Semantics of Propositional Logic

1

Peirce's Law $(((\phi \rightarrow \psi) \rightarrow \phi) \rightarrow \phi)$

Problem

How do we know we have all the required rules for natural deduction?

Peirce gave an example of a theorem using only \rightarrow, whose proof needs \perp as well.

Could we prove even more theorems of PROP by introducing more connectives,
or more rules for the given connectives?

Charles S. Peirce

USA 1839-1914
One of the major inventors of semantics

David Hilbert

Germany 1862-1943
To show a sequent shouldn't be provable, give an interpretation of the formulas so that the hypotheses are true and the conclusion is false.

In mathematics we count 'If ϕ then ψ ' as true whenever ϕ is false. For example we accept as true that:

If p is a prime >2 then p is odd.
For example
If 3 is a prime >2 then 3 is odd. (If TRUE then TRUE.)

But also

If 9 is a prime >2 then 9 is odd. (If FALSE then TRUE.)
If 4 is a prime >2 then 4 is odd. (If FALSE then FALSE.)
The one case we exclude is 'If TRUE then FALSE'.

Example: To show that the sequent $\left(p_{0} \rightarrow p_{1}\right) \vdash p_{1}$ shouldn't be provable.
Interpret both p_{0} and p_{1} as meaning:

$$
2=3 .
$$

Then p_{1} is false, but ($p_{0} \rightarrow p_{1}$) says

$$
\text { If } 2=3 \text { then } 2=3 \text {, }
$$

which is true.
So we mustn't introduce a rule which would deduce p_{1} from $\left(p_{0} \rightarrow p_{1}\right)$.

Moral: To show that $\left(p_{0} \rightarrow p_{1}\right) \vdash p_{1}$ ought not to be provable, we can interpret p_{0} and p_{1} as any two false statements.

The statements themselves don't matter;
only their truth values ($\mathrm{T}=$ True or $\mathrm{F}=$ False) matter.
The truth value of $(\phi \rightarrow \psi)$ is determined by those of ϕ and ψ by the truth table

ϕ	ψ	$(\phi \rightarrow \psi)$
T	T	T
T	F	F
F	T	T
F	F	T

Similarly we can give truth tables for all the connectives:

ϕ	ψ	$(\phi \wedge \psi)$	$(\phi \vee \psi)$	$(\phi \rightarrow \psi)$	$(\phi \leftrightarrow \psi)$	$(\neg \phi)$	\perp
T	T	T	T	T	T	F	F
T	F	F	T	F	F		
F	T	F	T	T	F	T	
F	F	F	F	T	T		

Let S be a set of propositional symbols.
By an S-assignment we mean a function a which assigns truth values to the propositional symbols in S.
We say that a truth valuation v extends the S-assignment a if for every propositional symbol p in $S, v(p)=a(p)$.
(This is the usual notion of one function extending another.)

By a truth valuation we mean a function v that assigns a truth value
(T or F) to each proposition, in such a way that the truth tables hold.

For example if $v\left(p_{1}\right)=\mathrm{T}$ and $v\left(p_{2}\right)=\mathrm{F}$,
then $v\left(\left(p_{1} \wedge p_{2}\right)\right)=\mathrm{F}$ and $v\left(\left(p_{1} \vee p_{2}\right)\right)=\mathrm{T}$.
If $v\left(\left(p_{1} \leftrightarrow p_{2}\right)\right)=\mathrm{F}$ then
either $v\left(p_{1}\right)=\mathrm{T}$ and $v\left(p_{2}\right)=\mathrm{F}$, or $v\left(p_{1}\right)=\mathrm{F}$ and $v\left(p_{2}\right)=\mathrm{T}$.

10
Valuation Theorem (equivalent to Chiswell Proposition (2.8)) Let a be an S-assignment.
Then there is a truth valuation v that extends a.
Moreover if ϕ is a proposition whose propositional symbols come from S, then we can calculate the value $v(\phi)$ from ϕ and a; so if v^{\prime} is another truth valuation extending a then $v^{\prime}(\phi)=v(\phi)$.

Proof. First let ϕ be any proposition whose symbols come from S.
We show how to calculate $v(\phi)$, by induction on the length of ϕ.

If ϕ is a propositional symbol then $v(\phi)=a(\phi)$.
If ϕ is \perp then $v(\perp)=\mathrm{F}$.

If ϕ is $(\neg \chi)$ then ϕ determines χ uniquely, by the unique readability lemma.
Also χ uses only propositional symbols in S.
By induction hypothesis we can calculate $v(\chi)$ from χ and a, and hence from ϕ and a.
Then by the truth table for \neg,
$v(\phi)$ must be T if $v(\chi)=\mathrm{F}$, and F if $v(\chi)=\mathrm{T}$.
A similar argument applies if ϕ is $(\psi \square \chi)$ where\square is one of $\wedge, \vee, \rightarrow$ and \leftrightarrow.

Now let b be an assignment which extends a and assigns a truth value to each propositional symbol.
Then the argument above, with b in place of a, shows
how to calculate $v(\phi)$ for every proposition ϕ.
The calculation ensures that v is a truth valuation.
Since b extends a, v also extends a.
For each proposition ϕ whose propositional symbols come from S,
the calculation of $v(\phi)$ is exactly as before.

14
Example: We calculate the truth value of $\left(p_{1} \wedge\left(\neg\left(p_{0} \rightarrow p_{1}\right)\right)\right)$ under the assignment $a\left(p_{0}\right)=\mathrm{F}, a\left(p_{1}\right)=\mathrm{T}$:

The value $v(\phi)$ in the theorem depends only on ϕ and a, so we write it as $a^{\star}(\phi)$.
We call $a^{\star}(\phi)$ the truth value of ϕ at a (or at v).
By the proof of the theorem, we can calculate the truth value of ϕ at a
by climbing step by step up the parsing tree of ϕ.
We can keep track of the calculation by writing the truth values of the subformulas under appropriate symbols in ϕ.

$$
\begin{array}{r|r||rlrrll}
p_{0} & p_{1} & \left(p_{1}\right. & \wedge & (\neg & \left(p_{0}\right. & \rightarrow & \left.\left.\left.p_{1}\right)\right)\right) \\
\hline \mathrm{F} & \mathrm{~T} & \mathrm{~T} & \mathrm{~F} & \mathrm{~F} & \mathrm{~F} & \mathrm{~T} & \mathrm{~T}
\end{array}
$$

Let S be a finite set consisting of n propositional letters.
Then the number of S-assignment is 2^{n} (why?).
We can do the same calculation simultaneously for each assignment, in a table as follows.
Note how the S-assignments are listed at the left.

p_{0}	p_{1}	$\left(p_{1} \wedge\right.$	$\wedge\left(\neg\left(p_{0}\right.\right.$	\rightarrow	$\left.\left.\left.p_{1}\right)\right)\right)$
T	T	T	T	T	
T	F	F		T	F
F	T	T	F	T	
F	F	F	F	F	

A lot of notions are defined in terms of truth valuations.
(1) We say that a proposition ϕ is a tautology if it is true at every truth valuation.
(2) We say that it is a contradiction if it is false at every truth valuation, and satisfiable if it is not a contradiction.
(3) We say that two propositions ϕ and ψ are equivalent, in symbols

$$
\phi \text { eq } \psi,
$$

if $v(\phi)=v(\psi)$ for every truth valuation v.

p_{0}	p_{1}	$\left(p_{1}\right.$	\wedge	$(\neg$	$\left(p_{0}\right.$	\rightarrow	$\left.\left.\left.p_{1}\right)\right)\right)$
T	T	T	F	F	T	T	T
T	F	F	F	T	T	F	F
F	T	T	F	F	F	T	T
F	F	F	F	F	F	T	F

The bold column shows that this proposition is false at every $\left\{p_{0}, p_{1}\right\}$-assignment, and hence at every truth valuation.

We say that a truth valuation v is a model of the proposition ϕ if $v(\phi)=\mathrm{T}$.
We say that v is a model of the set of propositions Γ if v is a model of every proposition in Γ.
We say that Γ semantically entails ϕ, or that ϕ is a semantic consequence of Γ, in symbols

$$
\Gamma \models \phi,
$$

if every model of Γ is also a model of ϕ.
The symbol \models is called semantic turnstile.

Then ϕ is a tautology if and only if $\models \phi$
(i.e. if the empty set semantically entails ϕ).
ϕ eq ψ if and only if both $\{\phi\} \models \psi$ and $\{\psi\} \models \phi$.
ϕ is a contradiction if and only if $\{\phi\} \models \perp$.
ϕ is satisfiable if and only if ϕ has a model.

Examples of Equivalences

(1) Associative laws:

$$
p_{1} \vee\left(p_{2} \vee p_{3}\right) \text { eq }\left(p_{1} \vee p_{2}\right) \vee p_{3},
$$

$$
p_{1} \wedge\left(p_{2} \wedge p_{3}\right) \mathrm{eq}\left(p_{1} \wedge p_{2}\right) \wedge p_{3}
$$

(2) Distributive laws: $p_{1} \vee\left(p_{2} \wedge p_{3}\right)$ eq $\left(p_{1} \vee p_{2}\right) \wedge\left(p_{1} \vee p_{3}\right)$, $p_{1} \wedge\left(p_{2} \vee p_{3}\right)$ eq $\left(p_{1} \wedge p_{2}\right) \vee\left(p_{1} \wedge p_{3}\right)$.
(3) Commutative laws:
$p_{1} \vee p_{2}$ eq $p_{2} \vee p_{1}$,
$p_{1} \wedge p_{2}$ eq $p_{2} \wedge p_{1}$
$\neg\left(p_{1} \vee p_{2}\right)$ eq $\neg p_{1} \wedge \neg p_{2}$,
$\neg\left(p_{1} \wedge p_{2}\right) \mathrm{eq} \neg p_{1} \vee \neg p_{2}$.
(5) Idempotence laws:

$$
p_{1} \vee p_{1} \operatorname{eq} p_{1}
$$

(4) De Morgan laws:

$$
p_{1} \wedge p_{1} \mathrm{eq} p_{1}
$$

(6) Double negation: $\quad \neg \neg p_{1}$ eq p_{1}.

Examples of Tautologies

(1) $\left(\left(p_{1} \rightarrow p_{2}\right) \leftrightarrow\left(\left(\neg p_{2}\right) \rightarrow\left(\neg p_{1}\right)\right)\right)$.
(2) $\left(\left(p_{1} \rightarrow\left(\neg p_{1}\right)\right) \leftrightarrow\left(\neg p_{1}\right)\right)$.
(3) $\left(p_{1} \vee\left(\neg p_{1}\right)\right)$.
(4) $\left(\perp \rightarrow p_{1}\right)$.
(5) $\left(\left(p_{1} \rightarrow\left(p_{2} \rightarrow p_{3}\right)\right) \leftrightarrow\left(\left(p_{1} \wedge p_{2}\right) \rightarrow p_{3}\right)\right)$.

Some useful facts about equivalence

Equivalence is clearly an equivalence relation on the class of propositions. In other words:

Reflexive. For every proposition ϕ, ϕ eq ϕ.
Symmetric. If ϕ and ψ are propositions and ϕ eq ψ, then ψ eq ϕ.
Transitive. If ϕ, ψ and χ are propositions and ϕ eq ψ and ψ eq χ, then ϕ eq χ.

All three properties are immediate from the definition of eq.

25

Substitution theorems

These are a way of getting new tautologies, equivalences etc. out of old ones.

Let q be a propositional symbol and ϕ, ψ two propositions.
We write $\phi[\psi / q]$ for the proposition got from ϕ by replacing each occurrence of q by ψ.

Example:

$$
\left(p_{3} \wedge\left(\neg p_{2}\right)\right)\left[\left(p_{1} \rightarrow p_{4}\right) / p_{2}\right]
$$

is

$$
\left(p_{3} \wedge\left(\neg\left(p_{1} \rightarrow p_{4}\right)\right)\right) .
$$

Lemma ((2.9) in Chiswell)
Let ϕ, ψ be propositions whose propositional symbols come from a set S. The following are equivalent:
(i) $\{\phi\} \models \psi$ and $\{\psi\} \models \phi$.
(ii) $\models(\phi \leftrightarrow \psi)$.
(iii) ϕ eq ψ.
(iv) $a^{\star}(\phi)=a^{\star}(\psi)$ for every S-assignment a.

Proof (i) says that every model of ϕ is a model of ψ, and vice versa;
in other words, the truth valuations that are models of ϕ are exactly those that are models of ψ. This is (iii).
It is also equivalent to (ii) by the truth table for \leftrightarrow.
Finally (iv) is equivalent to (iii) by the Valuation Theorem.

There are two Substitution Theorems ((2.14) in Chiswell notes)). They say:
Let q be a propositional symbol, ϕ, ψ_{1}, ψ_{2} propositions and Γ a set of propositions.
(1) If ψ_{1} eq ψ_{2} then $\phi\left[\psi_{1} / q\right]$ eq $\phi\left[\psi_{2} / q\right]$.
(2) If $\Gamma \models \psi_{2}$, then $\{\psi[\phi / q]: \psi \in \Gamma\} \models \psi_{2}[\phi / q]$.

Part (1) is otherwise known as Compositionality.
Part (2) is otherwise known as the Replacement Theorem.

Example of Compositionality:

$$
\left(p_{1} \wedge p_{2}\right) \text { eq } \neg\left(\neg p_{1} \vee \neg p_{2}\right)
$$

SO

$$
\left(p_{1} \wedge p_{2}\right) \rightarrow p_{3} \text { eq } \neg\left(\neg p_{1} \vee \neg p_{2}\right) \rightarrow p_{3} .
$$

Example of Replacement Theorem:

$$
p_{1} \wedge \neg p_{1} \text { is a contradiction (i.e. }\left\{p_{1} \wedge \neg p_{1}\right\} \models \perp \text {) }
$$

so for every proposition ϕ

$$
\phi \wedge \neg \phi \text { is a contradiction. }
$$

Warning from experience

These proofs of the parts of the Substitution Theorem are correct. But for more complicated languages one must be more careful. Two famous and well-respected textbooks

Hilbert and Ackermann, Foundations of Mathematical Logic, 1928;
Lloyd, Foundations of Logic Programming, 1984.
contained false theorems about substitution in their first editions. So for more complicated languages one should be prepared to define $\phi[\psi / q]$ carefully by induction on the length of ϕ, and then prove theorems about substitution by induction on the length of formulas.

Disjunctive and conjunctive normal forms

Let S be a set of propositional symbols and ϕ a proposition whose propositional symbols come from S.

Consider the truth table for ϕ.
The rows on the left list all the S-assignments, and for each row the corresponding truth value of ϕ is given on the right.

So the table describes a function f_{ϕ} from the set of S-assignments to the set of truth values, and

$$
f_{\phi}(a)=a^{\star}(\phi) \text { for each } S \text {-assignment } a \text {. }
$$

We can write f_{ϕ} as f_{ϕ}^{S} when we need to show what S is.

Post's Theorem ((2.12) in Chiswell)

Let S be a set of m propositional symbols $q_{1}, \ldots, q_{m}(m>0)$, and let g be a function from the set of S-assignments to the set $\{T, F\}$.
Then there is a proposition ψ using at most the propositional symbols in S, such that $g=f_{\psi}$.

Proof We split into three cases.
Case One: $g(a)=\mathrm{F}$ for all S-assignments a.
Then we take ψ to be $q_{1} \wedge \neg q_{1}$, which is always false.

Case Two: There is exactly one S-assignment a such that $g(a)=\mathrm{T}$.

Then take ψ to be $q_{1}^{\prime} \wedge \ldots \wedge q_{m}^{\prime}$ where

$$
q_{i}^{\prime}=\left\{\begin{array}{cc}
q_{i} & \text { if } a\left(q_{i}\right)=\mathrm{T}, \\
\neg q_{i} & \text { if } a\left(q_{i}\right)=\mathrm{F} .
\end{array}\right.
$$

We write ψ_{a} for this formula ψ.

Then for every S-assignment c,

$$
\begin{aligned}
f_{\psi_{a}}(c)=\mathrm{T} & \Leftrightarrow c^{\star}\left(\psi_{a}\right)=\mathrm{T} \\
& \Leftrightarrow c^{\star}\left(q_{i}^{\prime}\right)=\mathrm{T} \text { for all } i(1 \leqslant i \leqslant m) \\
& \Leftrightarrow c\left(q_{i}\right)=a\left(q_{i}\right) \text { for all } i(1 \leqslant i \leqslant m) \\
& \Leftrightarrow c=a .
\end{aligned}
$$

So $f_{\psi_{a}}=g$.

Case Three: $g(a)=\mathrm{T}$ exactly when a is one of a_{1}, \ldots, a_{k} with $k>1$.

In this case let ψ be $\psi_{a_{1}} \vee \ldots \vee \psi_{a_{k}}$.
Then for every S-assignment c,

Example

We find a formula to complete the truth table

p_{1}	p_{2}	p_{3}	$?$
T	T	T	F
T	T	F	T
T	F	T	T
T	F	F	F
F	T	T	T
F	T	F	F
F	F	T	F
F	F	F	F

$$
\begin{aligned}
f_{\psi}(c)=\mathrm{T} & \Leftrightarrow c^{\star}(\psi)=\mathrm{T} \\
& \Leftrightarrow c^{\star}\left(\psi_{a_{j}}\right)=\mathrm{T} \text { for some } j(1 \leqslant j \leqslant k) \\
& \Leftrightarrow c=a_{j} \text { for some } j(1 \leqslant j \leqslant k) .
\end{aligned}
$$

So again $f_{\psi}=g$.

There are three rows with value T :

p_{1}	p_{2}	p_{3}	$?$	
T	T	T	F	
T	T	F	T	$\Leftarrow a_{1}$
T	F	T	T	$\Leftarrow a_{2}$
T	F	F	F	
F	T	T	T	$\Leftarrow a_{3}$
F	T	F	F	
F	F	T	F	
F	F	F	F	

The proposition $\psi_{a_{1}}$ is $p_{1} \wedge p_{2} \wedge \neg p_{3}$.
The proposition $\psi_{a_{2}}$ is $p_{1} \wedge \neg p_{2} \wedge p_{3}$.
The proposition $\psi_{a_{3}}$ is $\neg p_{1} \wedge p_{2} \wedge p_{3}$.
So the required proposition is

$$
\left(p_{1} \wedge p_{2} \wedge \neg p_{3}\right) \vee\left(p_{1} \wedge \neg p_{2} \wedge p_{3}\right) \vee\left(\neg p_{1} \wedge p_{2} \wedge p_{3}\right)
$$

The formula

$$
\phi_{1} \wedge \ldots \wedge \phi_{n}
$$

is called a conjunction and the formulas ϕ_{i} are called its conjuncts.

The formula

$$
\phi_{1} \vee \ldots \vee \phi_{n}
$$

is called a disjunction and the formulas ϕ_{i} are called its disjuncts.

The formula

$$
(\neg \phi)
$$

is called the negation of the formula ϕ.

A literal is a formula which is either atomic or the negation of an atomic formula (but not \perp or $\neg \perp$).

A basic conjunction is a conjunction of one or more literals, and a basic disjunction is a disjunction of one or more literals. A single literal counts as a basic conjunction and a basic disjunction.

A formula is in disjunctive normal form (DNF) if it is a disjunction of one or more basic conjunctions.
A formula is in conjunctive normal form (CNF) if it is a conjunction of basic disjunctions.

Examples

(1)

$$
p_{1} \wedge \neg p_{1}
$$

is a basic conjunction, so it is in DNF.
But also p_{1} and $\neg p_{1}$ are basic disjunctions,
so the proposition is in CNF too.
(2)

$$
\left(p_{1} \wedge \neg p_{2}\right) \vee\left(\neg p_{1} \wedge p_{2} \wedge p_{3}\right)
$$

is in DNF.

Theorem ((2.13) in Chiswell)

Every proposition ϕ in PROP is equivalent to a proposition $\phi^{D N F}$ in disjunctive normal form, and to a proposition $\phi^{C N F}$ in conjunctive normal form. If S is a nonempty set of propositional symbols, and every propositional symbol in ϕ is in S, then $\phi^{D N F}$ and $\phi^{C N F}$ can be chosen so that they use only propositional symbols from S.
(3) Negating the proposition in (2), applying the De Morgan laws and removing double negations gives

$$
\begin{array}{ll}
& \neg\left(\left(p_{1} \wedge \neg p_{2}\right) \vee\left(\neg p_{1} \wedge p_{2} \wedge p_{3}\right)\right) \\
\text { eq } & \neg\left(p_{1} \wedge \neg p_{2}\right) \wedge \neg\left(\neg p_{1} \wedge p_{2} \wedge p_{3}\right) \\
\text { eq } & \left(\neg p_{1} \vee \neg \neg p_{2}\right) \wedge\left(\neg \neg p_{1} \vee \neg p_{2} \vee \neg p_{3}\right) \\
\text { eq } & \left(\neg p_{1} \vee p_{2}\right) \wedge\left(p_{1} \vee \neg p_{2} \vee \neg p_{3}\right)
\end{array}
$$

which is in CNF.

Proof The proof of Post's Theorem constructs a proposition ψ using only propositional symbols from S, such that $f_{\psi}=f_{\phi}$.
By inspection, the proposition ψ is in disjunctive normal form.
Since $f_{\phi}=f_{\psi}$, we have for every S-assignment a

$$
a^{\star}(\phi)=f_{\phi}(a)=f_{\psi}(a)=a^{\star}(\psi),
$$

so ϕ eq ψ. Hence we can take $\phi^{D N F}$ to be ψ.

Satisfiability of propositions in DNF and CNF

To find $\phi^{C N F}$, first use the argument above to find $(\neg \phi)^{D N F}$, call it θ.
Then $\neg \theta$ uses only propositional symbols in S, and is equivalent to ϕ.

Then use the method of Example (3) above, pushing the negation sign \neg inwards by the De Morgan rules and then cancelling double negations,
to get an equivalent proposition in CNF.

49

So checking the satisfiability of propositions in DNF, and finding a model if there is one, are trivial.

But a lot of significant mathematical problems can be written as the problem of finding a model for a proposition in CNF.
The general problem of determining whether a proposition in CNF is satisfiable is known as SAT.
Many people think that the question of finding a fast algorithm for solving SAT, or proving that there isn't one, is one of the major unsolved problems of 21st century mathematics.
(It is the " $\mathrm{P}=\mathrm{NP}$ " problem.)

First consider a basic conjunction

$$
\phi_{1} \wedge \ldots \wedge \phi_{m}
$$

This proposition is satisfiable if and only if there is a valuation v such that

$$
v\left(\phi_{1}\right)=\ldots=v\left(\phi_{m}\right)=\mathrm{T} .
$$

Since the ϕ_{i} are literals, we can find such a v unless there are two literals among $\phi_{1}, \ldots, \phi_{n}$ which are respectively p and $\neg p$ for the same propositional symbol p.
We can easily check this condition by inspecting the proposition.

Example A proper m-colouring of a map is a function assigning one of m colours to each country in the map, so that no two countries with a common border have the same colour as each other.
A map is m-colourable if it has a proper m-colouring.
Suppose a map has countries c_{1}, \ldots, c_{n}.
Write $p_{i j}$ for 'Country c_{i} has the j-th colour'.
Then finding a proper m-colouring of the map is equivalent to finding a model of this proposition in CND:

$$
\begin{aligned}
& \left(p_{11} \vee p_{12} \vee \ldots \vee p_{i m}\right) \wedge \ldots \wedge\left(p_{n 1} \vee \ldots \vee p_{n m}\right) \\
\wedge & \left(\neg p_{i k} \vee \neg p_{j k}\right) \wedge \ldots \\
& \left(\text { for all } k \text { and all countries } c_{i}, c_{j}\right. \text { with a common border) }
\end{aligned}
$$

