Untitled

Mathematics

# Grade 5: Data Management and Probability

Planning: Term #

Tracking: Ach. Level

Overall Expectations

1

2

3

4

• collect and organize discrete or continuous primary data and secondary data and display the data using charts and graphs, including broken-line graphs;

• read, describe, and interpret primary data and secondary data presented in charts and graphs, including broken-line graphs;

• represent as a fraction the probability that a specific outcome will occur in a simple probability experiment, using systematic lists and area models.

Specific Expectations

Collection and Organization of Data

– distinguish between discrete data (i.e., data organized using numbers that have gaps between them, such as whole numbers, and often used to represent a count, such as the number of times a word is used) and continuous data (i.e., data organized using all numbers on a number line that fall within the range of the data, and used to represent measurements such as heights or ages of trees);

– collect data by conducting a survey or an experiment (e.g., gather and record air temperature over a two-week period) to do with themselves, their environment, issues in their school or community, or content from another subject, and record observations or measurements;

– collect and organize discrete or continuous primary data and secondary data and display the data in charts, tables, and graphs (including broken-line graphs) that have appropriate titles, labels (e.g., appropriate units marked on the axes), and scales that suit the range and distribution of the data

(e.g., to represent precipitation amounts ranging from 0 mm to 50 mm over the school year, use a scale of 5 mm for each unit on the vertical axis and show months on the horizontal axis), using a variety of tools (e.g., graph paper, simple spreadsheets, dynamic statistical software);

Data Relationships

– read, interpret, and draw conclusions from primary data (e.g., survey results, measurements, observations) and from secondary data (e.g., precipitation or temperature data in the newspaper, data from the Internet about heights of buildings and other structures), presented in charts, tables, and graphs including broken-line graphs);

– calculate the mean for a small set of data and use it to describe the shape of the data set across its range of values, using charts, tables, and graphs (e.g., “The data values fall mainly into two groups on both sides of the mean.”; “The set of data is not spread out evenly around the mean.”);

– compare similarities and differences between two related sets of data, using a variety of strategies (e.g., by representing the data using tally charts, stem-and-leaf plots, double bar graphs, or broken-line graphs; by determining measures of central tendency [i.e., mean, median, and mode]; by describing the shape of a data set across its range of values).

Probability

– determine and represent all the possible outcomes in a simple probability experiment (e.g., when tossing a coin, the possible outcomes are heads and tails; when rolling a number cube, the possible outcomes are 1, 2, 3, 4, 5, and 6), using systematic lists and area models (e.g., a rectangle is divided into two equal areas to represent the outcomes of a coin toss experiment);

– represent, using a common fraction, the probability that an event will occur in simple games and probability experiments (e.g., “My spinner has four equal sections and one of those sections is coloured red. The probability that I will land on red is 1/4 .”);

– pose and solve simple probability problems, and solve them by conducting probability experiments and selecting appropriate methods of recording the results (e.g., tally chart, line plot, bar graph).

Student Name:

Expectations: Copyright The Queen's Printer for Ontario, 2005.  Format: Copyright B.Phillips, 1998.