Mathematics

 Grade 6: Geometry and Spatial Sense Planning: Term # Tracking: Ach. Level Overall Expectations 1 2 3 4 • classify and construct polygons and angles; • sketch three-dimensional figures, and construct three-dimensional figures from drawings; • describe location in the first quadrant of a coordinate system, and rotate two-dimensional shapes. Specific Expectations Geometric Properties – sort and classify quadrilaterals by geometric properties related to symmetry, angles, and sides, through investigation using a variety of tools (e.g., geoboard, dynamic geometry software) and strategies (e.g., using charts, using Venn diagrams); – sort polygons according to the number of lines of symmetry and the order of rotational symmetry, through investigation using a variety of tools (e.g., tracing paper, dynamic geometry software, Mira); – measure and construct angles up to 180° using a protractor, and classify them as acute, right, obtuse, or straight angles; – construct polygons using a variety of tools, given angle and side measurements (Sample problem: Use dynamic geometry software to construct trapezoids with a 45° angle and a side measuring 11 cm.). Geometric Relationships – build three-dimensional models using connecting cubes, given isometric sketches or different views (i.e., top, side, front) of the structure (Sample problem: Given the top, side, and front views of a structure, build it using the smallest number of cubes possible.); – sketch, using a variety of tools (e.g., isometric dot paper, dynamic geometry software), isometric perspectives and different views (i.e., top, side, front) of three-dimensional figures built with interlocking cubes. Location and Movement – explain how a coordinate system represents location, and plot points in the first quadrant of a Cartesian coordinate plane; – identify, perform, and describe, through investigation using a variety of tools (e.g., grid paper, tissue paper, protractor, computer technology), rotations of 180º and clockwise and counterclockwise rotations of 90°, with the centre of rotation inside or outside the shape; – create and analyse designs made by reflecting, translating, and/or rotating a shape, or shapes, by 90º or 180º (Sample problem: Identify rotations of 90° or 180° that map congruent shapes, in a given design, onto each other.). Student Name:

Expectations: Copyright The Queen's Printer for Ontario, 2005.  Format: Copyright B.Phillips, 1998.