
CHAPTER 5 MODIFICATION OF THRESHOLD
TRANSFORMATIONS

Abstract. After the graph structures of self-dual one-to- one transforma-
tions are described, a construction method of generating minimal one-to-one
threshold transformations from lower dimensional ones through face copies and
orbit modifications are presented. Theorems that concern one-to-one threshold
transformations and support the method are also proved. Then compression
and expansion of threshold transformations are described. Then in addition
to one-to-one threshold transformations in Chapter 4, some classes of incom-
pressible and compressible one-to-one threshold transformations are given. In
particular, all currently known one-to-one minimal incompressible threshold
transformations are proved to be reflective. Finally, it is proved that there
exists a threshold transformation of {0, 1}n such that for any 1 ≤ k ≤ 2n, its
graph has a k-cycle that is the only cycle or loop. This enhanced Arimoto the-
orem has an important implication on dynamical systems of neural networks
described in the remaining chapters.

5.1 Orbit modification

If F is a threshold transformation, its graph drew considerable interest in the
1960s and early 70s (Arimoto, 1963; Masters & Mattson; 1966, Ishii, 1970; Ishii
& Miyazaki, 1972; etc.). These studies provided some construction procedures
for finding a threshold transformation that satisfies given conditions for its graph.
However, they were mainly concerned with proper subgraphs of GRAPH(F ) and
did not bring out concrete results for the whole graph structure of a transformation
except the ones given in Arimoto (1963) and Masters & Mattson (1966). Since
what characterizes a transformation is its (whole) graph structure rather than the
structure of its particular proper subgraph, our goal here is to fill part of that
vacancy. In order to simplify the problem we limit our scope to graphs of one-
to-one transformations and use the results of Chapters 3 and 4, which dealt with
reflective transformations and circular one-to-one threshold transformations.

We have already proved that a one-to-one threshold transformation F is self-dual
(Theorem 4.3.3 of Chapter 4), so that F can be represented by F = [f1, ..., fn],
where fi = pi · ¬(piF ). Further, by Corollary 4.3.5 of Chapter 4, F is a threshold
transformation, if and only if each fi is a threshold function.

Theorem 2.3.5 of Chapter 2 completely determines the cycle structures of one-to-
one self-dual transformations. However, such a condition for one-to-one threshold
transformations is unknown. Therefore, it is necessary to try to construct a one-
to-one threshold transformation individually in order to determine whether a given
cycle structure is realized by a threshold transformation or not. In this section
we prove two properties concerning face copies of one-to-one threshold transforma-
tions. Then. based on these results, we discuss a method of constructing higher di-
mensional one-to-one threshold transformations from lower dimensional ones. The
method is orbit modification, which we applied in Chapter 3.5. It was part of more
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2 CHAPTER 5 MODIFICATION OF THRESHOLD TRANSFORMATIONS

general construction procedures given by Ishii & Miyazaki (1972). Here we formu-
late it in terms of [ ]-representations.

Lemma 5.1.1 Let M = {n + 1, ..., n + m} and C ⊆ QM be a complete set. If
g is a threshold function: Qn+m → Q such that g = f · 1C for some f : QN → Q
and the characteristic function 1C : QM → Q , then C = QM .

Proof. Let g = f · 1C be a threshold function. Let q ∈ g; then r = {n + 1, ..., n +
m}−q ∈ g. If q′ = (q1, .., qn, an+1, .., an+m) /∈ g for some point (an+1, ..., an+m) ∈
Q{n+1,...,n+m}, then r′ = {n + 1, ..., n + m}−q′ /∈ g. Since q + r = q′ + r′, g is 2-
summable, so that we have a contradiction to the fact that g is a threshold function
(Corollary 4.2.2 of Chapter 4). ¤

Theorem 5.1.2 If G is a one-to-one threshold transformation of Qn+m, and
none of the (n + 1)th, ... and (n + m)th coordinates of any point of Qn+m changes
under G, then G is the (n + 1, ..., n + m)th face copies of a one-to-one threshold
transformation of Qn.

Proof. Let q be a point on a cycle of any transformation H of Qn+m. For any i, if
q changes its ith coordinate from 1 to 0 under H, then another point on the same
cycle must change its ith coordinate from 0 to 1 under H. Moreover, on the same
cycle, the number of points that change their ith coordinates from 1 to 0 must be
the same as the number of points that change their ith coordinates from 0 to 1.
Let M = {n + 1, ..., n + m} and a be a point of QM .

From the given condition, each cycle of G is contained either in P−1
M a or outside

P−1
M a, where PM is the projection function: Qn+m → QM . Therefore, the number

of q ∈ P−1
M a such that q changes its ith coordinate from 1 to 0 under G and the

number of r ∈ P−1
M a such that r changes its ith coordinate from 0 to 1 under G are

the same. Let G = [g1, .., gn, ∅, .., ∅]; then the number of q ∈ gi such that PMq = a
and the number of r ∈ gi such that PMr = ¬̄a are the same. Let q be an arbitrary
point of gi and r = M−q. If r ∈ ¬gi, then there exist q′ ∈ gi and r′ ∈ ¬gi such
that PMq′ = ¬PMq and r′ = M−q′. Hence, q + q′ = r + r′, q and q′ are points of
gi, and r and r′ are points of ¬gi, so that gi is 2-summable, contrary to the fact
that gi is a threshold function (Corollary 4.2.2 of Chapter 4). Hence, there exist
some fi : QN → Q and a complete set Ci ⊆ QM such that gi = fi · 1Ci. Since
Ci = QM by Lemma 5.1.1, we have G = F × IQM , where F = [f1, ..., fn], and F is
a one-to-one threshold transformation. ¤

Theorem 5.1.3 Let G be a minimal one-to-one threshold transformation of
Qn+1. Then there exists a self- dual threshold transformation F of Qn such that if
both q ∈ Qn+1 and (n + 1)−q change or neither changes their ith coordinate under
G for i = 1, ..., n, then Gq = (F × IQ{n+1})q.

Proof. Let G = [g1, ..., gn+1]. Let

fi = (gi|0) ∪ (gi|1) or fi = (gi|0) ∩ (gi|1)

for i = 1, ..., n, where 0, 1 ∈ Q{n+1}. Then F = [f1, ..., fn] is a threshold trans-
formation of Qn by Corollary 4.2.4 of Chapter 4. If both a point q ∈ Qn+1 and
q′ = (n+1)−q change or neither changes their ith coordinate under G for i = 1, ..., n,
and only one of them changes its (n + 1)th coordinate, then Gq = Gq′, contrary
to the fact that G is one-to- one. Suppose both q and q′ change their (n + 1)th
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coordinates. Then q ∈ gn+1 and q′ ∈ ¬̄gn+1, or q ∈ ¬̄gn+1 and q′ ∈ gn+1. By
Proposition 4.2.6 of Chapter 4, |gn+1| ≥ 2n−1 + 1; hence G is not minimal, be-
cause Var((n + 1)−G) < Var(G). Therefore, neither q nor q′ changes its (n + 1)th
coordinate, and F satisfies the desired condition. ¤

Orbit modification Theorem 5.1.3 shows that any minimal one-to-one thresh-
old transformation G = [g1, ..., gn+1] of Qn+1 can be constructed from a self-
dual threshold transformation F = [f1, ..., fn] through its (n + 1)th face copies
F × IQ{n+1} = [f1 ◦ PN, .., fn ◦ PN, ∅]; gi for i = 1, ..., n is obtained by adding or
deleting a subset of either the face ¬pn+1 or pn+1 to or from fi · 1Q{n+1} . Further,
gn+1 is composed of q, ¬̄q, (n + 1)−q or (n + 1)−¬̄q for some of these added or
deleted points q. The (n + 1)th coordinates of two of the four are 1, but gn+1 can
not contain both because of the minimality of G. By Theorem 5.1.2, gn+1 6= ∅ for
G to be one-to-one, unless G = F × IQ{n+1} . The method of constructing G from
F × IQ{n+1} in this way is orbit modification described in 3.5. More generally, we
may construct a new threshold transformation G from F × IQ{n+1,..,n+m} by orbit
modification.

5.2 Expansion and compression

let D = {D1, ..., Dm} be a partition of N = Nn, and let δ be a function from
Nn to M = Nm defined by δj = i if j ∈ Di. Let γ be a function from M to N
such that γi is a representative element of Di. Further let ε be a function from
N → {IQ,¬} such that εj = IQ for every representative element j ∈ γM.

Let the function H : Qm → Qn be defined by

pjH = εjpδj for every j ∈ N. (5.2.1)

Clearly H is an injection. In particular, if i ∈ M and j = γi, then pjH = pδj , since
δγ is the identity and εγi = IQ for every i ∈ M. Therefore,

pi = pγiHfori ∈ M,

so that pδj = pγδjH. Therefore, from (4.2.1),

pj = (εj)pγδj for every j on HQm. (5.2.2)

Now, given a transformation F of Qm, define a transformation E of Qn by

E =
{

HFH−1, on HQm,
Identity on (HQm)c. (5.2.3)

E is caled an expansion of F .
Conversely given a transformation E of Qn, define i ∼F j for i, j ∈ N if xi = xj

for every x ∈ CarE ∪ E(CarE) or xi = ¬xj for every x ∈ CarE ∪ E(CarE).
Clearly ∼F is an equivalence relation on N. Let D = {D1, ..., Dm} be the set of all
equivalence classes defined by ∼F . Let γi be a representative element of Di. Let
δ : N → M be defined by δj = i if j ∈ Di. Then pj = εjpγδj for every j ∈ N
on CarE ∪ E(CarE), where εj = IQ (matrmidentity) or ¬. In particular, εγi = IQ
for every i ∈ M. Therefore, the function H : Qm → Qn can be defined by (5.2.1).
Define the transformation F of Qm by

F = H−1EH. (5.2.4)



4 CHAPTER 5 MODIFICATION OF THRESHOLD TRANSFORMATIONS

Then F is well-defined, since CarE ∪E(CarE) ⊆ HQm. F is called a compression
of E. Further, E is called compressible, if |Dj | ≥ 2 for some j, and incompressible
otherwise. F is self-dual if and only if E is self-dual.

Let E = [e1, ..., en], and let F = [f1, ..., fm] be defined by (5.2.4). Then,

fj = pj · ¬(H−1EH)j

= εγjpδγj · ¬(EH)γj

= pγj(ε1pδ1, ..., εnpδn) · ¬Eγj(ε1pδ1, ..., εnpδn)
= eγj(ε1pδ1, ..., εnpδn).

(5.2.5)

Conversely let E is defined by (5.2.3) from given F . Then, since (5.2.2) is
necessary on HQm,

ei = pi · ¬Ei = pi · ¬(HFH−1)i ·Πk∈N(pk(=)εkpγδk),

and

pi · ¬(HEH−1)i = εipγδi · ¬εi(EH−1)δi

= (εipδi · ¬εiFδi)(pγ1, ..., pγm)

Therefore,

ei =
{

fδi(pγ1, .., pγm) ·Πk∈N(pk(=)εkpγδk) if εi = IQ,
¬̄fδi(pγ1, .., pγm) ·Πk∈N(pk(=)εkpγδk) if εi = ¬. (5.2.6)

Example 5.2.1 Let M = N1, F = [p1] be the transformation of QM, N = Nn,
D = {N}, γ1 = 1, and εi = IQ, for every i ∈ M. CarE = {1...1, 0...0}, and
Ex = ¬̄x. Therefore, E = 〈e〉,

e = p1 · p2 · · · pn.

Proposition 5.2.2 Let M = Nm and N = N2m, D = {D1, .., Dm}, Di =
{i,m + i}, and γi = i, εm+i = ¬ for every i. Let F = 〈〈f〉〉,

f = p1 · α2p2 · ... · αmpm, where αi = IQ or ¬ for every i.

Then the expansion E of F is 〈e〉,
e = p1 · α2p2 · ... · αmpm · ¬pm+1 · ¬α2pm+2 · ... · ¬αmp2m. (5.2.7)

Proof. Let ρm be the rotation (1...m) and ρ2m be the rotation (1...2m). Let f =
{x}, p1x = 1. Then, by (5.2.6),

ei = {(ρmm−)i−1x, ¬̄(ρmm−)i−1x)}
= {(¬xm+2−i, ..,¬xm, x1, x2, .., xm+2−(i+1))} for i ∈ M,

ei = {(¬̄(ρmm−)−(i−m−1)x, (ρmm−)−(i−m−1)x)}
= {(x2m+2−i, .., xm,¬x1,¬x2, ..,¬x2m+2−(i+1))} for i ∈ N\M.

ρi−1
2m e1 = {(ρi−1

2m (x1, .., xm,¬x1, ..,¬xm)}
= {(¬xm+2−i, ..¬xm, x1, .., xm−i+1)} = ei for i ∈ M,

ρi−1
2m e1 = {(ρi−1

2m (x1, .., xm,¬x1, ..,¬xm)}
= {(x2m+2−i, ..xm,¬x1, ..,¬x2m−i+1)} = ei for i ∈ N\M.

Therefore, ei = ρi−1
2m e1, that is, E is a circular ransformation 〈e〉 defined by (5.2.7).

¤
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Example 5.2.3 The simplest case in proposition 5.2.2 is when f = p1 · .. · pm.

Then E = 〈e〉,
e = p1 · p2 · ... · pm · ¬pm+1 · ¬pm+2 · ... · ¬p2m.

The 2m-cycle of E is

1...10...0 → 01...10...0 → ... → 0...01...10
↑ ↓

1...10...01 ← ... ← 0...01...1

E is uniquely minimal for m ≥ 2.
Example 5.2.4 Let 0 < h − 1 < 2m be relatively prime with 2m, and let

F = 〈〈f〉〉 be a one-to-one skew-circular transformation described in Theorem 4.5.3.

f = p1 · α2p2 · .. · αmpm,

F = (ρm−)h−1 on CarF .

Then we obtain the expansion E = 〈e〉,
e = p1 · α2p2 · .. · αmpm · ¬pm+1 · ¬α2pm+2 · .. · ¬αmp2m.

Thereore,
E = ρh−1 on CarE.

As an example, let

e = 1 · 2 · ¬3 · 4 · −5 · −6 · 7 · ¬8.

and compare the cycles of F and E.

1101 → 0101 → 0100 → 0110
↑ ↓

1001 ← 1011 ← 1010 ← 0010
11010010 → 01011010 → 01001011 → 01101001

↑ ↓
10010110 ← 10110100 ← 10100101 ← 00101101

We have also the following proposition similar to Proposition 5.2.2.
Propositin 5.2.5 Let N = N2m, D = {D1, ..., Dm}, Di = {i,m + i}, γi = i,

and ε(m + i) = IQ for every i. Let F = 〈f〉,
f = p1 · α2p2 · ... · αmpm, where αi = IQ or ¬ for every i.

Then the expamsion E of F is a circular transformation 〈e〉,
e = p1 · ε2p2 · ... · εmpm · pm+1 · ε2pn+2 · ... · εmp2m.

Example 5.2.6 Let 0 < h − 1 < m be relatively prime with odd m, and let
F = 〈f〉 be a one-to-one skew-circular transformation described in Theorem 4.4.3.

f = p1 · α2p2 · .. · αmpm,

F = ¬̄ρh−1 on CarF .

Then we obtain the expansion E = 〈e〉,
e = p1 · α2p2 · .. · αmpm · pm+1 · α2pm+2 · .. · αmp2m,

Therefore,
E = ¬̄ρh−1 on CarE.
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In general, if F is a threshold transformation, then its compression E is also
a threshold transformation, but the converse is not necessarily true. However, we
have the following theorem.

Proposition 5.2.7 F is a self-dual threshold transformation if and only if, for
its compression E = [e1, e2, .., em] defined by (5.2.2), ej is a threshold function for
every j, and for each l such that |Mt| ≥ 2 and for each j,

ej ⊆ pt or ej ⊆ ¬pt.

Proof. Let F = [f1, ..., fn] be a self-dual transformation of Qn and E = [e1, ..., em]
be a self-dual transformation of Qm defined by (5.2.2). Suppose that there exist
y, y′ ∈ ej such that yt = 0 and y′t = 1 for some t such that |Mt| ≥ 2. Then there
exists some s such that s 6= γt and t = δs. Let i = γj, Hy = x, and Hy′ = x′.
Then δi = j. Also, x, x′ ∈ eδi(pγ1, .., pγm), xk = εkxγδk, and x′k = εkx′γδk for
every k, so that x, x′ ∈ fi by (5.2.3). Further,

xγt = yt = 0, x′γt = 1, xs = εsyδs = εsyt = εs0, x′s = εs1.

Let z and z′ of Qn be defined as

zγt = 0, zs = εs1, zu = xu for every other u;
z′γt = 1, z′s = εs0, z′u = x′u for every other u.

Since γt ∼F s, both z and z′ are fixed points of F , so that they are elements of
¬fi. However, x + x′ = z + z′ in Rn, i.e. fi is 2-summable, contrary to the fact
that fi is a threshold function. The ”if” part of this theorem is obvious. ¤

As seen from Proposition 5.2.7, an expansion of an incompressible threshold
transformation may be a threshold transformation or not. If there exists some
threshold transformation which is an expansion of a given threshold transformation,
then the given threshold transformation may be called expansible. Thus, threshold
transformations can be classified as follows.

Thresholdtransformations
↙ ↘

Compressible Incompressible

Thresholdtransformations
↙ ↘

Expansible Inexpansible

5.3 Incompressible transformations

We gave circular and skew-circular threshold transformations in Sections 4.4 and
4.5. In this section we try to construct general, minimal, non-compressible, one-
to-one threshold transformations by orbit modification discussed in Section 5.1,
although I have found only one example except trivial ones, which are face copies
of or isometrically similar to circular or skew- circular transformations.

In the end of Chapter 4, we raised an open question about whether all min-
imal one-to-one threshold transformations are reflective through some isometries
of order 2, so that their inverses are also threshold transformations. We have not
solved this question, but we will show that all currently known one-to-one threshold
transformations that are minimal and incompressible are reflective through some
isometries of order 2. Combined with the result in Chapter 3.2 that any isometry is
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reflective through some isometry of order 2, these results tentatively indicate that
one-to-one threshold transformations do not completely digress from isometries,
despite selectiveness for non-fixed points in the former. These results also help to
find a one-to-one threshold transformation.

Constructing a threshold bijection is in turn a good preparation for constructing
a neural network, since not only similar methods can be applied to the two subjects,
but also a dynamical neural network having an attractor is often constructed by
modifying a one-to-one threshold transformation, as shown in Chapters 6 and 7.
In the following, the expression of cycle structures introduced in Chapter 2.3 is used.

Example 5.3.1 Let n = 2m + 2. Consider the transformation F of Example
5.3.2 (3) for dimension n− 1, i.e., F = [f, ρf, ..., ρn−2f ], where

f = f1 ∨ f2,

f1 = p1 · · · pm+1 · ¬pm+2 · · · ¬p2m+1,

f2 = p1 · · · pm · ¬pm+1 · · · ¬p2m+1.

The non-fixed points of the nth face copies of F form four (n−1)-cycles, for example,

111001 → 011101 → 001111 → 100111 → 110011 → 111001,
110001 → 011001 → 001101 → 000111 → 100011 → 110001,
111000 → 011100 → 001110 → 100110 → 110010 → 111000,
110000 → 011000 → 001100 → 000110 → 100010 → 110000.

Since F is reflective through the linear permutation ν of coefficients (−1, n), i.e.
ν = (1, n− 1)(2, n− 2) · · · (n/2− 1, n/2 + 1), its nth face copies are also reflective
through ν by Proposition 3.5.1 (i) of Chapter 3. Let c be the point defined by ci = 1
for 1 ≤ i ≤ n/2− 1, ci = 0 for n/2 ≤ i ≤ n− 1, and cn = 1, and let d be the point
defined by di = 1 for 1 ≤ i ≤ n/2, and di = 0 for n/2 + 1 ≤ i ≤ n (c = 110001,
d = 111000 in this example). Then applying Proposition 3.5.4 of Chapter 3, we
obtain

G = [g1, ..., gn],

gi = ρi−1f1 ∨ ρi−1f2 · ¬pn for i = 1, ..., m + 1,

gi = ρi−1f1 · pn ∨ ρi−1f2 for i = m + 2, ..., 2m + 1,

gn = f2 · pn.

G is a threshold transformation, since gi is a threshold function for every i. F is
reflective through ν, incompressible, inexapansible, and

CS(G) = {(1, n), (2, n− 1), (2n − 3n + 2, 1)}.
In the above example, the four cycles are changed into

111001 → 011101 → 001111 → 100111 → 110011 → 111001,
110001 000111 → 100011 → 110001,
↓ ↗

111000 → 011100 → 001110
110000 → 011000 → 001100 → 000110 → 100010 → 110000.

As described above, all one-to-one minimal threshold transformations we have
found so far, including G in the above Example 5.3.1, are reflective through some
Boolean isometries of order 2. However, there exists a compressible, minimal, one-
to-one threshold transformation that is not reflective, as given in the following
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Example 5.3.2. On the other hand, there exists an incompressible, non-minimal,
one-to-one threshold transformation that is not reflective, as given in the following
Example 5.3.3. Therefore, incompressibility as well as minimality is necessary for
the conjecture.

Example 5.3.2 (Minimal, compressible, non-reflective one-to-one threshold trans-
formation). n = 6. F = [f1, . . . , f6],

f1 = 1 · ¬2 · ¬3 · ¬4 · (¬5 ∨ ¬6),
f2 = 1 · 2 · ¬3 · ¬4 · (¬5 ∨ ¬6),
f3 = f4 = 1 · 2 · 3 · 4 · (¬5 ∨ ¬6),
f5 = f6 = 1 · 2 · 3 · 4 · 5 · 6.

F is compressible, since 3 ∼F 4. Suppose F is reflective through τJ−. Since
|f1| = |f2| = |f3| = |f4| = 3 and |f5| = |f6| = 1, τ{5, 6} = {5, 6} by Corollary 3.3.3
of Chapter 3. Since f6 3 111111 →F 111100, J = {1, 2, 3, 4} by Proposition 3.3.2
(i),(ii) of Chapter 3. However,

f2 3 110000 →F 100000 →J− 011100 →τ x /∈ fτ2,

which contradicts Proposition 3.3.2 (i) of Chapter 3.

Example 5.3.3 (Non-minimal, incompressible, non-reflective one-to-one thresh-
old transformation). Let G = 〈〈g〉〉 , g = p1 · p2 · p3 · p4, on Q4. Let F = (3, 4)1−G.
Then Then F = [f1, f2, f3, f4],

f1 = 1 · (¬2 ∨ ¬3 ∨ ¬4),
f2 = ¬1 · 2 · 3 · 4,

f3 = (¬1 ∨ ¬2) · 3 · ¬4,

f4 = (¬1 · ¬2 ∨ ¬3) · 4.

Then |f1| = 7, |f2| = 1, |f3| = 3, |f4| = 5. Suppose that F is reflective through
T = τJ−. Then τ = ι by Corollary 3.3.3 of Chapter 3. On the other hand,
{0000, 1111} is the set of fixed points of F . Therefore, J = ∅ or J = N4. In either
case, F 2 = I, which is not true. Therefore, F is not reflective through any Boolean
isometry.

5.4 Compressible transformations

We gave circular, compressible, threshold transformations in Section 5.2. In
this section we seek general, compressible minimal, threshold transformations con-
structed by orbit modification described in Section 5.1. First, we determine the
cycle structures of threshold transformations obtained by expansion from the skew-
circular transformation of Example 5.3.2.

Proposition 5.4.1 For any n and even k such that k ≤ 2n, the cycle structure
{(1, k), (2n − k, 1)} is realized by a threshold transformation.

Proof. Let

fi =
{

x1 · · · xi · ¬xi+1 · · · ¬xn for i ≤ k/2− 1,
x1xn for i ≥ k/2.
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Then F = [f1, ..., fn] realizes the desired cycle structure. E.g. if n = 5, and k = 6,
then

11111 → 11000 → 10000 → 00000
→ 00111 → 01111 → 11111.

¤

The n-dimensional F of Proposition 5.4.1 is obtained from the nth face copies
of the (n − 1)-dimensional F by orbit connection. Note that i ∼F j for every
i, j ∈ {k/2, k/2 + 1, .., n}.

Proposition 5.4.1 can be further generalized into the following proposition.

Proposition 5.4.2 If n ≥ 4 is even, then the cycle structure {(1, n), (2, n −
2), (2n − 3n + 4, 1)} is realized by a threshold transformation.

Proof. Let n = 2m + 2. Consider the transformation of Example 4.4.2 of Chapter
4 for Q2m. Specifically, F = [f, ρf, ..., ρ2m−1f ], where

f = p1 · p2 · · · pm · ¬pm+1 · · · ¬p2m.

From the (2m + 1, 2m + 2)th face copies of F through orbit connection, we obtain
G = [g1, ..., g2m+2], where

gi = (ρi−1f) · (¬p2m+1 ∨ ¬p2m+2) for i = 1, ..., m,

gi = (ρi−1f) · (p2m+1 ∨ p2m+2) for i = m + 1, ..., 2m,

g2m+1 = g2m+2 = f · p2m+1 · p2m+2.

The threshold transformation G realizes the desired cycle structure. E.g.

1000 → 0100 → 0111 → 1011 → 1000,
1010 → 0110 → 1010,
1001 → 0101 → 1001.

¤

Proposition 5.4.3 For any n,m and even k such that 1 ≤ m < n and k ≤ 2m,
the cycle structure {(1, k +2), (2n−m− 2, k), (2n− k2n−m + k− 2, 1)} is realized by
a threshold transformation.

Proof. Let the m-dimensional threshold transformation of Proposition 5.4.1 be
[f1, ..., fm]. If G = [g1, ..., gn] is defined as

gi =
{

fi(¬pm+1 ∨ ... ∨ ¬pn) for i = 1, ..., m,
pipn for i = m + 1, ..., n,

then G realizes the desired cycle structure. E.g. if n = 5, m = 3 and k = 4, then

10000 → 00000 → 00011 → 01111
→ 11111 → 11100 → 10000,

10001 → 00001 → 01101 → 11101 → 10001,
10010 → 00010 → 01110 → 11110 → 10010,
01110 → 11110 → 10010 → 00010 → 01110,
01101 → 11101 → 10001 → 00001 → 01101.

¤



10 CHAPTER 5 MODIFICATION OF THRESHOLD TRANSFORMATIONS

5.5 An enhanced Arimoto theorem

Arimoto’s theorem (1963, Theorem 2, p. 20) proved that for any positive integer
k such that k ≤ 2n, there exists a threshold transformation F of Qn such that the
graph of F has a k-cycle as its subgraph. Here we prove a stronger theorem using
[ ]-representations of self-dual threshold transformations and construction methods
introduced in Ueda (1992). Unlike Arimoto (1963), the present more combinatorial
and simpler proof does not require the concept of bordering points and the con-
struction of weight matrices and threshold vectors.

A special case of orbit modification is used in the proof of the next theorem. It
was first introduced by Arimoto (1963).

Consider a self-dual transformation F = [f1, .., fn] of Qn. Let q be a point of
Qn. We modify fi into gi for each i in the following way. If qi = 1, then let
gi = fi ∪ q if q /∈ fi, and let gi = fi\q if q ∈ fi. If qi = 0 then let gi = fi ∪ ¬̄q
if ¬̄q /∈ fi, and let gi = fi\¬̄q if ¬̄q ∈ fi. We have Gq = ¬̄Fq, G(¬̄q) = Fq, and
Gx = Fx for every other x for G = [g1, .., gn] thus constructed. Let C be the cycle
or loop on which q is located, and let k be the length of C. If ¬̄C = C then C is
divided into two new k/2-cycles. If ¬̄C = D for another k-cycle D, then C and D
are united into one new 2k-cycle. These situations are illustrated in Figs. 1 and
2. In particular, G is one-to one, if F is one-to-one. However, If F is a threshold
transformation, G is not a threshold transformation except in special cases, since
gi are not necessarily threshold functions. The self-dual transformation G is called
Arimoto’s orbit modification of F at q.

◦ → ◦ → q → r → ◦
↑ ↓
◦ ← ¬̄r ← ¬̄q ← ◦ ← ◦

⇓
◦ → ◦ → q r → ◦

↑ ↓ ↑ ↓
◦ ← ¬̄r ¬̄q ← ◦ ← ◦

Fig. 1
◦ → ◦ → q r → ◦

↑ ↓ ↑ ↓
◦ ← ¬̄r ¬̄q ← ◦ ← ◦

⇓
◦ → ◦ → q → r → ◦

↑ ↓
◦ ← ¬̄r ← ¬̄q ← ◦ ← ◦

Fig. 2
Theorem 5.5.1 (Arimoto, 1963) There exist a threshold transformation F of

Qn such that GRAPH(F ) consists of one 2n-cycle, i.e. a Hamiltonian cycle.

Proof. We construct a desired F by iterating copying and Arimoto’s orbit mod-
ification. (1) For n = 1, one 2-cycle is realized by the transformation F = [f1],
f1 = {1} = p1. GRAPH(F ) is

1 → 0 → 1.
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(2) For n = 2, two 2-cycles are realized by the face copies F = [f1, f2], f1 = p1,
f2 = ∅. GRAPH(F ) is

11 → 01 → 11,
00 → 10 → 00.

(3) For n = 2, one 22-cycle is realized by F = [f1, f2], which is Arimoto’s orbit
modification at 11,

f1 = p1\11 = p1 · ¬p2,

f2 = {11} = p1 · p2,

where \11 means the deletion of 11. GRAPH(F ) is now

11 01 → 11.
↓ ↑
10 → 00

(4) For n = 3, two 22-cycles are realized by F = [f1, f2, f3],

f1 = p1 · ¬p2,

f2 = p1 · p2,

f3 = ∅.
GRAPH(F ) is

111 → 101 → 001 → 011 → 111,
000 → 010 → 110 → 100 → 000.

(5) For n = 3, one 23-cycle is realized by F = [f1, f2, f3],

f1 = (p1 · ¬p2) ∪ 111 = p1 · (¬p2 ∨ p3),
f2 = (p1 · p2)\111 = p1 · p2 · ¬p3,

f3 = {111} = p1 · p2 · p3,

where ∪111 means the addition of 111. GRAPH(F ) is

111 101 → 001 → 011 → 111.
↓ ↑

010 → 110 → 100 → 000

In general, if one 2k-cycle

1k = x(1) → x(2) → ... → x(2k) → x(1)

is realized by F = [f1, .., fk], then two 2k-cycles

1k+1 = x(1)1 → x(2)1 → ... → x(2k) → x(1)1,

0k+1 = (N−
k x(1))0 → (N−

k x(2))0 → ... → (N−
k x(2k))0 → (N−

k x(1))0

are realized by F ′ = [f1 ◦ PNk
, .., fk ◦ PNk

, ∅]. Here 1k = 1 · · · 1 ∈ Qk and
0k+1 = 0 · · · 0 ∈ Qk+1. Therefore, one 2k+1-cycle

x(1)1 x(2)1 → x(3)1 → . . . → x(2k)1 → x(1)1,
↓ ↖

(¬̄x(2))0 → (¬̄x(3))0 → . . . → (¬̄x(2k))0 → (¬̄x(1))0
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is realized by a self-dual transformation G such that G(x(1)1) = ¬̄F ′(x(1)1) and
G(x(j)1) = F ′(x(j)1) for every j 6= 1. This G = [g1, .., gk+1] can be defined by

gi =





fi ◦ PNk
\1k+1 if 1k+1 ∈ fi ◦ PNk

,
fi ◦ PNk

∪ 1k+1 if 1k+1 /∈ fi ◦ PNk
,

gk+1 = {1k+1} .

Further, if 1k ∈ fi then 1k+1 ∈ fi ◦PNk
; if 1k /∈ fi then 1k+1 /∈ fi ◦PNk

. Therefore,
if 1k ∈ fk, 1k /∈ fk−1, 1k ∈ fk−2, and 1k /∈ fk−3,..,for F , then gk = fk ◦ PNk

\1k+1,
gk−1 = fk−1 ◦ PNk

∪ 1k+1, gk−2 = fk−2 ◦ PNk
\1k+1, gk−3 = fk−3 ◦ PNk

∪ 1k+1, ...
By repeating the above process of constructing G from F , we obtain F =

[f1, .., fn],

f1 =





p1 · (¬p2 ∨ p3 · (¬p4 ∨ p5 · (¬p6 ∨ p7 · (.. · (¬pn−4 ∨ pn−3 · (¬pn−2 ∨ pn−1 · ¬pn))..)
if n is even,

p1 · (¬p2 ∨ p3 · (¬p4 ∨ p5 · (¬p6 ∨ .. ∨ pn−4 · (¬pn−3 ∨ pn−2 · (¬pn−1 ∨ pn))..)
if n is odd,

....

fn−3 = p1 · · · pn−3 · (¬pn−2 ∨ pn−1 · ¬pn),
fn−2 = p1 · · · pn−2 · (¬pn−1 ∨ pn),
fn−1 = p1 · · · pn−1 · ¬pn,

fn = p1 · · · pn.

GRAPH(F ) consists of one 2n-cycle, and fi is a threshold function for every i by
Proposition 4.1.2 of Chapter 4 (Read these equations upward from the bottom and
backward from the right). ¤

The next tables illustrate the process of creating F for n = 3 in the proof of
Theorem 5.5.1. In the tables, each left column shows f1, .., fn, and each right col-
umn shows ¬̄f1, ¬̄f2, .., ¬̄fn, where a function f is expressed by f−11, and * denotes
{0, 1}.

1 0 → 1∗ 0∗
∅ ∅ → 1 ∗ \11 0 ∗ \00

11 00
=

10 01
11 00

→
10∗ 01∗
11∗ 00∗
∅ ∅

→
10 ∗ ∪111 01 ∗ ∪000
11 ∗ \111 00 ∗ \000
111 000

=

10∗ 01∗
111 000
110 001
111 000

Theorem 5.5.2 (Ueda, 1997) There exists a threshold transformation H of Qn

such that for any k ≤ 2n, GRAPH(H) has a k-cycle that is the only cycle or loop.

Proof. Consider the one-to-one self-dual threshold transformation F = [f1, .., fn]
of Qn constructed in the proof of Theorem 5.5.1 such that GRAPH(F ) consists of
one 2n-cycle, which is

1n = x(1) → x(2) → ... → x(2n) → x(1).

Let F ′ be the transformation of Qn+1 defined by F ′ = [f1 ◦PN, .., fn ◦PN, ∅]. Then

1n+1 = x(1)1 → x(2)1 → ... → x(2n)1 → x(1)1,
0n+1 = (¬̄x(1))0 → (¬̄x(2))0 → ... → (¬̄x(2n))0 → (¬̄x1)0
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are the two 2n-cycles of F ′. The modification x(1)1 → x(j)1 and (¬̄x(1))0 →
(¬̄x(j))0 changes GRAPH(F ′) into

x(2)1 → . . . → x(j−1)1
↓

x(1)1 → x(j)1 → . . . → x(2n)1 → x(1)1,
(¬̄x(2))0 → . . . → (¬̄x(j−1))0

↓
(¬̄x(1))0 → (¬̄x(j))0 → . . . → (¬̄x(2n))0 → (¬̄x(1))0,

which has two (2n − j + 2)-cycles that are the only cycles or loops. F ′ has been
changed by this modification into G = [g1, .., gn, ∅], where

gi =





f ′I if x
(2)
i = x

(j)
i ,

f ′I ∪ 1n+1 if x
(2)
i = 1and x

(j)
i = 0,

f ′i\1n+1 if x
(2)
i = 0 and x

(j)
i = 1.

As shown in the proof of Theorem 5.5.1, gi is a threshold function for every i. Let
the transformation H of Qn be defined by

Hi(x1, .., xn) = Gi(x1, .., xn, 1)

for i = 1, .., n. Then H is a threshold transformation by Proposition 4.3.6 of
Chapter 4. Further, GRAPH(H) is

x(2) → . . . → x(j−1)

↓
x(1) → x(j) → . . . → x(2n) → x(1),

which has one (2n − j + 2)-cycle, and this cycle is the only cycle or loop. ¤
The next tables illustrate the process of creating H for n = 3 having one 5-cycle

in the proof of Theorem 5.5.2.

F ′ :

10 ∗ ∗ 01 ∗ ∗
111∗ 000∗
110* 001∗
111∗ 000∗
∅ ∅

→ G :

10 ∗ ∗ 01 ∗ ∗
111∗ 000∗
110∗ 001∗
1111 0000
111∗ 000∗
∅ ∅

GRAPH(G) is

0101 → 1101 → 1001
↓

1111 → 0001 → 1011 → 0011 → 0111 → 1111,
1010 → 0010 → 0110

↓
0000 → 1110 → 0100 → 1100 → 1000 → 0000.

GRAPH(H) is

010 → 110 → 100
↓

111 → 000 → 101 → 001 → 011 → 111.


