
Artificial Intelligence

CS 165A

Friday, October 18, 2002

→ Finish informed search methods

→ HW Assignment #2 available soon

Informed Search Methods

• Best-first search
– Greedy search
– A* search

• Memory bounded search
– IDA*
– SMA*

• Iterated improvement algorithms
– Hill-climbing
– Simulated annealing

As with blind search, the strategy is defined by choosing the
order of node expansion

Effective Branching Factor

• Though informed search methods may have poor worst-
case performance, they often do quite well if the heuristic
is good
– Even if there is a huge branching factor

• One way to quantify the effectiveness of the heuristic: the
effective branching factor, b*

– N: total number of nodes expanded
– d: solution depth
– N = 1 + b* + (b*)2 + … + (b*)d

• For a good heuristic, b* is close to 1

Example: 8-puzzle problem

Averaged over 100 trials each at different solution lengths

Solution length

Ave. # of nodes expanded

A* Search

• “A* Search” uses an admissible h
– f(n) = g(n) + h(n) (“past plus future cost”)
– So f(n) never overestimates the actual cost of the best solution

passing through node n
– A* is optimally efficient for any particular h(n)

♦ That is, no other optimal algorithm is guaranteed to expand
fewer nodes

function A*-SEARCH(problem, h) returns a solution or failure
return BEST-FIRST-SEARCH(problem, f)

function A*-SEARCH(problem, h) returns a solution or failure
return BEST-FIRST-SEARCH(problem, f)

What if your h is almost admissible?

A* Search Example

Use hSLD(n) – straight-line distance to goal

Memory Bounded Search

• Memory, not computation, is usually the limiting factor in
search problems
– Certainly true for A* search

• Why? What takes up memory in A* search?

• IDA* and SMA* are designed to conserve memory

Iterative Deepening A* (IDA*)

• IDA* is an optimal, memory-bounded, heuristic search
algorithm
– Requires space proportional to the longest path that it explores
– Space estimate: O(bd)

• Like Iterative Deepening Search
– Uses f-cost limit rather than depth-limit
– In IDS, depth-limit is incremented after each round
– In IDA*, f-cost limit is updated after each round
– Recursive definition

IDA*

Simplified Memory-Bounded A* (SMA*)

• IDA* only keeps around the current f-cost limit
– Can check the current path for repeated states, but future paths may

repeat states already expanded

• SMA* uses more memory to keep track of repeated states
– Up to the limit of allocated memory
– Nodes with high f-cost are dropped from the queue when memory

is filled (“forgotten nodes”)

• Optimality and completeness depends on how much
memory is available with respect to the optimal solution
– Produces the best solution that can be reached given the available

memory

The cost of being informed

• Typical performance of informed search methods is much
better than uninformed methods
– Assuming reasonable heuristics exist

• However, there is a tradeoff involved
– Evaluating the desirability of a node (h) can be a non-trivial

problem
– E.g., theorem proving

♦ How much closer to the theorem are we if we apply this rule?
– Cost of evaluation (heuristic) can be high

♦ It can be a difficult search problem itself

Cost tradeoff

Cost

“Informedness”

Cost of expanding nodes
(rule application)

Cost of evaluating nodes
(control strategy)

Overall cost

Different minima for computation and memory

Iterative Improvement Algorithms

• An iterative improvement algorithm starts with a (possibly
random) proposed solution, and then makes modifications
to improve its quality
– Usually keeps information on current state only

• For problems in which the path to a solution is irrelevant –
only the solution matters
– Goal state(s) is(are) not specified, only goal test
– Task: Find configuration that (optimally) satisfies the goal test
– State space = set of “complete” configurations
– Example: VLSI layout

Iterative Improvement Algorithms (cont.)

• Unlike “path-finding” problems, where the sequence of
operators is important
– M&C
– Towers of Hanoi
– N-puzzle
– Theorem proving
– Robot path planning
– TSP???
– Well… it depends on how you define the problem

Example

• n-Queens problem: Put n queens on an n x n chess board
with no two queens on the same row, column, or diagonal

Start
-5

1 iteration
-3

Goal
0

Example

• Traveling Salesman Problem (TSP)
– Start with any path through the cities
– Change two links at a time

Iterative Improvement Algorithms (cont.)

• Analogy:
– You are placed at a random point in some unfamiliar terrain (the

solution space) and told to reach the highest peak. It is dark, and
you have only a very weak flashlight (no map, compass, etc.).

– What should you do?

• Two classes of iterative improvement algorithms
– Hill-climbing

♦ Strategy?
– Simulated annealing

♦ Strategy?

Hill Climbing, a.k.a. Gradient Descent

• Strategy: Move in the direction of increasing value
(decreasing cost)
– Assumes a reasonable evaluation method!!!
– n-queens? TSP? VLSI layout?

Example

“Solution space”

Measure of value

Example

“Solution space”

• Strategy:
– Climb until goal or stuck
– If stuck, restart in random location

Issues with hill-climbing

• Does not maintain a search tree
– Evaluates the successor states, and keeps only the best one
– Greedy strategy

• Drawbacks
– Local maxima
– Plateaus and ridges

• Can randomize (re-)starting locations and local strategies
when stuck
– “Random restart hill-climbing”
– But how to know when you’re stuck?

