What is Quantum Physics?

Quantum physics is a branch of science that deals with discrete, indivisible units of energy called quanta as described by the Quantum Theory. There are five main ideas represented in Quantum Theory:

1.Energy is not continuous, but comes in small but discrete units.

2.The elementary particles behave both like particles and like waves.

3.The movement of these particles is inherently random.

4.It is physically impossible to know both the position and the momentum of a particle at the same time. The more precisely one is known, the less precise the measurement of the other is.

5.The atomic world is nothing like the world we live in.

While at a glance this may seem like just another strange theory, it contains many clues as to the fundamental nature of the universe and is more important then even relativity in the grand scheme of things (if any one thing at that level could be said to be more important then anything else). Furthermore, it describes the nature of the universe as being much different then the world we see. As Niels Bohr said, *"Anyone who is not shocked by quantum theory has not understood it." *

Particle/Wave Duality

Particle/wave duality is perhaps the easiest way to get aquatinted with quantum theory because it shows, in a few simple experiments, how different the atomic world is from our world.

First let's set up a generic situation to avoid repetition. In the center of the experiment is a wall with two slits in it. To the right we have a detector. What exactly the detector is varies from experiment to experiment, but it's purpose stays the same: detect how many of whatever we are sending through the experiment reaches each point. To the left of the wall we have the originating point of whatever it is we are going to send through the experiment. That's the experiment: send something through two slits and see what happens. For simplicity, assume that nothing bounces off of the walls in funny patterns to mess up the experiment.

First try the experiment with bullets. Place a gun at the originating point and use a sandbar as the detector. First try covering one slit and see what happens. You get more bullets near the center of the slit and less as you get further away. When you cover the other slit, you see the same thing with respect to the other slit. Now open both slits. You get the sum of the result of opening each slit. The most bullets are found in the middle of the two slits with less being found the further you get from the center.

Well, that was fun. Let's try it on something more interesting: water waves. Place a wave generator at the originating point and detect using a wave detector that measures the height of the waves that pass. Try it with one slit closed. You see a result just like that of the bullets. With the other slit closed the result is the same. Now try it with both slits open. Instead of getting the sum of the results of each slit being open, you see a wavy pattern 8; in the center there is a wave greater then the sum of what appeared there each time only one slit was open. Next to that large wave was a wave much smaller then what appeared there during either of the two single slit runs. Then the pattern repeats; large wave, though not nearly as large as the center one, then small wave. This makes sense; in some places the waves reinforced each other creating a larger wave, in other places they canceled out. In the center there was the most overlap, and therefore the largest wave. In mathematical terms, instead of the resulting intensity being the sum of the squares of the heights of the waves, it is the square of the sum.

While the result was different from the bullets, there is still nothing unusual about it; everyone has seen this effect when the waves from two stones that are dropped into a lake in different places overlap. The difference between this experiment and the previous one is easily explained by saying that while the bullets each went through only one slit, the waves each went through both slits and were thus able to interfere with themselves.

Now try the experiment with electrons. Recall that electrons are negatively charged particles that make up the outer layers of the atom. Certainly they could only go through one slit at a time, so their pattern should look like that of the bullets, right? Let's find out. (NOTE: to actually perform this exact experiment would take detectors more advanced then any on earth at this time. However, the experiments have been done with neutron beams and the results were the same as those presented here. A slightly different experiment was done to show that electrons would behave the same way . For reasons of familiarity, we speak of electrons here instead of neutrons.) Place an electron gun at the originating point and an electron detector in the detector place. First try opening only one slit, then just the other. The results are just like those of the bullets and the waves. Now open both slits. The result is just like the waves!

There must be some explanation. After all, an electron couldn't go through both slits. Instead of a continuous stream of electrons, let's turn the electron gun down so that at any one time only one electron is in the experiment. Now the electrons won't be able to cause trouble since there is no one else to interfere with. The result should now look like the bullets. But it doesn't! It would seem that the electrons do go through both slits.

This is indeed a strange occurrence; we should watch them ourselves to make sure that this is indeed what is happening. So, we put a light behind the wall so that we can see a flash from the slit that the electron went through, or a flash from both slits if it went through both. Try the experiment again. As each electron passes through, there is a flash in only one of the two slits. So they do only go through one slit! But something else has happened too: the result now looks like the result of the bullets experiment!!

Obviously the light is causing problems. Perhaps if we turned down the intensity of the light, we would be able to see them without disturbing them. When we try this, we notice first that the flashes we see are the same size. Also, some electrons now get by without being detected. This is because light is not continuous but made up of particles called photons. Turning down the intensity only lowers the number of photons given out by the light source. The particles that flash in one slit or the other behave like the bullets, while those that go undetected behave like waves.

Well, we are not about to be outsmarted by an electron, so instead of lowering the intensity of the light, why don't we lower the frequency. The lower the frequency the less the electron will be disturbed, so we can finally see what is actually going on. Lower the frequency slightly and try the experiment again. We see the bullet curve . After lowering it for a while, we finally see a curve that looks somewhat like that of the waves! There is one problem, though. Lowering the frequency of light is the same as increasing it's wavelength , and by the time the frequency of the light is low enough to detect the wave pattern the wavelength is longer then the distance between the slits so we can no longer see which slit the electron went through.

So have the electrons outsmarted us? Perhaps, but they have also taught us one of the most fundamental lessons in quantum physics - an observation is only valid in the context of the experiment in which it was performed. If you want to say that something behaves a certain way or even exists, you must give the context of this behavior or existence since in another context it may behave differently or not exist at all. We can't just say that an electron is a particle, since we have already seen proof that this is not always the case. We can only say that when we observe the electron in the two slit experiment it behaves like a particle. To see how it would behave under different conditions, we must perform a different experiment.

The Copenhagen Interpretation

So sometimes a particle acts like a particle and other times it acts like a wave. So which is it? According to Niels Bohr, who worked in Copenhagen when he presented what is now known as the Copenhagen interpretation of quantum theory, the particle is what you measure it to be. When it looks like a particle, it is a particle. When it looks like a wave, it is a wave. Furthermore, it is meaningless to ascribe any properties or even existence to anything that has not been measured. Bohr is basically saying that nothing is real unless it is observed.

While there are many other interpretations of quantum physics, all based on the Copenhagen interpretation, the Copenhagen interpretation is by far the most widely used because it provides a "generic" interpretation that does not try to say any more then can be proven. Even so, the Copenhagen interpretation does have a flaw that we will discuss later. Still, since after 70 years no one has been able to come up with an interpretation that works better then the Copenhagen interpretation, that is the one we will use. We will discuss one of the alternatives later.

The Wave Function

In 1926, just weeks after several other physicists had published equations describing quantum physics in terms of matrices, Erwin Schrödinger created quantum equations based on wave mathematics , a mathematical system that corresponds to the world we know much more then the matrices. After the initial shock, first Schrödinger himself then others proved that the equations were mathematically equivalent . Bohr then invited Schrödinger to Copenhagen where they found that Schrödinger's waves were in fact nothing like real waves. For one thing, each particle that was being described as a wave required three dimensions . Even worse, from Schrödinger's point of view, particles still jumped from one quantum state to another; even expressed in terms of waves space was still not continuous. Upon discovering this, Schrödinger remarked to Bohr that "Had I known that we were not going to get rid of this damned quantum jumping, I never would have involved myself in this business."

Unfortunately, even today people try to imagine the atomic world as being a bunch of classical waves. As Schrödinger found out, this could not be further from the truth. The atomic world is nothing like our world, no matter how much we try to pretend it is. In many ways, the success of Schrödinger's equations has prevented people from thinking more deeply about the true nature of the atomic world.

The Collapse of the Wave Function

So why bring up the wave function at all if it hampers full appreciation of the atomic world? For one thing, the equations are much more familiar to physicists, so Schrödinger's equations are used much more often then the others. Also, it turns out that Bohr liked the idea and used it in his Copenhagen interpretation. Remember our experiment with electrons? Each possible route that the electron could take, called a ghost, could be described by a wave function. As we shall see later, the "damned quantum jumping" insures that there are only a finite, though large, number of possible routes. When no one is watching, the electron take every possible route and therefore interferes with itself. However, when the electron is observed, it is forced to choose one path. Bohr called this the "collapse of the wave function". The probability that a certain path will be chosen when the wave function collapses is, essentially, the square of the path's wave function.

Bohr reasoned that nature likes to keep it possibilities open, and therefore follows every possible path. Only when observed is nature forced to choose only one path, so only then is just one path taken.

The Uncertainty Principle

Wait a minute... probability??? If we are going to destroy the wave pattern by observing the experiment, then we should at least be able to determine exactly where the electron goes. Newton figured that much out back in the early eighteenth century; just observe the position and momentum of the electron as it leaves the electron gun and we can determine exactly where it goes.

Well, fine. But how exactly are we to determine the position and the momentum of the electron? If we disturb the electrons just in seeing if they are there or not, how are we possibly going to determine both their position and momentum? Still, a clever enough person, say Albert Einstein, should be able to come up with something, right?

Unfortunately not. Einstein did actually spend a good deal of his life trying to do just that and failed. Furthermore, it turns out that if it were possible to determine both the position and the momentum at the same time, Quantum Physics would collapse. Because of the latter, Werner Heisenberg proposed in 1925 that it is in fact physically impossible to do so. As he stated it in what now is called the Heisenberg Uncertainty Principle, if you determine an object's position with uncertainty x, there must be an uncertainty in momentum, p, such that xp > h/4pi, where h is Planck's constant (which we will discuss shortly). In other words, you can determine either the position or the momentum of an object as accurately as you like, but the act of doing so makes your measurement of the other property that much less. Human beings may someday build a device capable of transporting objects across the galaxy, but no one will ever be able to measure both the momentum and the position of an object at the same time. This applies not only to electrons but also to objects such as tennis balls and toasters, though for these objects the amount of uncertainty is so small compared to there size that it can safely be ignored under most circumstances.

The EPR Experiment

"God does not play dice" was Albert Einstein's reply to the Uncertainty Principle. Thus being his belief, he spent a good deal of his life after 1925 trying to determine both the position and the momentum of a particle. In 1935, Einstein and two other physicists, Podolski and Rosen, presented what is now known as the EPR paper in which they suggested a way to do just that. The idea is this: set up an interaction such that two particles are go off in opposite directions and do not interact with anything else. Wait until they are far apart, then measure the momentum of one and the position of the other. Because of conservation of momentum, you can determine the momentum of the particle not measured, so when you measure it's position you know both it's momentum and position. The only way quantum physics could be true is if the particles could communicate faster then the speed of light, which Einstein reasoned would be impossible because of his Theory of Relativity.

In 1982, Alain Aspect, a French physicist, carried out the EPR experiment. He found that even if information needed to be communicated faster then light to prevent it, it was not possible to determine both the position and the momentum of a particle at the same time. This does not mean that it is possible to send a message faster then light, since viewing either one of the two particles gives no information about the other. It is only when both are seen that we find that quantum physics has agreed with the experiment. So does this mean relativity is wrong? No, it just means that the particles do not communicate by any means we know about. All we know is that every particle knows what every other particle it has ever interacted with is doing.

The Quantum and Planck's Constant

So what is that h that was so important in the Uncertainty Principle? Well, technically speaking, it's 6.63 X 10-34 joule-seconds. It's call Planck's constant after Max Planck who, in 1900, introduced it in the equation E=hv where E is the energy of each quantum of radiation and v is it's frequency. What this says is that energy is not continuous as everyone had assumed but only comes in certain finite sizes based on Planck's constant.

At first physicists thought that this was just a neat mathematical trick Planck used to explain experimental results that did not agree with classical physics. Then, in 1904, Einstein used this idea to explain certain properties of light--he said that light was in fact a particle with energy E=hv. After that the idea that energy isn't continuous was taken as a fact of nature - and with amazing results. There was now a reason why electrons were only found in certain energy levels around the nucleus of an atom. Ironically, Einstein gave quantum theory the push it needed to become the valid theory it is today, though he would spend the rest of his lift trying to prove that it was not a true description of nature.

Also, by combining Planck's constant, the constant of gravity, and the speed of light, it is possible to create a quantum of length (about 10-35 meter) and a quantum of time (about 10-43 sec), called, respectively, Planck's length and Planck's time 44. While saying that energy is not continuous might not be too startling to the average person, since what we commonly think of as energy is not all that well defined anyway, it is startling to say that there are quantities of space and time that cannot be broken up into smaller pieces. Yet it is exactly this that gives nature a finite number of routes to take when an electron interferes with itself.

Although it may seem like the idea that energy is quantized is a minor part of quantum physics when compared with ghost electrons and the uncertainty principle, it really is a fundamental statement about nature that caused everything else we've talked about to be discovered. And it is always true. In the strange world of the atom, anything that can be taken for granted is a major step towards an "atomic world view".

Schrödinger's Cat

Remember a while ago I said there was a problem with the Copenhagen interpretation? Well, you now know enough of what quantum physics is to be able to discuss what it isn't, and by far the biggest thing it isn't is complete. Sure, the math seems to be complete, but the theory includes absolutely nothing that would tie the math to any physical reality we could imagine. Furthermore, quantum physics leaves us with a rather large open question: what is reality? The Copenhagen interpretation attempts to solve this problem by saying that reality is what is measured. However, the measuring device itself is then not real until it is measured. The problem, which is known as the measurement problem, is when does the cycle stop?

Remember that when we last left Schrödinger he was muttering about the "damned quantum jumping." He never did get used to quantum physics, but, unlike Einstein, he was able to come up with a very real demonstration of just how incomplete the physical view of our world given by quantum physics really is. Imagine a box in which there is a radioactive source, a Geiger counter (or anything that records the presence of radioactive particles), a bottle of cyanide, and a cat. The detector is turned on for just long enough that there is a fifty-fifty chance that the radioactive material will decay. If the material does decay, the Geiger counter detects the particle and crushes the bottle of cyanide, killing the cat. If the material does not decay, the cat lives. To us outside the box, the time of detection is when the box is open. At that point, the wave function collapses and the cat either dies or lives. However, until the box is opened, the cat is both dead and alive.

On one hand, the cat itself could be considered the detector; it's presence is enough to collapse the wave function. But in that case, would the presence of a rat be enough? Or an ameba? Where is the line drawn? On the other hand, what if you replace the cat with a human (named "Wigner's friend" after Eugene Wigner, the physicist who developed many derivations of the Schrödinger's cat experiment). The human is certainly able to collapse the wave function, yet to us outside the box the measurement is not taken until the box is opened. If we try to develop some sort of "quantum relativity" where each individual has his own view of the world, then what is to prevent the world from getting "out of sync" between observers?

While there are many different interpretations that solve the problem of Schrödinger's Cat, one of which we will discuss shortly, none of them are satisfactory enough to have convinced a majority of physicists that the consequences of these interpretation s are better then the half dead cat. Furthermore, while these interpretations do prevent a half dead cat, they do not solve the underlying measurement problem. Until a better intrepretation surfaces, we are left with the Copenhagen interpretation and it's half dead cat. We can certainly understand how Schrödinger feels when he says, "I don't like it, and I'm sorry I ever had anything to do with it". Yet the problem doesn't go away; it is just left for the great thinkers of tomorrow.

The Infinity Problem

There is one last problem that we will discuss before moving on to the alternative interpretation. Unlike the others, this problem lies primarily in the mathematics of a certain part of quantum physics called quantum electrodynamics, or QED. This branch of quantum physics explains the electromagnetic interaction in quantum terms. The problem is, when you add the interaction particles and try to solve Schrödinger's wave equation, you get an electron with infinite mass, infinite energy, and infinite charge. There is no way to get rid of the infinities using valid mathematics, so, the theorists simply divide infinity by infinity and get whatever result the guys in the lab say the mass, energy, and charge should be. Even fudging the math, the other results of QED are so powerful that most physicists ignore the infinities and use the theory anyway. As Paul Dirac, who was one of the physicists who published quantum equations before Schrödinger, said, "Sensible mathematics involves neglecting a quantity when it turns out to be small - not neglecting it just because it is infinitely great and you do not want it!".

Many Worlds

One other interpretation, presented first by Hugh Everett III in 1957, is the many worlds or branching universe interpretation. In this theory, whenever a measurement takes place, the entire universe divides as many times as there are possible outcomes of the measurement. All universes are identical except for the outcome of that measurement. Unlike the science fiction view of "parallel universes", it is not possible for any of these worlds to interact with each other

While this creates an unthinkable number of different worlds, it does solve the problem of Schrödinger's cat. Instead of one cat, we now have two; one is dead, the other alive. However, it has still not solved the measurement problem! If the universe split every time there was more then one possibility, then we would not see the interference pattern in the electron experiment. So when does it split? No alternative interpretation has yet answered this question in a satisfactory way. And so the search continues...

Further Reading

If you are interested in learning more about quantum physics, here are some books that you could try (check the bibliography for more specific information on the books you are interested in):

**Richard Feynman's Lectures on Physics** deals with the math associated with quantum physics. If you can understand basic calculus, then this book is for you. Otherwise, while Lectures still provides some valuable information, you may find yourself lost before you get too far.

**John Gribbin's In Search of Schrödinger's Cat** is an excellent non-mathematical treatment of quantum physics. If you've been watching the footnotes you've seen that much of the data for this paper came from this book. It includes a good history of quantum physics. Be advised that the sections on supergravity and supersymmetry at the end are outdated.

**Alastair Rae's Quantum Physics: Illusion or Reality** presents the basics of quantum physics in terms of the polarization of light. It's 118 pages, half of which are devoted to a discussion of the alternate interpretations of quantum physics, can easily be read in an afternoon. It spends more time on alternate interpretations then Gribbin's book, but is less detailed in almost every other respect. I suggest reading Gribbin's book first then this book.

Bibliography

**Feynman, Richard P., Robert Leighton, and Matthew Sands**. The Feynman Lectures on Physics. Addison-Wesley, Reading, Massachusetts: 1965. Vol. 3: Quantum Mechanics.

**Gribbin, John.** In Search of Schrödinger's Cat. Bantam Books, Toronto: 1984. ISBN 0-553-34103-0

**Rae, Alastair.** Quantum Physics: Illusion or Reality? Cambridge University Press, London: 1986. ISBN 0-521-26023-3.