x)^{\wedge}$ parentof $(y 2, x)^{\wedge} \sim(y 1=y 2)$
6. $\forall x, y$ childof $(\mathrm{y}, \mathrm{x}) \downarrow$ 洛 parentof (x, y)
7. male(john), female(annika), parentof(annika,john)

- show
- $\forall x \exists y$ ancesterof $(\mathrm{y}, \mathrm{x})^{\wedge}$ female(y)
- childof(john, annika)
- ~childof(annika,john)

Resolution in FOL

- Recall we talked briefly about the resolution principle in propositional logic:
- convert to clausal form
- use the resolution rule
- try to derive an empty clause
- For first order logic, it's about the same thing, but we now have to deal with quantifiers:
$-\exists y \forall x p(x, y)=>\forall x p(x, A)$ where A is a new symbol
- $\forall x \exists y p(x, y)=>$???
- intuitively, $\forall x p(x, A)$ is wrong
- we want to capture the idea that the existential quantifier is somehow dependent on the universal scoped outside of it

Skolemization

- Skolemization (named after the Polish logician Skolem)
- replace each existentially quantified variable with a new function with arguments that are any universally quantified variable scoped outside of it
$-\exists y \forall x p(x, y)=>\forall x p(x, s k 1)$
- $\forall x \exists y p(x, y)=>\forall p(x, s k 2(x))$
$-\forall x \exists y \exists z p(x, y)^{\wedge} q(x, z) \diamond \forall x p(x, s k 3(x))^{\wedge} q(x, s k 4(x))$
$-\forall x \forall y \exists z p(x, y)^{\wedge} q(x, z) \diamond \forall x y p(x, y)^{\wedge} q(x, s k 5(x, y))$
- Note this is a way to deal with the limitations of the natural deduction system in the book

2/18/04

Conversion to Normal Form

- Negate the formulate to be proven
$-\sim(\exists y \forall x p(x, y)=>\forall x \exists y p(x, y))$
- Replace A => B by ~A v B
- ~(~ヨy $\forall x p(x, y) \vee \forall x \exists y p(x, y))$
- Move negation inward
$-\exists y \forall x p(x, y)^{\wedge} \exists x \forall y \sim p(x, y)$
- Standardize apart
$-\exists y \forall x p(x, y)^{\wedge} \exists w \forall z \sim p(w, z)$
- Move quantifiers left
$-\exists y \forall x \exists w \forall z p(x, y)^{\wedge} \sim p(w, z)$
- Skolemize
$-p(x, s k 1)^{\wedge} \sim p(s k 2(x), z)$

Conversion to Normal Form

- Distribute ${ }^{\wedge}$ over v
- we don't have any, but in general $\left(a^{\wedge} b\right) \vee c \diamond(a \vee c)^{\wedge}(b \vee c)$
- Drop the ${ }^{\wedge}$ and v and write sets of clauses
$-\{p(x, s k 1)\}\{\sim p(s k 2(x), z)\}$
- As a result, we have sets of clauses that we can now apply the resolution rule to
- find a set with a positive term that matches a negative term in another set
- but to do so, we need to understand how to match things

Unification

- The process of matching is called unification:
$-p(x)$ matches p (Jack) with $x=$ Jack
- $q(f a t h e r o f(x), y)$ matches $q(y, z)$ with $y=$ fatherof (x) and $z=y$
- note the result of the match is $q(f a t h e r o f(x)$,fatherof $(x))$
- $p(x)$ matches $p(y)$ with
- $x=$ Jack and $y=$ Jack
- $x=$ John and $y=$ John
- or $x=y$
- The match that makes the least commitment is called the most general unifier (MGU)
- We can phrase unification in terms of the parse tree of the expression
- We use the notation subst (t, s) to denote the application of the substitution $\mathrm{s}=\{\mathrm{v} 1 / \mathrm{t} 1, \mathrm{v} 2 / \mathrm{t} 2 \ldots \mathrm{vn} / \mathrm{tn})$ to t .

2/18/04
CS 435, Copyright G.D. Hager

Unification Algorithm

- Given two formulas A and B, first standardize them apart
- parentof(fatherof(John),y) parentof(y,z) \diamond
- parentof(fatherof(John),v1) parentof(v2,v3)
- Unify(t1,t2): Determine if the head matches and the same arity
- for each pair of terms, call Unify-term(t1,t2) which returns a substitution S
- Apply S to the remaining terms and repeat the process for the remaining terms
- Return the total substitution (theunion) so computed
- Unify-term(t1,t2)
- a constant matches the same constant
- a variable v matches a term t (with substitution $v=t$) provided v does not occur in t; return the substitution (note how this works with skolemization
- Otherwise, we must have two terms, t 1 and t 2 .
- Call Unify on t 1 and t 2 and return the resulting substitution

Resolution Examples

- $\forall x \exists y p(x, y) \diamond \exists y \forall x p(x, y)$
- $\exists y \forall x p(x, y) \diamond \forall x \exists y p(x, y)$
- From our previous axiomitization
- $\forall x \operatorname{male}(x) \vee$ female $(x)^{\wedge} \sim\left(\operatorname{male}(x)^{\wedge}\right.$ female $\left.(x)\right)$
- $\forall x y z$ parentof $(x, y)^{\wedge}$ ancesterof $(\mathrm{y}, \mathrm{z}) \diamond$ ancesterof (x, z)
- $\forall x y$ parentof $(x, y) \diamond$ ancesterof (x, y)
- $\forall x$ parentof $(\text { fatherof }(\mathrm{x}), \mathrm{x})^{\wedge}$ parentof $(\operatorname{motherof}(\mathrm{x}), \mathrm{x}) \wedge$ male $(\text { fatherof }(\mathrm{x}))^{\wedge}$ female(motherof(x))
- $\forall x \exists y 1, y 2$ parentof $(\mathrm{y} 1, \mathrm{x})^{\wedge}$ parentof $(\mathrm{y} 2, \mathrm{x})^{\wedge} \sim(\mathrm{y} 1=\mathrm{y} 2)$
- $\quad \forall x, y$ childof $(y, x) \downarrow \diamond$ parentof (x, y)
- male(john), female(annika), parentof(annika,john)
- show
- $\forall x \exists y$ ancesterof $(\mathrm{y}, \mathrm{x})^{\wedge}$ female (y)
- childof(john, annika)
- ~childof(annika,john)

Example

- Relevant clausal forms from KB
- \{~parentof(x, y), ancesterof($x, y)\}$
- \{parentof(motherof(x),x)\}
- \{female(motherof(x))\}
- negated goal
- $\sim \forall x$ ヨy ancesterof($\mathrm{y}, \mathrm{x})^{\wedge}$ female(y)
- \{~ancesterof($\mathrm{y}, \mathrm{A}), \sim$ female $(\mathrm{y})\}$
- Proof (done in class)

Resolution Strategies

- Unit Preference
- always try to resolve with single literals
- Set of support
- Start with negated query and only resolve against descendents of that query
- Input Resolution
- Every resolution combines an input sentence (KB or query) with some other sentence
- linear resolution is a slight generalization
- Subsumption
- only keep the most general set of sentences around

