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I. Introduction 
 
 In “Pi Formulas, Ramanujan, and the Baby Monster Group” [1] we stated that 
Ramanujan came up with 17 formulas for 1/π.  However, in that article, we discussed only 13 of 
those formulas which depended on various modular functions and gave further examples per type.  
In this article, we will discuss two more formulas which depend on another modular function and 
give more examples, some new, of the same type of formula. The two formulas concerned are, 
let, 
 

r1 = (1/2)n(1/3)n(2/3)n/(n!3) 
 
then, 
 
 1/π = 4/27 Σ r1 (15n+2)(2/27)n 
 1/π = 2/(15√3) Σ r1 (33n+4)(4/125)n 
 
where the summation Σ is understood to go from n = 0 to ∞ (from this point of the article 
onwards) and (a)n is the rising factorial, aka Pochhammer symbol, such that (a)n = 
(a)(a+1)(a+2)…(a+n-1).  We will see that the denominators of this formulas, just like the others, 
closely approximate transcendental numbers of the form eπ√d, though it will take some 
manipulation to see these relations. 
 
 
II.  More Pi Formulas  
 
 To see the relationship of these formulas to certain transcendental numbers, we slightly 
re-define our rising factorial r1.  Let r2 be, 
 

r2 = 22n33n(1/2)n(1/3)n(2/3)n/(n!3) 
 
where the superscript n is ordinary exponentiation and the subscript n is still the rising factorial.  
(The constant 2233 = 108 may not be necessary if r2 is expressed as ordinary factorials, though it 
will appear again later.)  Ramanujan’s two formulas, plus another one he missed, are then given 
by, 
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 1/π = 1/(3√3) Σ r2 (6n+1) /(63)n (Chan and Liaw) 
 1/π = 4/27 Σ r2 (15n+2) /(2*93)n  (Ramanujan) 
 1/π = 2/(15√3) Σ r2 (33n+4) /(153)n  (Ramanujan) 
 
Compare the denominators, we’ll call them h(q), to the approximations, 
 
 eπ√(8/3) ≈ 63 – 46.95 
 eπ√(16/3) ≈ 2*93 – 42.55 
 eπ√(20/3) ≈ 153 – 42.23 
 
and another by Chan and Liaw involving h(q) with quadratic irrationals, 
 
 1/π = 1/99 Σ r2 (v1n+v2) / (6(4+3√3))3n   
 
where v1 = 15(27-√3), v2 = 54-13√3, so, 
 
 eπ√(44/3) ≈ 63(4+3√3)3 – 42.004 
  
These formulas then are somehow related to these approximations, and h(q) joins the club we 
have given for j(q), w(q), and r(q) discussed in [1].  The “excess” of the approximation is 
obviously approaching the integer 42, especially for higher values of m, and we will see that there 
is also an established integer sequence that corresponds to this modular function h(q). 
 
 One can find the details for these formulas and others in Chan and Liaw’s paper “Cubic 
Modular Equations and New Ramanujan-Type Series for 1/π” (2000) [2].  They give the 
formulas associated with discriminants d of form d =12m for m = 2, 4, 5 with class number 2 and 
for m = 7, 10, 11, 14, 19, 26, 31, 34, 59 with class number 4. (The above example involving 
quadratic irrationals uses m = 11).  The largest m in the list, m = 59, yields, 
 
 eπ√(236/3) ≈ 63(892+525√3)3 – 42.00000000062 
 
since 236 = 4*59.  The smallest m, m = 2, was missed by Ramanujan, giving the formula stated 
earlier, 
 
 1/π = 1/(3√3) Σ r2 (6n+1) / 63n 
 
though he had a similar-looking formula.  Given h = ((2n)!/(n!2))3, then, 
 
 1/π = 1/4 Σ h (6n+1) /28n 
 
However, they are based on different discriminants as the former, with d = 12(2) = 24 has class 
number 2, while the latter, with d = 3 (see [1]) has class number 1. 
 
 We are familiar that the formulas based on j(q) and r(q) come in two types: plain sums 
and alternating sums.  For h(q), there is also an alternating sum version.  (We only had three 
examples based on w(q) and they were plain sums but I wouldn’t be surprised if there is also an 
alternating sum type.)  The first few are, 
 
 1/π = (1/4)√3 Σ r2 (-1)n (5n+1) /(3*43)n 



 3 

 1/π = (1/12)√15 Σ r2 (-1)n (9n+1) /(5*123)n 
 1/π = (1/108)√7 Σ r2 (-1)n (165n+13) /(7*363)n 
 
corresponding to non-fundamental discriminants d = 3m for m = 9, 25, 49 with class number 2 
and related to the approximations, 
 
 eπ√(9/3) ≈ 3*43 + 38.8 
 eπ√(25/3) ≈ 5*123 + 41.91 
 eπ√(49/3) ≈ 7*363 + 41.998 
 
Since the m are squares of the first few odd primes, the h(q) look especially nice, being the 
product of that prime and a cube.  For fundamental discriminants d = 3m also with class number 
2, we have m = 17, 41, 89.  So, 
 

1/π = 1/(12√3) Σ r2 (-1)n (51n+7) /(123)n 
1/π = 1/(96√3) Σ r2 (-1)n (615n+53) /(483)n 

 1/π = 1/(1500√3) Σ r2 (-1)n (14151n+827) /(3003)n 
 
related to, 
 
 eπ√(17/3) ≈ 123 + 41.6 
 eπ√(41/3) ≈ 483 + 41.99 
 eπ√(89/3) ≈ 3003 + 41.99997 
 
One can easily see the h(q) in the denominators of the formulas.  For the fundamental 
discriminants, the factorization of a term in the numerator also indicates what d is involved, 
 
 51 = 3*17 
 615 = 3*5*41 
 14151 = 3*53*89 
 

Only the formulas for m = 9, 17 are from “Cubic Singular Moduli, Ramanujan’s Class 
Invariants λn, and the Explicit Shimura Reciprocity Law” (2003) [3] by Chan, Gee, and Tan, 
while the other four are new to the literature and have been derived by this author. 
 
 
III. Dedekind Eta Function 
 
 So how do we find these formulas?  In [2], the authors gave an algorithm for finding 
them.  We can use an alternative method, based on theirs, that may be relatively more 
straightforward.  There are three parameters in our formulas; given h(q), one can immediately 
find a second parameter.  The third can be derived from a rather complicated expression or one 
can use a shortcut and use integer relations.  Thus, the crucial value is h(q).  Fortunately, it can be 
expressed in terms of another modular function called the Dedekind eta function, η(τ).  This is 
defined as, 
 
 η(τ) = q1/24 Π (1-qk) 
 
where the product is to go from k =1 to ∞, q = e2πiτ, and argument τ is the half-period ratio.  See 
http://mathworld.wolfram.com/DedekindEtaFunction.html.  Just like the j-function, in the context 
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of our article we can distinguish two cases, depending on whether the discriminant d is even or 
odd, 
 
Case 1 (Even): For d = 12m, m any positive integer.  Let, 
 
 eta1a =  η(√(-m/3)); eta1b =  η(√(-3m));  
 
and the eta quotient, 
 

ym = (eta1a/eta1b)12 
 
then our h(q) for even d is defined as, 
 
 h(q) m = (ym+27)2 /ym 

 
 
Case 2 (Odd): For d = 3k, k  an odd integer.  Let, 
 
 eta2a =  η((1+√(-k/3))/2); eta2b =  η((1+√(-3k))/2);  
 
and, 

yk = (eta2a/eta2b)12 
 
then h(q) for odd d is, 
 
 h(q)k = (yk+27)2 /yk -108 
 
(Notice the appearance of the constant 108 = 2233.)   
 

There are exactly four values of m and eight values of k such that h(q) is an integer, 
namely m = 1, 2, 4, 5 and k = 1, 5, 9, 17, 25, 41, 49, 89 (though for m = 1 and k = 1, 5 yields h(q) 
< 108).  We can use the remaining nine values to find pi formulas, and the complete list is in this 
article.  For other m or k , h(q) is an algebraic integer of higher degree.  Since for such h(q) we 
already have an example for m (m = 11), we can also give an example for k .  Let k = 13, d = 3(13) 
= 39, with class number 4 and we have, 

 
1/π = 1/9 Σ r2 (-1)n (w1n+w2) /(w3)n 

 
where w1 = (-19+14√13)1/2√13;  w2 = 2/3(-35+13√13)1/2√2;  w3 = (27/2)(23+7√13). 
 
 The general form of these formulas and approximations are given by: 
 
Let, r2 = 22n33n(1/2)n(1/3)n(2/3)n/(n!3) for both cases.   
 
Case 1:  For d = 12m,  
 

1/π = Σ r2 (An+B)/Cn 
 
where, 
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 A =1/3√(d(1-2233h(q)-1)), C = h(q) 
 
and, 
 eπ√(4m/3) ≈ h(q) – 42 
 
 
Case 2:  For d = 3k , for odd k , 
 

1/π = Σ r2 (-1)n(An+B)/Cn 
 
where, 
 

 A =1/3√(d(1+2233h(q)-1)), C = h(q) 
 
and, 
 eπ√(k/3) ≈ h(q) + 42 
 

We are still missing B.  Since we already have two of the three unknowns, we can use the 
same method in [1], i.e., by using a sufficient number of n terms and solving the general form to 
get a close numerical approximation for B.  One can then use the Integer Relations applet at 
http://www.cecm.sfu.ca/projects/IntegerRelations/ to get its defining polynomial.  Or one can use 
the explicit expression for B found in [2].  For h(q), most computer algebra systems can compute 
Dedekind eta functions though not necessarily its defining polynomial if its value happened to be 
algebraic.  One can just use the applet though at some other time we will discuss a more efficient 
way of deriving it from known polynomials. 
 
 
IV.  Monster Group (Again) and Conclusion 
 
 We mentioned earlier that h(q) has an integer sequence associated with it.  Its q-series 
expansion is given by, 
 
 h(q) = 1/q + 42 + 783q + 8672q2 + 65367q3 + … 
 
(A030197, Sloane’s Encyclopedia of Integer Sequences) and the integer 42 explains the disparity, 
positive or negative, of the approximations.   
 

And what is this sequence also known as?  It’s again a McKay-Thompson series, this time 
for class 3A of Monster!  So no wonder there were all those 3’s, whether as 33, √3, or eπ√(n/3).  To 
recall, j(q) was associated with a McKay-Thompson series of class 1, w(q) and r(q) for class 2 (or 
if signed, class 4).  And now we have h(q), of class 3.  But these series go on for higher degrees.  
So will there be pi formulas using modular functions associated with higher order series?  That 
should be an interesting question to answer. 
 
 As if to tantalize us with a possible answer, Ramanujan had two more formulas up his 
sleeve.   The last two in the list are given by,  
 

1/π = √(12/125) Σ r3 (11n+1)(4/125)n 
1/π = (18√3)/(85√85) Σ r3 (133n+8)(4/85)n 
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where r3 = (1/2)n(1/6)n(5/6)n/(n!3) and (a)n still is the rising factorial.  If these turn out to be 
associated with a McKay-Thompson series of class 6, then it should not be a surprise. 
 
 In conclusion, there is this wonderful relationship between two seemingly different 
mathematical objects, the transcendental numbers π and e on one hand, and finite groups on the 
other.  Ramanujan could not have known about the Monster Group (it was constructed by Griess 
only in 1982), but he knew π very well, and we are just peering over his shoulder to see what was 
so fascinating to him. 
 
 While we have pointed out before that Ramanujan didn’t really come up with the number 
eponymously known after him, namely eπ√163 (a better candidate is eπ√58), I recently learned that 
he was in fact working on the numbers 11, 19, 43, 67, and 163, discriminants d with class number 
1.  In his lost Notebook, he jotted down some of the results of his investigation on the properties 
of these particular numbers.  See “Eisenstein Series and Approximations to Pi” by Berndt and 
Chan.  I have no doubt that if only he lived long enough, he would have found the formulas 
which the Chudnovsky brothers found in 1987.   
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