Semantics of Propositional Logic

Problem

How do we know we have all the required rules for natural deduction?

Peirce gave an example of a theorem using only \rightarrow , whose proof needs \perp as well.

Could we prove even more theorems of PROP by introducing more connectives,

or more rules for the given connectives?

1

Peirce's Law $(((\phi \rightarrow \psi) \rightarrow \phi) \rightarrow \phi)$

Charles S. Peirce USA 1839–1914 One of the major inventors of semantics

David Hilbert Germany 1862–1943

To show a sequent shouldn't be provable, give an interpretation of the formulas so that the hypotheses are true and the conclusion is false.

In mathematics we count 'If ϕ then ψ ' as true whenever ϕ is false. For example we accept as true that:

If p is a prime > 2 then p is odd.

For example

If 3 is a prime > 2 then 3 is odd. (If TRUE then TRUE.)

But also

If 9 is a prime > 2 then 9 is odd. (If FALSE then TRUE.)

If 4 is a prime > 2 then 4 is odd. (If FALSE then FALSE.)

The one case we exclude is 'If TRUE then FALSE'.

Example: To show that the sequent $(p_0 \rightarrow p_1) \vdash p_1$ shouldn't be provable.

Interpret both p_0 and p_1 as meaning:

2 = 3.

Then p_1 is false, but $(p_0 \rightarrow p_1)$ says

If 2=3 then 2=3,

which is true.

So we must n't introduce a rule which would deduce p_1 from $(p_0 \rightarrow p_1)$.

6

Moral: To show that $(p_0 \rightarrow p_1) \vdash p_1$ ought not to be provable, we can interpret p_0 and p_1 as any two false statements.

The statements themselves don't matter;

only their truth values (T = True or F = False) matter.

The truth value of $(\phi \rightarrow \psi)$ is determined by those of ϕ and ψ by the *truth table*

ϕ	ψ	$(\phi \rightarrow \psi)$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

Similarly we can give truth tables for all the connectives:

ϕ	ψ	$(\phi \wedge \psi)$	$(\phi \lor \psi)$	$(\phi ightarrow \psi)$	$(\phi \leftrightarrow \psi)$	$(\neg \phi)$	\perp
Т	Т	Т	Т	Т	Т	F	F
Т	F	F	Т	F	F		
F	Т	F	Т	Т	F	Т	
F	F	F	F	Т	Т		

9

Let *S* be a set of propositional symbols.

By an *S*-assignment we mean a function *a* which assigns truth values to the propositional symbols in *S*.

We say that a truth valuation v extends the S-assignment a if for every propositional symbol p in S, v(p) = a(p). (This is the usual notion of one function extending another.) By a **truth valuation** we mean a function v that assigns a truth value

(T or F) to each proposition, in such a way that the truth tables hold.

For example if $v(p_1) = T$ and $v(p_2) = F$, then $v((p_1 \land p_2)) = F$ and $v((p_1 \lor p_2)) = T$.

If $v((p_1 \leftrightarrow p_2)) = F$ then either $v(p_1) = T$ and $v(p_2) = F$, or $v(p_1) = F$ and $v(p_2) = T$.

10

Valuation Theorem (equivalent to Chiswell Proposition (2.8)) Let *a* be an *S*-assignment.

Then there is a truth valuation v that extends a.

Moreover if ϕ is a proposition whose propositional symbols come from *S*, then we can calculate the value $v(\phi)$ from ϕ and *a*; so if v' is another truth valuation extending *a* then $v'(\phi) = v(\phi)$.

Proof. First let ϕ be any proposition whose symbols come from *S*.

We show how to calculate $v(\phi)$, by induction on the length of ϕ .

If ϕ is a propositional symbol then $v(\phi) = a(\phi)$.

If ϕ is \perp then $v(\perp) = F$.

If ϕ is $(\neg \chi)$ then ϕ determines χ uniquely, by the unique readability lemma. Also χ uses only propositional symbols in *S*. By induction hypothesis we can calculate $v(\chi)$ from χ and *a*, and hence from ϕ and *a*. Then by the truth table for \neg , $v(\phi)$ must be T if $v(\chi) = F$, and F if $v(\chi) = T$.

A similar argument applies if ϕ is $(\psi \Box \chi)$ where \Box is one of \land , \lor , \rightarrow and \leftrightarrow .

13

The value $v(\phi)$ in the theorem depends only on ϕ and a, so we write it as $a^*(\phi)$. We call $a^*(\phi)$ the *truth value* of ϕ at a (or at v).

By the proof of the theorem, we can calculate the truth value of ϕ at a

by climbing step by step up the parsing tree of ϕ .

We can keep track of the calculation by writing the truth values of the subformulas under appropriate symbols in ϕ .

Now let *b* be an assignment which extends *a* and assigns a truth value to each propositional symbol. Then the argument above, with *b* in place of *a*, shows how to calculate $v(\phi)$ for every proposition ϕ . The calculation ensures that *v* is a truth valuation.

Since *b* extends *a*, *v* also extends *a*. For each proposition ϕ whose propositional symbols come from *S*, the calculation of $v(\phi)$ is exactly as before.

14

Example: We calculate the truth value of $(p_1 \land (\neg (p_0 \rightarrow p_1)))$ under the assignment $a(p_0) = F$, $a(p_1) = T$:

Let S be a finite set consisting of n propositional letters. Then the number of *S*-assignment is 2^n (why?). We can do the same calculation simultaneously for each assignment, in a table as follows. Note how the *S*-assignments are listed at the left.

p_0	p_1	$(p_1$	\wedge	(¬	$(p_0$	\rightarrow	$p_1)))$
Т	Т	Т			Т		Т
Т	F	F			Т		F
F	Т	Т			F		Т
F	F	T F T F			F		F

The bold column shows that this proposition is false at every $\{p_0, p_1\}$ -assignment, and hence at every truth valuation.

17

A lot of notions are defined in terms of truth valuations.

- (1) We say that a proposition ϕ is a *tautology* if it is true at every truth valuation.
- (2) We say that it is a *contradiction* if it is false at every truth valuation, and *satisfiable* if it is not a contradiction.
- (3) We say that two propositions ϕ and ψ are *equivalent*, in symbols

 $\phi \operatorname{eq} \psi$,

if
$$v(\phi) = v(\psi)$$
 for every truth valuation v .

18

We say that a truth valuation
$$v$$
 is a *model* of the proposition ϕ if $v(\phi) = T$.

We say that *v* is a *model* of the set of propositions Γ if *v* is a model of every proposition in Γ .

We say that Γ *semantically entails* ϕ , or that ϕ is a *semantic consequence* of Γ , in symbols

 $\Gamma \models \phi$,

if every model of Γ is also a model of ϕ .

The symbol \models is called *semantic turnstile*.

Then ϕ is a tautology if and only if $\models \phi$ (i.e. if the empty set semantically entails ϕ).

 $\phi \text{ eq } \psi \text{ if and only if both } \{\phi\} \models \psi \text{ and } \{\psi\} \models \phi.$

 ϕ is a contradiction if and only if $\{\phi\} \models \bot$.

 ϕ is satisfiable if and only if ϕ has a model.

Examples of Equivalences

Examples of Tautologies

(1)
$$((p_1 \rightarrow p_2) \leftrightarrow ((\neg p_2) \rightarrow (\neg p_1))).$$

(2) $((p_1 \rightarrow (\neg p_1)) \leftrightarrow (\neg p_1)).$
(3) $(p_1 \lor (\neg p_1)).$
(4) $(\bot \rightarrow p_1).$
(5) $((p_1 \rightarrow (p_2 \rightarrow p_3)) \leftrightarrow ((p_1 \land p_2) \rightarrow p_3)).$

21

22

 $p_1 \lor (p_2 \lor p_3)$ eq $(p_1 \lor p_2) \lor p_3,$ (1) Associative laws: $\vee (p_2 \vee p_3) \mid (p_1 \vee p_2)$ $\vee p_3,$ p_2 p_3 p_1 p_1 $p_1 \wedge (p_2 \wedge p_3)$ eq $(p_1 \wedge p_2) \wedge p_3$. Т Т ТТ ТТТ Т Т Т Т Т Т $p_1 \vee (p_2 \wedge p_3)$ eq $(p_1 \vee p_2) \wedge (p_1 \vee p_3),$ (2) Distributive laws: Т F ТТ ТТБ ТТТ T F Т $p_1 \wedge (p_2 \vee p_3)$ eq $(p_1 \wedge p_2) \vee (p_1 \wedge p_3).$ Т **T** T F Т ТТ F T T ΤΤF $p_1 \vee p_2 \text{ eq } p_2 \vee p_1,$ (3) Commutative laws: Т F Т F F F TTF T F F Т $p_1 \wedge p_2 \text{ eq } p_2 \wedge p_1.$ F Т Т F Т ТТТ F T Τ Т Т $\neg (p_1 \lor p_2) \text{ eq } \neg p_1 \land \neg p_2,$ (4) De Morgan laws: ΤΤΓ F F Т F T T T F Т F $\neg (p_1 \land p_2) \text{ eq } \neg p_1 \lor \neg p_2.$ F Т F T T FFF **Τ** Τ F F Т $p_1 \vee p_1 \text{ eq } p_1$, (5) Idempotence laws: F FFF F F F F F F F F F $p_1 \wedge p_1 \text{ eq } p_1.$ (6) Double negation: $\neg \neg p_1 \text{ eq } p_1.$

Some useful facts about equivalence

Equivalence is clearly an equivalence relation on the class of propositions. In other words:

Reflexive. For every proposition ϕ , ϕ eq ϕ .

Symmetric. If ϕ and ψ are propositions and ϕ eq ψ , then ψ eq ϕ .

Transitive. If ϕ , ψ and χ are propositions and ϕ eq ψ and ψ eq χ , then ϕ eq χ .

All three properties are immediate from the definition of eq.

25

Substitution theorems

These are a way of getting new tautologies, equivalences etc. out of old ones.

Let *q* be a propositional symbol and ϕ , ψ two propositions. We write $\phi[\psi/q]$ for the proposition got from ϕ by replacing each occurrence of *q* by ψ .

Example:

$$(p_3 \land (\neg p_2))[(p_1 \to p_4)/p_2]$$

is

$$(p_3 \land (\neg (p_1 \to p_4))))$$

Lemma ((2.9) in Chiswell)

Let ϕ , ψ be propositions whose propositional symbols come from a set *S*. The following are equivalent:

(i) $\{\phi\} \models \psi$ and $\{\psi\} \models \phi$.

(ii) $\models (\phi \leftrightarrow \psi).$

(iii) ϕ eq ψ .

(iv) $a^{\star}(\phi) = a^{\star}(\psi)$ for every *S*-assignment *a*.

Proof (i) says that every model of ϕ is a model of ψ , and vice versa;

in other words, the truth valuations that are models of ϕ are exactly those that are models of ψ . This is (iii). It is also equivalent to (ii) by the truth table for \leftrightarrow . Finally (iv) is equivalent to (iii) by the Valuation Theorem.

26

There are two Substitution Theorems ((2.14) in Chiswell notes)). They say:

Let *q* be a propositional symbol, ϕ , ψ_1 , ψ_2 propositions and Γ a set of propositions.

(1) If ψ_1 eq ψ_2 then $\phi[\psi_1/q]$ eq $\phi[\psi_2/q]$.

(2) If $\Gamma \models \psi_2$, then $\{\psi[\phi/q] : \psi \in \Gamma\} \models \psi_2[\phi/q]$.

Part (1) is otherwise known as Compositionality.

Part (2) is otherwise known as the *Replacement Theorem*.

Example of Compositionality:

 $(p_1 \wedge p_2)$ eq $\neg(\neg p_1 \vee \neg p_2)$

 \mathbf{SO}

$$(p_1 \wedge p_2) \rightarrow p_3 \text{ eq } \neg (\neg p_1 \vee \neg p_2) \rightarrow p_3.$$

Example of Replacement Theorem:

 $p_1 \wedge \neg p_1$ is a contradiction (i.e. $\{p_1 \wedge \neg p_1\} \models \bot$)

so for every proposition ϕ

 $\phi \wedge \neg \phi$ is a contradiction.

29

The Replacement Theorem says: suppose that for every truth valuation v,

 $v \text{ a model of } \Gamma \Rightarrow v(\psi_2) = \mathsf{T},$

then the same is true for every truth valuation w defined by

$$w(p_i) = \begin{cases} v(\phi) & \text{if } p_i \text{ is } q, \\ v(p_i) & \text{otherwise }. \end{cases}$$

But this must be true. If something holds for *all* truth valuations, then it holds for all truth valuations of a certain form.

We can **prove** the Substitution Theorem by the following observations.

Compositionality says that at any truth valuation, the truth value of a proposition won't change if we replace the parsing tree from some node n downwards, as long as the truth value at n is not changed.

30

Warning from experience

These proofs of the parts of the Substitution Theorem are correct. But for more complicated languages one must be more careful. Two famous and well-respected textbooks

Hilbert and Ackermann, *Foundations of Mathematical Logic*, 1928;

Lloyd, Foundations of Logic Programming, 1984.

contained false theorems about substitution in their first editions. So for more complicated languages one should be prepared to define $\phi[\psi/q]$ carefully by induction on the length of ϕ , and then prove theorems about substitution by induction on the length of formulas.

Disjunctive and conjunctive normal forms

Let *S* be a set of propositional symbols and ϕ a proposition whose propositional symbols come from *S*.

Consider the truth table for ϕ .

The rows on the left list all the *S*-assignments, and for each row the corresponding truth value of ϕ is given on the right.

So the table describes a function f_{ϕ} from the set of *S*-assignments to the set of truth values, and

 $f_{\phi}(a) = a^{\star}(\phi)$ for each *S*-assignment *a*.

We can write f_{ϕ} as f_{ϕ}^{S} when we need to show what *S* is.

33

Post's Theorem ((2.12) in Chiswell)

Let *S* be a set of *m* propositional symbols q_1, \ldots, q_m (m > 0), and let *g* be a function from the set of *S*-assignments to the set {T, F}.

Then there is a proposition ψ using at most the propositional symbols in *S*, such that $g = f_{\psi}$.

Proof We split into three cases.

Case One: g(a) = F for all *S*-assignments *a*. Then we take ψ to be $q_1 \wedge \neg q_1$, which is always false. 34

Case Two: There is exactly one *S*-assignment *a* such that g(a) = T.

Then take ψ to be $q'_1 \wedge \ldots \wedge q'_m$ where

$$q'_i = \begin{cases} q_i & \text{if } a(q_i) = \mathsf{T}, \\ \neg q_i & \text{if } a(q_i) = \mathsf{F}. \end{cases}$$

We write ψ_a for this formula ψ .

Then for every *S*-assignment *c*,

$$\begin{split} f_{\psi_a}(c) &= \mathsf{T} &\Leftrightarrow c^{\star}(\psi_a) = \mathsf{T} \\ &\Leftrightarrow c^{\star}(q'_i) = \mathsf{T} \text{ for all } i \ (1 \leqslant i \leqslant m) \\ &\Leftrightarrow c(q_i) = a(q_i) \text{ for all } i \ (1 \leqslant i \leqslant m) \\ &\Leftrightarrow c = a. \end{split}$$

37

So $f_{\psi_a} = g$.

Case Three: g(a) = T exactly when a is one of a_1, \ldots, a_k with k > 1. In this case let ψ be $\psi_{a_1} \lor \ldots \lor \psi_{a_k}$.

Then for every *S*-assignment *c*,

$$\begin{split} f_{\psi}(c) &= \mathsf{T} &\Leftrightarrow c^{\star}(\psi) = \mathsf{T} \\ &\Leftrightarrow c^{\star}(\psi_{a_j}) = \mathsf{T} \text{ for some } j \ (1 \leqslant j \leqslant k) \\ &\Leftrightarrow c = a_j \text{ for some } j \ (1 \leqslant j \leqslant k). \end{split}$$

38

So again $f_{\psi} = g$.

Example

We find a formula to complete the truth table

p_1	p_2	p_3	?
Т	Т	Т	F
Т	Т	F	Т
Т	F	Т	Т
Т	F	F	F
F	Т	Т	Т
F	Т	F	F
F	F	Т	F
F	F	F	F

There are three rows with value T:

p_1	p_2	p_3	?	
Т	Т	Т	F	
Т	Т	F	Т	$\Leftarrow a_1$
Т	F	Т	Т	$\Leftarrow a_2$
Т	F	F	F	
F	Т	Т	Т	$\Leftarrow a_3$
F	Т	F	F	
F	F	Т	F	
F	F	F	F	

The proposition ψ_{a_1} is $p_1 \wedge p_2 \wedge \neg p_3$. The proposition ψ_{a_2} is $p_1 \wedge \neg p_2 \wedge p_3$. The proposition ψ_{a_3} is $\neg p_1 \wedge p_2 \wedge p_3$.

So the required proposition is

$$(p_1 \wedge p_2 \wedge \neg p_3) \vee (p_1 \wedge \neg p_2 \wedge p_3) \vee (\neg p_1 \wedge p_2 \wedge p_3).$$

The formula

 $(\neg \phi)$

is called the *negation* of the formula ϕ .

A *literal* is a formula which is either atomic or the negation of an atomic formula (but not \perp or $\neg \perp$).

42

A *basic conjunction* is a conjunction of one or more literals, and a *basic disjunction* is a disjunction of one or more literals. A single literal counts as a basic conjunction and a basic disjunction.

A formula is in *disjunctive normal form* (DNF) if it is a disjunction of one or more basic conjunctions. A formula is in *conjunctive normal form* (CNF) if it is a conjunction of basic disjunctions.

41

The formula

$$\phi_1 \wedge \ldots \wedge \phi_n$$

is called a *conjunction* and the formulas ϕ_i are called its *conjuncts*.

The formula

$$\phi_1 \vee \ldots \vee \phi_n$$

is called a *disjunction* and the formulas ϕ_i are called its *disjuncts*.

Examples

(1)

 $p_1 \wedge \neg p_1$

is a basic conjunction, so it is in DNF. But also p_1 and $\neg p_1$ are basic disjunctions, so the proposition is in CNF too.

(2)

$$(p_1 \wedge \neg p_2) \vee (\neg p_1 \wedge p_2 \wedge p_3)$$

is in DNF.

45

Theorem ((2.13) in Chiswell) Every proposition ϕ in PROP is equivalent to a proposition ϕ^{DNF} in disjunctive normal form, and to a proposition ϕ^{CNF} in conjunctive normal form. If *S* is a nonempty set of propositional symbols, and every propositional symbol in ϕ is in *S*, then ϕ^{DNF} and ϕ^{CNF} can be chosen so that they use only propositional symbols from *S*. (3) Negating the proposition in (2), applying the De Morgan laws and removing double negations gives

$$\neg ((p_1 \land \neg p_2) \lor (\neg p_1 \land p_2 \land p_3))$$
eq $\neg (p_1 \land \neg p_2) \land \neg (\neg p_1 \land p_2 \land p_3)$
eq $(\neg p_1 \lor \neg \neg p_2) \land (\neg \neg p_1 \lor \neg p_2 \lor \neg p_3)$
eq $(\neg p_1 \lor p_2) \land (p_1 \lor \neg p_2 \lor \neg p_3)$

which is in CNF.

46

Proof The proof of Post's Theorem constructs a proposition ψ using only propositional symbols from S, such that $f_{\psi} = f_{\phi}$. By inspection, the proposition ψ is in disjunctive normal form. Since $f_{\phi} = f_{\psi}$, we have for every *S*-assignment *a*

$$a^{\star}(\phi) = f_{\phi}(a) = f_{\psi}(a) = a^{\star}(\psi),$$

so $\phi \neq \psi$. Hence we can take ϕ^{DNF} to be ψ .

First consider a basic conjunction

 $\phi_1 \wedge \ldots \wedge \phi_m$.

This proposition is satisfiable if and only if there is a valuation \boldsymbol{v} such that

$$v(\phi_1) = \ldots = v(\phi_m) = \mathsf{T}$$

Since the ϕ_i are literals, we can find such a v unless there are two literals among ϕ_1, \ldots, ϕ_n which are respectively p and $\neg p$ for the same propositional symbol p.

We can easily check this condition by inspecting the proposition.

50

Example A *proper m*-colouring of a map is a function assigning one of *m* colours to each country in the map, so that no two countries with a common border have the same colour as each other.

A map is *m*-colourable if it has a proper *m*-colouring.

Suppose a map has countries c_1, \ldots, c_n .

Write p_{ij} for 'Country c_i has the *j*-th colour'.

Then finding a proper *m*-colouring of the map is equivalent to finding a model of this proposition in CND:

 $(p_{11} \vee p_{12} \vee \ldots \vee p_{im}) \wedge \ldots \wedge (p_{n1} \vee \ldots \vee p_{nm})$

 $\wedge \quad (\neg p_{ik} \lor \neg p_{jk}) \land \dots$

(for all k and all countries c_i , c_j with a common border)

To find ϕ^{CNF} , first use the argument above to find $(\neg \phi)^{DNF}$, call it θ .

Then $\neg \theta$ uses only propositional symbols in *S*, and is equivalent to ϕ .

Then use the method of Example (3) above,

pushing the negation sign \neg inwards by the De Morgan rules and then cancelling double negations,

to get an equivalent proposition in CNF. $\hfill \Box$

49

So checking the satisfiability of propositions in DNF, and finding a model if there is one, are trivial.

But a lot of significant mathematical problems can be written as the problem of finding a model for a proposition in CNF.

The general problem of determining whether a proposition in CNF is satisfiable is known as SAT.

Many people think that the question of finding a fast algorithm for solving SAT, or proving that there isn't one, is one of the major unsolved problems of 21st century mathematics. (It is the "P = NP" problem.)