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I. Introduction 
 
 In 1914, Ramanujan wrote a fascinating article in the Quarterly Journal of Pure and 
Applied Mathematics.  The title was “Modular equations and approximations to π” and he 
discusses certain methods to derive exact and approximate evaluations.  In fact, in his Notebooks, 
he gave several formulas, seventeen in all, for π (or to be more precise, 1/π).  For a complete list, 
see http://mathworld.wolfram.com/PiFormulas.html.  He gave little explanation on how he came 
up with them, other than saying that there were “corresponding theories”.  One of the more 
famous formulas is given by, 
 
 1/(π√8) = 1/992 Σ r (26390n+1103)/3964n 
 
where r = (4n)!/(n!4) and the sum Σ (from this point of the article onwards) is to go from n = 0 to 
∞.   
 

How did Ramanujan find such beautiful formulas?  We can only speculate at the 
heuristics he used to find them, since they were only rigorously proven to be true in 1987 by the 
Borwein brothers.  However, one thing we do know:  Ramanujan wrote down in his Notebooks, 
among the others, the approximation1, 
 
 eπ√58 ≈ 24591257751.9999998222… 
 
which can also be stated as, 
 
 eπ√58 ≈ 3964 – 104 
 
 The appearance of 3964 in both the exact formula and the approximation is no 
coincidence.  The connection can be highlighted even further when you realize that 26390 = 
5*7*13*58.  What are these numbers 58 and 3964?  The former is a squarefree discriminant d of a 
quadratic form ax2+bxy+cy2 and 396 can be derived from the class invariant, 
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 g58

2 = (5+√29)/2 
 
which in turn is related to the fundamental solution (x1 = 5, y1 = 1) of the Pell equation x2-29y2 = 
-4. 
 
 How can a formula for π have something to do with Pell equations?  That, I believe, is 
what makes a mathematical journey so rewarding: the unexpected and fascinating connections we 
stumble on along the way.  We will not be able to give an answer to that question in this article 
but we can do so for a more tractable one: How do we derive 396 or, in general, other algebraic 
numbers involved in pi formulas, from class invariants?  It turns out the answer has to do with 
transforming roots of Weber class polynomials into roots of Ramanujan class polynomials, 
polynomials which we have mentioned in “Ramanujan’s Constant (eπ√163) and its Cousins” [1].  
In that article, we also discussed Hilbert class polynomials and pi formulas derived from them 
and that is where we will start. 
 
 
II.  Pi Formulas  
 

A. The j-function and Hilbert Class Polynomials  
 

Similar to eπ√58 but more famous, is eπ√163 which can be shown to be approximately, 
 

eπ√163 ≈ 6403203 + 743.99999999999925… 
 
The reason for such close approximation is because of the j-function, j(τ), which has the q-series 
expansion, 
 
 j(τ) = 1/q + 744 + 196884q + 21493760q2 + 864299970q3 + … 
 
where q = e2πiτ and τ is the half-period ratio  defined as, 
 
Case 1: For d = 4m, 
 
 τ = √(-m) 
 
Case 2: For d = 4m+3, 
 
 τ = (1+√(-d))/2     
 
where m is a positive integer, and d is the unsigned discriminant. 
 
 In [1], we were quite liberal with our use of what we called the j-function but we will be 
more strict here.  First, while in some older texts the convention was to label the j-function as 
j(q), it seems the modern one is to label it as j(τ), or “j-tau”.  Second, an obvious observation is 
that since d is positive, then τ is imaginary.  We are evaluating j(τ) at imaginary arguments yet it 
will have a real value at those points.  However, it can be positive or negative.  For case 1, for all 
d > 0, then j(τ) is always positive.  For case 2, for d > 0, there are three cases, 
 
 d < 3,  j(τ)  is positive 
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 d = 3,  j(τ)  is zero 
 d > 3,  j(τ)  is negative 
 
 From this point, what we will call as j(q) will refer to the absolute value of the j-function, 
while j(τ) will refer to the signed value.  This value is an algebraic integer of degree n where n is 
the class number of d.  We have also observed that j(τ) was a good approximation for numbers of 
the form eπ√d. 
 
Case 1: If d = 4m, τ = √(-m), then eπ√(4m) ≈ j(τ) – 744, for d > 12. 
 
Example 1. Let m = 5, d = 20 (class number 2), 
 
 j(√-5) = 23(25+13√5)3 
 
so, 
 
 eπ√20 ≈ 23(25+13√5)3 -744 
 
Example 2. Let m = 10, d = 40 (class number 2), 
 

j(√-10) = 63(65+27√5)3 
 
so, 
 
 eπ√40 ≈ 63(65+27√5)3 - 744 
 
Case 2: If d = 4m+3, τ = (1+√-d)/2, then eπ√d ≈ | j(τ)| + 744, for d > 12. 
 
Example 1. Let d = 163 (class number 1), 
 
 j((1+√-163)/2) =  -6403203 
 
so, 
 
 eπ√163 ≈ 6403203 + 744 
 
Technically, case 2 is also defined for other d.  For example , for d = 4m+2, say, d = 2, we have, 
 
 j((1+√-2)/2) =  103(19-13√2)3 
 
However, for the purposes of this article, we will limit case 2 only to form 4m+3.  One should 
also take note that j(√-d) and j((1+√-d)/2) for d = 4m+3 are different, as illustrated by,  
 
 j(√-7) = 2553, and  j((1+√-7)/2) = -153 
 
which can easily be confirmed by an adequate computer algebra system. Anyway, now that we 
have the preliminaries out of the way, we can go to the pi formulas. To recall, we pointed out that 
there are exactly nine discriminants d with class number 1, the absolute values given as 3, 4, 7, 8, 
11, 19, 43, 67, 163, with the larger values giving the better approximations: 
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 eπ√7  ˜ 153 + 697 
 eπ√11  ˜ 323 + 738 
 eπ√19  ˜ 963 + 744 
 eπ√43  ˜ 9603 + 744 
 eπ√67  ˜ 52803 + 744 
 eπ√163  ˜ 6403203 + 744 
 
 We also have the formulas due to the Chudnovsky brothers (which had an their 
inspiration Ramanujan’s formula cited in the opening paragraph): 
 
Let, c = (6n)!/((n!)3(3n)!), 
 
 1/(3π) = Σ c (-1)n (63n+8)/(153)n+1/2 
 1/(4π) = Σ c (-1)n(154n+15)/(323)n+1/2 
 1/(12π) = Σ c (-1)n (342n+25)/(963)n+1/2  
 1/(12π) = Σ c (-1)n (16254n+789)/(9603)n+1/2  
 1/(12π) = Σ c (-1)n (261702n+10177)/(52803)n+1/2  
 1/(12π) = Σ c (-1)n (545140134n+13591409)/(6403203)n+1/2 
 
The formulas obviously use the j(q)’s of the given approximations.  The factorization of a term in 
the numerator also indicate what d is involved, 
 
 63 = 32 *7 

154 = 2*7*11 
 342 = 2*32 *19 
 16254 = 2*33 *7*43 
 261702 = 2*32 *7*31*67 
 545140134 = 2*32 *7*11*19*127*163 
 
 Now why is this?  It turns out the answer is in the general form of the formula for d = 
4m+3, d > 3, (implying j(τ) as negative), 
 
 1/π = Σ c (-1)n (An+B)/(C)n+1/2 
 
where, 
 
 A = √(d*(1728-j(τ)));  C = -j(τ) 
 
Since, 1728 = 123 (remember the taxicab anecdote?2) then, 
 
 7(123 + 153) = 72 *272 
 11(123 + 323) = 42 *112 *142 
 19(123 + 963) = 122 *192 *182 
 43(123 + 9603) = 122 *432 *3782 
 67(123 + 52803) = 122 *672 *39062 
 163(123 + 6403203) = 122 *1632 *33444182 
 

For these d, the expression d*(1728-j(τ)) is a perfect square!  So there are beautiful 
Diophantine relationships behind these pi formulas as well, which explains why the factorization 
of A contains d.  However, we are still missing the constant B and that is the fly in the ointment.  



 5 

Technically, there is a closed-form expression for B in terms of Eisenstein series but it gets too 
complicated for this article.  The interested reader is referred to “Ramanujan, Modular Equations, 
and Approximations to Pi” by Bailey, Borwein, and Borwein which contains a side article on the 
Chudnovskys’ approach as well as their own which we shall discuss later.  The other way to find 
B (since A and C are already known) is simply to solve the equation, 

 
1/π = Σ c (-1)n (An+B)/(C)n+1/2 
 

using enough n terms which should give B to a reasonable accuracy.  For these six d, B 
conveniently is an integer, given by 3*8, 4*15, 12*25, 12*789, 12*10177, and 12*13591409, 
respectively.  Since A and B have a common factor, then one can see why 1/π is divided by either 
3, 4, or 12.   
 

We have also pointed out that there are non-maximal or non-fundamental discriminants 
with class number 1 as shown by the approximations, 
 
 eπ√16  ˜ 663 - 744 
 eπ√28  ˜ 2553 - 744 
 
 We can also use these two j(q)’s to find more pi formulas.  The general form (with some 
small changes) for d = 4m is given by, 
 
 1/π = Σ c (An+B)/(C)n+1/2 
 
where, 
 
 A = √(-d*(1728-j(τ)));  C = j(τ) 
 
Note that there is no (-1)n for d = 4m.  The presence of (-1)n in the formula for d = 4m+3 is simply 
the negative sign of j(τ).  For d = 4m, since j(τ) is positive, then there is no need for it.  The only 
difference really is in A since d is negated (though the product ends up positive).  Solving for B, 
we then have two additional formulas, 

 
1/π = 24√2 Σ c (63n+5)/(663)n+1/2 
1/π = 162 Σ c (133n+8)/(2553)n+1/2 

 
 We can, of course, use d with a higher class number n, though B would now be an 
algebraic number, usually of degree n.  For the interested reader who wishes to find pi formulas 
using the method outlined above, one can find the defining polynomial of the real number B using 
the Integer Relations applet at http://www.cecm.sfu.ca/projects/IntegerRelations/. 
 

B. Weber Class Polynomials 
 

In [1], I remarked that I was not aware of pi formulas that used the roots of Weber class 
polynomials.  In fact there are, and they were there all along in Ramanujan’s 17 formulas!   
However, the roots were barely discernable and it took some time to recognize them.  To recall, 
the Weber modular function, or w(q) had the q-series expansion, 

 
w(q) = 1/q + 24 + 276q + 2048q2 + 11202q3 + … 
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and w(q), just like j(q), are algebraic integers for suitable arguments involving imaginary 
quadratic irrationals.  These algebraic integers are defined by the Weber class polynomials.  For 
an extensive list of these polynomials, the reader is referred to Annegret Weng’s website “Class 
Polynomials of CM-Fields”, http://www.exp-math.uni-essen.de/zahlentheorie/classpol/class.html. 
 
 The w(q) also provide excellent approximations to the transcendental numbers eπ√d for d 
> 0.  However, we will limit our discussion to odd d.  Since case 1 was for d = 4m, this restricts 
us to case 2 for d = 4m+3.  Case 2 can be divided into d of form 8n+3 and 8n+7, a distinction 
made in [1].  However, we can further refine this as to whether d is divisible by 3, hence giving 
us four cases.  Let x be the appropriate real root of the Weber class polynomial: 
 
A.  For 8n+3: Degree of poly is 3n, where n is the class number of d. (With the exception of d = 
3 which has a Weber class polynomial of degree 1.) 
 
Case 1. If 3 doesn’t divide d, then eπ√d ≈ x24 – 24. 
 
Example: Let d =163, n = 1, 
 
 eπ√163 ≈ x24 – 24; (x3-6x2+4x-2=0) 
 
Case 2. If 3 divides d, then eπ√d ≈ 28x8 – 24. 
 
Example: Let d = 51, n = 2, 
 
 eπ√51 ≈ 28x8 – 24; (x6-8x5-3x4+6x3+9x2+2x+1=0) 
 
 
B.  For 8n+7: Degree of poly is n, where n is the class number of d. 
 
Case 3. If 3 doesn’t divide d, then eπ√d ≈ 212x24 – 24. 
 
Example: Let d = 23, n = 3, 
 
 eπ√23 ≈ 212x24 – 24; (x3-x-1=0) 
 
Case 4. If 3 divides d, then eπ√d ≈ 212x8 – 24. 
 
Example: Let d =39, n = 4, 
 
 eπ√39 ≈ 212x8 – 24; (x4-3x3-4x2-2x-1=0) 
 
Again, having the preliminaries out of the way, we can go to the pi formulas.  In the list given by 
Mathworld, the first three of Ramanujan’s formulas are, 
 

4/π = Σ (6n+1)(1/2)n
3 /(4n(n!)3) 

16/π = Σ (42n+5)(1/2)n
3 /(64n(n!)3) 

32/π = Σ (42√5n+5√5+30n-1)(1/2)n
3 ((√5-1)/2)8n /(64n(n!)3) 
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where (a)n is the rising factorial, aka Pochhammer symbol, such that (a)n = (a)(a+1)(a+2)…(a+n-
1).  In this guise, it is hard to see the Weber class polynomial root, though the presence of (√5-
1)/2 is a clue.  One way then is to reformulate them in terms of ordinary factorials.   
 
Let, h = ((2n)!/(n!2))3.  Then, 
 

1/π = 1/4 Σ h (6n+1) /28n 
1/π = 1/16 Σ h (42n+5) /212n 
1/π = 1/32 Σ h (42√5n+5√5+30n-1) /(212((1+√5)/2)8)n 

 
Compare to, 
 
 eπ√3 ≈ 28(1)8 – 25.23  (Case 2) 
 eπ√7 ≈ 212(1)24 – 24  (Case 3) 
 eπ√15 ≈ 212((1+√5)/2)8 – 24 (Case 4) 
 

Since w(q)3 = 1, w(q)7 = 1, w(q)15 = ((1+√5)/2)8 then the denominators of these formulas 
use the w(q)’s, just like the j(q)’s found in the Chudnovskys’ formulas!  (Though the w(q)’s are 
multiplied by appropriate powers of 2.)  The general form of the formula is then, 
 

1/π = Σ h (An+B) /(2yw(q))n 
 
In Weng’s website one find the polynomials that define w(q) for d up to 422500, so one 

can find analogous formulas, though Ramanujan found the smaller and easier cases.  (Since w(q) 
= xk for some power k , one has to find k  first.)  However, unlike the formulas derived from the 
Hilbert class polynomials, I haven’t come across any explicit references how to derive A and B 
from w(q), other than in a passing mention in a paper (see paper by Chan, Gee, and Tan) 
specifically for odd d.  It should be interesting to find other formulas like these, especially one 
that uses d = 163. 
 

C. Ramanujan Class Polynomials 
 

The last class polynomials we discussed in [1] were the Ramanujan class polynomials.  
To recall, the r-function r(q) has the q-series expansion, 

 
r(q) = 1/q + 104 + 4372q + 96256q2 + 1240002q3 + …  

 
and the appropriate root of the class polynomial gives the r(q)’s.  These will useful in 
understanding Ramanujan’s last ten pi formulas in Mathworld’s list.  This time, the formulas 
involve even discriminants d = 4m, where d has class number 2 (both fundamental and non-
fundamental).  Analogous to the Hilbert class polynomials, the approximation is, 
 
 eπ√m ˜ r(q) –/+ 104 
 
for even and odd m, respectively. For even m, we have, 
 
 eπ√6  ˜ (4√3)4 - 106 
 eπ√10 ˜ 124 -104 
 eπ√18 ˜ 284 -104 

eπ√22 ˜ (12√11)4 -104 



 8 

 eπ√58 ˜ 3964 -104 
 
where d = 4*18 is non-fundamental.  In the list, the pi formulas were in terms of rising factorials.  
To make the connection more clear, one can just express it in terms of ordinary factorials.  Let, r 
= (4n)!/(n!4) and we have, 
  

1/(8π) = √3 Σ r (8n+1)/(4√3)4n+2 
1/(16π) = √8 Σ r (10n+1)/124n+2 
1/(16π) = 3√3 Σ r (40n+3)/284n+2 
1/(8π) = √11 Σ r (280n+19)/(12√11)4n+2 
1/(16π) = √8 Σ r (26390n+1103)/3964n+2 

 
One can easily see the r(q)’s in the denominators.  For odd m, we have (with the last two d = 4*9, 
4*25 as non-fundamental), 
 

eπ√5 ˜ (4√2)4 + 100 
 eπ√13 ˜ (12√2)4 + 104 

eπ√37 ˜ (84√2)4 + 104 
 

eπ√9 ˜ 3*84 + 104 
eπ√25 ˜ 20*244 + 104 

 
giving us, 
 

1/(4π) = Σ r (-1)n(20n+3)/(4√2)4n+2 
1/(4π) = Σ r (-1)n(260n+23)/(12√2)4n+2 
1/(4π) = Σ r (-1)n(21460n+1123)/(84√2)4n+2 

 
1/(4π) = 3 Σ r (-1)n(28n+3)/(3*84)n+1/2 
1/(4π) = 5 Σ r (-1)n(644n+41)/(20*244)n+1/2 

 
and the r(q)’s are apparent in the denominators as well.  So how do we find formulas like these?  
It turns out the answer lies in transforming Weber polynomials into Ramanujan class 
polynomials, or w(q) → r(q).  Thus, the transformation not only gives us pi formulas but allows 
us to verify the polynomials we derived for r(q).  The transformations are given by, 
 
For even m, 
 
 r(q)4m = (4√C)4,     where C = (gm

12 + gm
-12)/2 

 
For odd m, 
 
 r(q)4m = (4√C)4,     where C = (Gm

12 - Gm
-12)/2 

 
where gm and Gm are the Ramanujan g- and G-functions.  See 
http://mathworld.wolfram.com/Ramanujang-andG-Functions.html.  These are basically identical 
to the w(q) as given by the relationships, 
 
 w(q)4m = gm

24,     w(q)4m = Gm
24 
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Thus, let d = 4m and the transformation is,  
 
For even m,   
 

r(q)d = (4√C)4,    where C = (w(q)d
1/2 + w(q)d

-1/2)/2 
 
and for odd m, 
 
 r(q)d = (4√C)4,    where C = (w(q)d

1/2 – w(q)d
-1/2)/2 

 
Before we go into the pi formulas, we can give an example.  Since we have, 
 

eπ√58 ˜  26((5+√29)/2)12 + 24 
 
Then,  
 
 w(q)232 = ((5+√29)/2)12 

 
So, 
 
 C = (((5+√29)/2)6 + ((5+√29)/2)-6) /2 = 992 
 
Since, 
 
 r(q)232 = (4√(992))4 = 3964 
 
Thus, 
 
 eπ√58 ˜ 3964 -104 
 
as expected.  In [1], we pointed out that Ramanujan gave r(q) for d with class number 2 and 4.  
However, we managed to find some for d = 4m with class number 6, for m = 26, 106, 202, 298 
using the Integer Relations applet, the first one being, 
  

eπ√26 ˜ (4y)4 – 104; (y3-13y2-9y-11=0) 
  

With this transformation, we can verify if indeed these are correct.  From Weng’s 
website, we find that the polynomial for d = 4*26 = 104 is given by, 
 
 x6-2x5-2x4+2x2-2x-1 = 0  (eq.1) 
 
such that, 
 
 eπ√26 ˜  26x12 + 24 
 
with x the appropriate real root.  So w(q)104 = x12.  Or, 
 
 C = (x6 + x -6) /2  
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We will assume C to be a perfect square, C = y2, 
 
 y2 = (x6 + x -6) /2   (eq.2) 
 
By eliminating the variable x between eq.1 and eq.2, we get, 
 
 (y3+13y2-9y+11)2(y3-13y2-9y-11)2 = 0 
 
since, 
 
 r(q)d = (4√C)4 
 
then r(q)104 = (4√C)4 = (4y)4.  Or, 
 

eπ√26 ˜ (4y)4 – 104; (y3-13y2-9y-11=0) 
 
for the real root of y, which is precisely the same relation as the original one!  So satisfying to 
know that the applet was correct.  The same way can be used to prove the three relations for the 
other d.  And not only proving, but finding other r(q) as well.  In [1], we asked for the explicit 
equation for the r(q) of d with class number 8, with d = 4m, and m = 178, 226, 466, 562 (which 
are form 2q for prime q).  Using the same approach as the one above, we finally find the first one 
as, 
 

eπ√178 ˜ (12y)4 – 104; (y4-2962y3+72y2-382y-71=0) 
 
with y the appropriate real root.  The same method can be used for the other d as well as for those 
with even higher class numbers. 
 

However, two things should be pointed out.  First, it will not always be the case that 
w(q)4m = x12, where x is the appropriate root of the listed polynomial.  In general, it is w(q)4m = xk, 
where, 
 
 eπ√m ˜  26xk +/- 24 
 
for some integer k .  Second, it will not always be that C will be a perfect square.  Our examples 
use m = 2q where q is prime.  If q is composite, C may not be a square. 
 

For the third time, now that we have the preliminaries out of the way, we can discuss the 
pi formulas.  The general form is given by, let r = (4n)!/(n!4), 
 
1) Even m.   
 
 1/(16π) = Σ r (An + B)/(4√C)4n+2 
 
where, 
 
 A = ((gm

12 – gm
-12)/2)√m; C = (gm

12 + gm
-12)/2  

 
 
2) Odd m. 
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 1/(16π) = Σ r (-1)n(An + B)/(4√C)4n+2 
 
where, 
 
 A = ((Gm

12 + Gm
-12)/2)√m; C = (Gm

12 – Gm
-12)/2 

 
Note that there is an exchange of arithmetic operations for the expressions for A and C.  

There is an explicit expression for B but again it is too complicated for this article.  The curious 
reader is referred to the paper by Bailey and the Borweins for the details.  The alternative method 
that we will use is just to solve for B using enough terms in the summation and to use the Integer 
Relations applet to determine its defining polynomial.   
 
As an example, since we know that w(q)232 = xk = ((5+√29)/2)12, then, 
 
 A = ((xk/2 – x -k/2)/2)√58 = 52780√2 
 

C = (xk/2 + x -k/2)/2 = 992 
 
and solving for B up to a sufficient accuracy, the applet gives us the quadratic polynomial which 
has a root B = 2206√2.  Thus, 
 
 1/(16π) = Σ r (52780√2n + 2206√2)/3964n+2 
 
or, moving the common factor 2√2, 
 
 1/(16π√8) = Σ r (26390n+1103)/3964n+2 
 
and we have Ramanujan’s formula!  In [1] we wondered if we could use higher class numbers 
and we certainly can.  Using d = 4m with class number 4 for m = 34, 82, we have the formulas, 
 
 1/(8π√2) = (4+√17) Σ r (v1n+v2)/(4v3)4n+2 

1/(16π√2) = (32+5√41) Σ r (w1n+w2)/(4w3)4n+2 
 
where, 
 
 v1 = 8(165+41√17)1/2√17;  v2 = (411+163√17)1/2;  v3 = 3(4+√17); 
 
and,  
 
 w1 = 20(1347+211√41)1/2√82;  w2 = (51099+9097√41)1/2;  w3 = 3(51+8√41) 
 

Note that (4+√17) and (32+5√41) are fundamental units, involved in the solutions to the 
Pell equations x2 – 17y2 = -1 and  x2 – 41y2 = -1.  They were factored from the original 
expressions of the vi and wi for i = 1, 2 which were unwieldy.  For class number 6 for m = 26, we 
have, 
 
 1/(16π√8) = Σ r (x1n+x2)/(4x3)4n+2 
 
where, 
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 x1 = (x3-338x2-364x-1352)1;  x2 = (8x3-168x2-27x-27)1;  x3 = (x3-13x2-9x-11)1 
 
or x1, x2, x3 are the real roots of the cubics above, respectively, which anyway are just one-real 
root cubics.  These are just examples and there are certainly other d we can use with class number 
4, 6, 8, ad infinitum. 
 
 
III.  Baby Monster Group 
 
 What is the Baby Monster?  Richard Borcherds, who proved the Monstrous Moonshine 
Conjecture, had a cute answer to this question.  In a Notice of the AMS, he wrote a short article, 
“What is the Monster?”  As to what the Baby Monster is, he jokingly wrote that when he was a 
grad student, his supervisor John Conway3 would bring his one-year old son to the department, 
who was soon known as the baby monster.4  For the full article, see 
http://math.berkeley.edu/~reb/papers/whatismonster/whatismonster.pdf.  
 
 Joking aside, the Baby Monster, also known as Fischer’s baby monster group, is the 
second largest of the sporadic finite groups.  Many of its properties were described by B. Fischer, 
who also contributed to the discovery of the largest sporadic finite group, namely the Monster 
Group, also known as Fischer-Griess Monster. 
 
 What is the connection between these groups and the modular functions j(q), w(q), and 
r(q) that we have discussed?  In [1], we have pointed out that the coefficients of their expansions 
are in fact McKay-Thompson series for the Monster.  Another way to illustrate the connection is 
to express the coefficients of the normalized j-function j(τ) in terms of the irreducible 
representations of the Monster. To recall,  
 
 j(τ) - 744 = 1/q + 196884q + 21493760q2 + 864299970q3 + … 
 
 Since the degrees of the irreducible representations of Monster Group “M” are given by 
1, 196883, 21296876, 842609326, etc…(A001379, Sloane’s Online Encyclopedia of Integer 
Sequences), we observe that, 
 
1 = 1 
196884 = 1 + 196883 
21493760 = 1 + 196883 + 21296876 
864299970 = 1(2) + 196883(2) + 21296876 + 842609326 
 
or the coefficients of j(τ) are simple linear sums of the representations of the Monster. (The 
second identity, which led to the Monstrous Moonshine Conjecture, was observed by John 
McKay in the late 1970’s.  J.G. Thompson carried it further to the other coefficients.)   
 

What I noticed was that there seemed to be an analogous relationship between 
Ramanujan’s function r(q), (which is also defined by the transformation rule w(q) → r(q) that we 
have given) and the Baby Monster.  The normalized r(q) would be, 

 
r(q) - 104 = 1/q + 4372q + 96256q2 + 1240002q3 + …  
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(See A007267.)  Given the degrees of irreducible representations of Baby Monster Group “B”: 1, 
4371, 96255, 1139374, etc… (A001378), we can observe that, 
 
1 = 1 
4372 = 1 + 4371 
96256 = 1 + 4371(0) + 96255 
1240002 = 1(2) + 4371 + 96255 + 1139374 
 
 Is this coincidence?  Are the coefficients of the q-series of r(q) simple linear sums of the 
representations of the Baby Monster, or will the relationship exist only for the first few terms?  
The relationship between j(τ) and the Monster has already been proven so does this automatically 
imply this relationship?  After all, the coefficient list of r(q) is also the McKay-Thompson series 
of class 2A for Monster, and since the double cover of the Baby Monster is a subgroup of the 
Monster, then r(q) and the Baby Monster should be connected via the Monster group, though that 
is just a guess. 
 
 
IV.  Conclusion 
 
 This article is meant to be some sort of a sequel to Ramanujan’s Constant and Its Cousins 
[1], as there were some loose ends left hanging there.  I hope we have clarified some points 
though I believe there are still others that can be explored further.  The conclusions we have 
stated here are to supersede those of the earlier article, especially with regards to pi formulas, 
since this is the expanded version of that topic after all. 
 
 Because of space constraints, there were a lot of intriguing avenues that I didn’t go into in 
this article.  For example, while in [1] we discussed the modular functions j(q), w(q), and r(q) and 
here we discussed the transformation w(q) → r(q), there is in fact also a second transformation 
j(q) → r(q).  However, for the purposes of this article, since Weng’s website has w(q) 
polynomials galore and there is no corresponding website for j(q) (and understandably, as these 
have LARGE coefficients), the first transformation was more useful.  However, there is still a 
third transformation w(q) → j(q) and that might be interesting to explore, though perhaps we can 
do so for another time. 
 
 To sum up the main theme of this artic le, which was on pi formulas, we have discussed 
three formulas that use the modular function w(q) and ten formulas that use r(q).  That makes 
thirteen.  But Ramanujan had seventeen formulas.  What about the other four?  It turns out that 
they use still another modular function. 
 
 But that is another story. 
 
 
 
Footnotes: 
 

1. Makes you wonder how people calculated numbers like eπ√58 before computers. 
2. The taxicab anecdote, as if you didn’t know, was Ramanujan’s instant recognition of 

1729 as the smallest integer that is the sum of two cubes in two ways, namely, 1729 = 13 

+ 123 = 93 + 103. 



 14 

3. John Conway also discovered the sporadic simple group that described the symmetries of 
the Leech lattice, a 24th-dimensional grid.  And, of course, his “Game Of Life”. 

4. My little nephew and godson, who is also French, can sometimes be quite the baby 
monster (mon Dieu!), so I understand the joke perfectly. 

 
 
 

-- End -- 
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