![]() |
![]() |
![]() ![]() |
Realidade Digital O objetivo desta página é comentar certas técnicas de computação gráfica 3D aplicadas no cinema. No entanto, é importante que você tenha algumas noções básicas de 3D quanto a modelagem, texturização, iluminação e animação. As informações desta página irão complementar o seu conhecimento de 3D para que você possa realizar efeitos digitais 3D. Assim, se você não tem noções de computação gráfica 3D, escolha um programa de 3D, comece a aprender e procure entender e aplicar os comentários feitos aqui nesta página. Se você tiver condições, o programa 3D Studio Max é uma excelente opção. Mas se você não tem, existem vários programas bons e gratuitos na página de Links, como o Strata 3D e o Blender. Noções Básicas Antes de comentarmos os efeitos digitais 3D propriamente ditos, vamos entender um pouco sobre algumas noções e conceitos básicos para efeitos digitais 3D. Escaneamento 3D Como era feito - Escaneamento 3D consiste em criar uma cópia virtual em 3D dentro de um computador de um objeto que existe no mundo real. Assim como o escaner 2D digitaliza um objeto em 2 dimensões, o escaner 3D faz o mesmo só que em 3 dimensões. Uma das técnicas de escaneamento mais usadas antes do aparecimento dos escaneadores 3D conhecidos hoje em dia era o Método das Curvas de Nível. Este método consistia em fatiar a escultura que se quer digitalizar e usar um método qualquer de escaneamento 2D para digitalizar cada fatia da escultura, de forma a captar os contornos de cada curva e jogar este contornos num programa 3D. Depois basta unir cada contorno desta curva com os contornos da curva seguinte e da anterior. Depois de unir estas curvas, vamos ter então, um objeto sólido em 3D. O filme Exterminador do Futuro II foi um marco dos efeitos especiais no cinema, pelo uso da introdução de efeitos digitais 2D e 3D em larga escala. Umas das cenas mais marcantes do filme são, sem dúvida, aquelas em que o vilão T-1000 se ergue do chão após ter derretido. Este efeito foi criado pela empresa ILM (Industrial Light and Magic) e usou efeitos digitais 3D. No Brasil e na mesma época do lançamento do filme, a engenheira Lúcia Modesto da Globograph recriou esse efeito especial do andróide T-1000. Mas ao invés de usar o T-1000, ela fez a estatueta do Oscar derreter. Para isso, ela usou o método de escaneamento 3D das curvas de nível. Lúcia fez uma escultura do Oscar e depois fez uma cópia em silicone. Esta escultura em silicone foi fatiada em 55 fatias, cada uma representando uma curva de nível. Quanto mais curvas se traçam para um modelo, mais detalhado e complicado fica o resultado final. Cada fatia foi xerocada em papel, e o contorno da curva foi passado para o computador através da mesa digitalizadora (um tipo de escaner 2D antigo). Com um mouse, clica-se em cima de vários pontos do contorno, o computador traça curvinhas entre cada ponto e reconstrói na tela a curva de nível inteira. Várias curvas, uma em cima da outra ainda não compõem um boneco. Foi necessário um programa a parte, C-mech (criado pela Globograph), para fazer a interpolação (junção) das curvas, preenchendo a área entre elas de forma a construir um objeto sólido, construindo polígonos entre cada curva. O monte de linhas virou enfim um Oscar inteiro. Nas figuras abaixo, você pode observar a escultura do Oscar em silicone já fatiada em 55 fatias (Figura 1). Depois, você pode ver o mouse sobre a xerox de uma fatia (Figura 2). Lúcia então clicou sobre vários pontos do contorno dessa fatia xerocada e então a mesa digitalizadora criava estes pontos em 3D. Em seguida você vê o modelo em 3D do Oscar após a união das curvas (Figura 3). E depois veja como ficou o resultado final, já com luz e textura (Figura 4).
Como é feito - O escaneamento 3D evoluiu muito nos últimos anos. Atualmente, os tipos mais usados de escaners 3D são: Escaners a Laser e Escaners de Toque com Braço Mecânico (ou Braço Digitalizador). Escaneamento a Laser: São usados para escanear pequenos objetos ou para escanear formas grandes como corpos de pessoas. Basicamente existem 2 tipos de escaners 3D a laser: Figura A: Este tipo de escaner 3D é um escaner a laser 3D de mão ligado a um braço mecânico. A extremidade do braço mecânico é dirigida pela pessoa para apontar para a região que se quer escanear. Este tipo foi usado para escanear os dinossauros da série Caminhando com os Dinossauros. Figura B: O outro modelo é um tipo de escaner 3D a laser giratório usado para capturar formas maiores como as de um corpo humano. Estes modelos de escaners permitem capturar a forma e a coloração de rostos ou de todo o corpo humano. Gastam poucos segundos e capturam em qualquer pose. Podem ser giratórios (girando ao redor da pessoa) ou em movimento vertical (da cabeça aos pés). Este tipo de escaner foi utilizado para capturar as formas da atriz Rebeca Romjin-Stamos que interpreta a personagem Mística, no filme X-Men. Independente do tipo de escaner utilizado (se é o da Figura A ou B), após os modelos serem escaneados, é produzido um modelo em 3D que é chamado de "nuvem de pontos" (Figura C). Esta "nuvem de pontos" não serve ainda ser usada nos programas de animação 3D, pois tem muitos pontos 3D desnecessários e pode ter falhas. Essa "nuvem de pontos" deve ser corrigida para que não tenha falhas como buracos. Depois, a partir desta "nuvem de pontos" criam-se modelos 3D em polígonos ou em NURBS (Figura D). Estas versões em polígonos ou NURBS podem ser construídas automaticamente através de um software específico ou manualmente, em que um artista em 3D usa a "nuvem de pontos" como gabarito. Atualmente, as versões poligonais são criadas em menor resolução e usadas para as cenas em que o modelo 3D não está sendo filmado de perto. Já os modelos em NURBS permitem com que o processo de animação seja mais rápido e originam formas mais suaves, sem o aspecto facetado dos modelos poligonais e além disso, poupam memória de computador durante o processo de animação. Por isso, são preferidas quando os modelos aparecem de perto nas cenas. Para o filme X-Men, o animador chefe Scott Palleiko usou o software Paraform para limpar os modelos escaneados e convertê-los para NURBS. Além de Caminhando com Dinossauros e X-Men, esta mesma técnica de escaneamento 3D a laser foi também utilizada nos filmes Parque dos Dinossauros, Mundo Perdido, Coração de Dragão, Alien - A Ressurreição, entre outros.
Escaneamento de Toque com Braço Mecânico: Nesta forma de escaneamento, traçam-se linhas no modelo (criando um malha - Figura 2) e movimenta-se o braço mecânico em direção ao local desejado (Figura 1), clicando-se em cada ponto de cruzamento destas linhas ou pode-se traçar simplesmente linhas de contorno. A ponta é encostada no modelo real e acionando um pedal ou dispositivo de mão a cada momento que um ponto é desejado. Desta forma, o computador reconhece a posição no espaço tridimensional de cada ponto clicado e constrói uma versão virtual do modelo real. Estes tipos de escaners vem com softwares que permitem criar rapidamente modelos em 3D, seja em polígonos ou NURBS. Esta técnica foi utilizada pela empresa Viewpoint Datalabs para criar os modelos virtuais do Godzilla e dos bebês-Godzilla para o filme Godzilla (Figura 3), de Roland Emerich. Um grupo de 10 modeladores da Viewpoint trabalharam por mais de 1 ano. Os bebês-Godzillas eram em tamanho natural e tinham versões poligonais e NURBS, para close-ups e cenas de ação. A Ponte Brooklyn tinha 500.000 polígonos e o táxi foi feito em NURBS e tinha 30.000 pontos.
Canal Alfa Outro conceito importante é o de Canal Alfa. Em computação gráfica, uma parte de cada pixel é reservada para informação referente a transparência. Sistemas de 32-Bits contém 4 canais, ou seja, são formados por quatro tipo de imagens:
O canal alfa é, na verdade, um tipo de máscara, especificando como as cores de cada pixel devem ser mescladas com outros pixels quando os dois estiverem sobrepostos. É possível você alterar o canal alfa de maneira a indicar as partes que você quer que sejam transparentes ou não. Quando você estiver criando uma imagem de um objeto em um programa 3D e optar pelo formato de 32-Bits (por exemplo, Targa de 32-Bits) para gravar essa imagem, o programa cria automaticamente o canal alfa do objeto em 3D que você criou. Mas se você quiser mesclar a imagem de uma pessoa real com a de um cenário real, você tem que criar um canal alfa que defina como essa pessoa vai ser inserida na imagem. Isso é possível, filmando a pessoa em frente a uma tela azul, verde ou mesmo um fundo preto. Com programas de edição de imagem ou de composição (como Photoshop, Paint Shop, Adobe After Effects, etc), é possível retirar o azul/verde do fundo e criar um canal alfa.
Renderização em camadas Quando se faz uma animação deve-se ter uma idéia antes de criá-las de qual será o objetivo: será para vídeo (televisão) ou será para cinema? Isto é importante, pois dependendo de qual será a escolha, as imagens criadas dentro de um programa 3D ou 2D devem ter tamanhos específicos. Assim, as imagens de vídeo profissional possuem resolução usual de 640 X 480 pixels ou de 720 X 486 pixels. Mas quando se trata de produzir cenas para cinema, a produção adquire proporções gigantescas. Como as imagens projetadas em uma tela de cinema são grandes, elas precisam ter, também, uma grande definição, caso contrário não terão qualidade para visualização. Assim, para ter qualidade de cinema, cada quadro de uma animação precisa ter resolução, geralmente, de 2.880 X 2.304 pixels. Estamos falando de 18 MB de memória por quadro e cerca de 27 GB por minuto de filme. Só para ter idéia, as resoluções para um quadro de um filme criado em computador são classificadas em: 1K (1.024 X 768 pixels), 2K (2.048 X 1.536 pixels), 4K (4.096 X 3.072 pixels) e 6K. As mais usadas no cinema são valores entre 2K e 4K. Quando você vê no cinema uma cena de um dinosauro digital rodeado por fumaça e fogo digitais, estes elementos (dinossauro, fumaça e fogo) não são feitos ao mesmo tempo, em uma única renderização, pois gastaria um tempo absurdamente exagerado, pois as imagens são muito grandes. Para isso, os artistas digitais trabalham com layers (camadas). Assim, faz-se o dinossauro, a fumaça e o fogo, todos em imagens em separado, com fundo preto. Só depois é que elas são unidas, usando o canal alfa como máscara para cada imagem. Este processo economiza muito tempo. Além disso, ajuda muito na produção, basicamente, em dois aspectos: flexibilidade e velocidade. Uma cena em layers permite modificações separadamente em cada layer, evitando novos renders para para as correções. Além disso, são sempre em fundo preto, permitindo antialias (grau de detalhe de renderização) menor para elementos mais ao fundo ou até sem antialias para elementos do fundo. Um simples blur ("embaçamento") no software de composição ou em um programa editor de imagens resolve o problema de antialias. Além disso, durante a composição pode-se ver em tempo real a aplicação destes efeitos. Com o software de composição 3D pode-se trocar texturas, colocar mapas de reflexo, mudar a iluminação de um cena já renderizada no programa de animação 3D. Para o cinema, fazer cenas em layers (camadas) com fundo preto reduz o tempo de produção, permitindo inclusive um animador trabalhar para cada elemento da cena. Como exemplo observe a série de figuras abaixo. Elas mostram a cena da comemoração do final do filme Guerra nas Estrelas - A Ameaça Fantasma. No exemplo abaixo, a cidade de Theed é um modelo de 91 cm de altura com céu e sombras (dos animais e personagens 3D) adicionados por computador pela ILM (1). A tropa (animais e personagens 3D) no meio da avenida é fruto de computação gráfica 3D (2). O público assistindo aos festivais são na realidade, funcionários da ILM filmados em estúdio de som em grupos de 10 e replicados digitalmente para preencher a cena (3). O confeti é feito em computação gráfica usando sistema de partículas e é adicionado como última camada (4). Em (5) pode-se observar a composição final, que é a união de cada layer (camada), usando para isso, o canal alfa para cada layer.
Captura de Movimento Um sistema de captura de movimento é aquele em que se permite duplicar os movimentos de um ator, de forma a colocar um ator virtual em uma cena que seria impossível, muito cara, perigosa para um ator real executar. Além disso é possível atribuir movimentos e comportamentos humanos para objetos inanimados como uma cadeira. No início do século 20, técnicas de captura de movimento foram usadas na animação tradicional 2D (celulóide) pela Disney. Movimentos humanos foram fotografados e usados como modelos para os animadores, que traçaram sobre os quadros individuais de um filme para criarem quadros individuais de uma animação desenhada a mão. Esta técnica é geralmente chamada de rotoscopia. Na década de 80 o tipo de captura de movimento usado era uma extensão da rotoscopia, em que os movimentos dos atores eram filmados de mais uma vista (mais de uma câmera ao mesmo tempo). Marcadores eram colocados na pessoa e então eram manualmente codificados nos correspondentes pontos no espaço 3D de um programa, afim de representar um personagem no computador. Este processo é algumas vezes chamado de fotogrametria. No fim da década de 80, o movimento de captura que hoje conhecemos começou a aparecer, através de softwares com algoritmos capazes de reconhecer os marcadores no corpo da pessoa. Como era feito- No filme O Jovem Sherlock Holmes, foi preciso criar uma cena em que um padre tem uma alucinação em que ele é atacado por um cavaleiro medieval pintado em uma janela de igreja e que ganhou vida. Para isso, o supervisor de efeitos visuais Denis Muren da ILM decidiu usar efeitos de computação gráfica 3D para criar o cavaleiro. Mas para que os movimentos do cavaleiro parecessem bem humanos, foi utilizada a técnica da rotoscopia. Um dos funcionários do ILM vestiu uma roupa branca parecida com a do cavaleiro e foi coordenado por Muren a caminhar conforme o desejado, sendo que todos os movimentos foram feitos em frente a um mural preto com um quadriculado branco. Este movimento foi filmado por uma câmera de vídeo e serviu como referência para os animadores 3D. Cada quadro foi escaneado para o computador e serviu para que os animadores movimentassem o cavaleiro 3D, quadro-a-quadro, de acordo com as imagens do cavaleiro real captadas pela câmera de vídeo. Esta técnica de captura, apesar de rudimentar, conferiu ótimos resultados para a cena. Nas figuras abaixo, você pode ver Denis Muren coordenando o cavaleiro real. Na outra figura você vê o cavaleiro em 3D posicionado conforme o ator. Depois pode-se ver a cena pronta, já renderizada.
Como é feito- Os sistemas de captura de movimento evoluíram muito nas últimas décadas. Atualmente, existem, basicamente, 4 tipos: Óptico, Mecânico, Magnético e Acústico.
Magnético- é um método que captura movimentos através do uso de um transmissor magnético central e um conjunto de receptores que são colocados em várias partes do corpo. Tem a vantagem de não ocorrerem sobreposições de marcadores, mas tem a desvantagem de usar vários cabos presos no corpo do ator e que podem atrapalhar a atuação. São afetados por qualquer objeto de metal na área de captura. Atualmente, é o terceiro tipo mais usado. Acústico: é um outro tipo de captura que usa marcadores que são transmissores de áudio e são captados por receptores, medindo o tempo necessário para receber o som e calculando assim a distância. Não é um sistema muito utilizado. Tem a vantagem de não ocorrerem sobreposições de marcadores, mas tem a desvantagem de usar vários cabos presos no corpo do ator e que podem atrapalhar a atuação.
O autor desta
página não tem interesse de lesar os direitos de qualquer
empresa ou indivíduo. Os comentários e imagens aqui utilizados
são apenas de interesse comum e não tem fins comerciais. |
||