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"I ® Finishinformed search methods

(‘l ® HW Assignment #2 available soon

Informed Search Methods

o Best-first search
— Greedy search
— A* search
* Memory bounded search
— IDA*
— SMA*
« Iterated improvement algorithms
— Hill-climbing
— Simulated annealing

Aswith blind search, the strategy is defined by choosing the
order of node expansion

Effective Branching Factor

* Though informed search methods may have poor worst-
case performance, they often do quite well if the heuristic
isgood

— Evenif there is a huge branching factor

« Oneway to quantify the effectiveness of the heuristic: the

effective branching factor, b*
— N: total number of nodes expanded
— d: solution depth
— N=1+b"+(b')2+...+(b)¢

» For agood heuristic, b* iscloseto 1

Example: 8-puzzle problem

Averaged over 100 trials each at different solution lengths

Search Cost Effective Branching Factor
d DS A*(hy) A¥(hy) DS A*(hy) A*(hy)
2 10 6 6 245 179 179
4 112 13 12 2.87 148 145
6 680 20 18 273 134 1.30
H 6384 39 25 280 133 124
10 47127 93 39 279 138 122
i) 364404 27 7 278 142 124
14 3473941 539 13 283 144 123
16 = 1301 211 = 145 125
18 S 3056 363 = 146 1.26
20 7276 676 147 127
2 - 18094 1219 - 148 128
24 - 39135 1641 - 148 1.26
Ave. # of nodes expanded
Solution length

A* Search

e “A* Search” usesan admissible h
— f(n) = g(n) + h(n) (“past plus future cost”)
— Sof(n) never overestimates the actual cost of the best solution
passing through node n
— Ax isoptimally efficient for any particular h(n)
That is, no other optimal agorithm is guaranteed to expand
fewer nodes

function A*-SEARCH(problem, h) returnsa solution or failure
return BEST-FIRST-SEARCH(problem, f )

What if your hisalmost admissible?

A* Search Example

to Bucharest
Arad
Bucharest
Craiova
Dobreta
Eforie

92 Fagaras
Giurgiu

99  Fagaras

Sibiu
u
Hirsova
Tasi
Lugoj
Mehadia
Neamt
Oradea
Pitesti
Rimnicu Vileea
Sibiu
Timisoara
Urziceni
Eforie  Vaslui

Zerind

Use hg (n) — straight-line distance to goal

Straight-line distance

366
0
160
242
161
178
77




Memory Bounded Search

* Memory, not computation, is usually the limiting factor in
search problems

— Certainly true for A* search

* Why? What takes up memory in A* search?

* IDA* and SMA* are designed to conserve memory

Iterative Deepening A* (IDA*)

« IDA* isan optimal, memory-bounded, heuristic search
agorithm
— Requires space proportional to the longest path that it explores
— Space estimate: O(bd)

* Like Iterative Deepening Search
— Usesf-cost limit rather than depth-limit
— InIDS, depth-limit isincremented after each round
— InIDA*, f-cost limit is updated after each round
— Recursive definition

IDA*

function TDA*( problem) returns a solution sequence
inputs: problem, a problem
statie: flimit, the current f- COST Timit
root, 1 node

1001 = MAKE-NODE(INITIAL-STATE[problem])
Flimit « f- Cos1(ro0)
loop do
solution, flimit « DFS-CONTOUR(roof, f-limif)
if solution is non-null then return solution
if flimit = co then return failure: end

function DS-CONTOUR(nade, f-Limir) returns a solution sequence and  new f- COST limit
inputs: node, a node
Jlimit, the cuttent /- COST Tirit
statie: nexro, the f- Cos limit for the next contour, initially oo

if f- CoSsTnode] > f-limit then return null, f- COSTinode]
If GOAT-TEST[problem|(STATR[node]) then return node, f-limit
for each node s in SUCCESSORS(r0de) do
solution, newf ¢ DES-CONTOUR(s, f-limit)
if solution is non-null then return solution, f-limit
nextof & MiN(rextf, new); end
return null, nextf

Simplified Memory-Bounded A* (SMA*)

« IDA* only keeps around the current f-cost limit
— Can check the current path for repeated states, but future paths may
repeat states aready expanded
* SMA* uses more memory to keep track of repeated states
— Up to the limit of allocated memory
— Nodes with high f-cost are dropped from the queue when memory
isfilled (“forgotten nodes’)
« Optimality and completeness depends on how much
memory is available with respect to the optimal solution

— Produces the best solution that can be reached given the available
memory

The cost of being informed

* Typica performance of informed search methods is much
better than uninformed methods

— Assuming reasonable heuristics exist

* However, there is atradeoff involved

— Evaluating the desirability of anode (h) can be a non-trivia
problem

— E.g., theorem proving

How much closer to the theorem are we if we apply this rule?
— Cost of evaluation (heuristic) can be high

1t can be a difficult search problem itself




Cost tradeoff

Overall cost

Cost of evaluating nodes
(control strategy)

Cost of expanding nodes
(rule application)

“Informedness’

Different minimafor computation and memory

Iterative Improvement Algorithms

« Aniterative improvement algorithm starts with a (possibly
random) proposed solution, and then makes modifications
to improve its quality

— Usually keeps information on current state only

For problems in which the path to a solution isirrelevant —
only the solution matters

— Goadl state(s) is(are) not specified, only goa test

— Task: Find configuration that (optimally) satisfies the goal test

— State space = set of “complete” configurations

— Example: VLS layout

Iterative Improvement Algorithms (cont.)

¢ Unlike “path-finding” problems, where the sequence of

operators is important

- M&C

— Towers of Hanoi

— N-puzzle

— Theorem proving

— Robot path planning

- TSP???

— Waell... it depends on how you define the problem

Example

¢ n-Queens problem: Put n queens on an n x n chess board
with no two queens on the same row, column, or diagonal
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Example

¢ Traveling Salesman Problem (TSP)
— Start with any path through the cities
— Changetwo links at atime

Iterative Improvement Algorithms (cont.)

* Anaogy:
— You are placed at arandom point in some unfamiliar terrain (the
solution space) and told to reach the highest peak. It isdark, and
you have only avery weak flashlight (no map, compass, etc.).

— What should you do?

* Two classes of iterative improvement algorithms
— Hill-climbing
Strategy?
— Simulated annealing
Strategy?




Hill Climbing, a.k.a. Gradient Descent

* Strategy: Move in the direction of increasing value
(decreasing cost)
— Assumes areasonable eva uation method!!!
— n-queens? TSP? VLS layout?

Example

Measure of value

“ Solution space’

Example

“ Solution space’ l

* Strategy:
— Climb until goal or stuck
— If stuck, restart in random location

Issues with hill-climbing

« Does not maintain a search tree
— Evaluates the successor states, and keeps only the best one
— Greedy strategy

« Drawbacks
— Loca maxima
— Plateaus and ridges

« Can randomize (re-)starting locations and local strategies
when stuck

— “Random restart hill-climbing”
— But how to know when you're stuck?




