Chapter 1: Introduction

· signals are the software analog of hardware interrupts, and can be generated by a variety of causes in addition to timers expiring

· a file descriptor or handle would be returned to use in subsequent operations if access is permitted when opening a file

· block special files – used to model devices that consist of a collection of randomly addressable blocks, such as disks

· character special files – used to model devices that consist of character streams, rather than fixed-size randomly addressable blocks

· pipe – a sort of pseudo-file that can be used to connect two processes together

· system calls

· library procedure that puts the parameters of the system call in a specific place, such as the machine registers, and then issues a TRAP instruction (a kind of protected procedure call) to start the operating system

· library procedure hides the details of the TRAP instruction and makes system calls look like ordinary procedure calls]

· monolithic systems

· the OS is written as a collection of procedures, each of which can call any of the other ones whenever it needs to

· system calls are requested by putting the parameters in well-defined places, such as in registers or on the stack, and then executing a special trap instruction known as a kernel call or supervisor call

· layered systems

5. the operator

4. user programs

3. input/output management

2. operator-process communication

1. memory and drum management

0. processor allocation and multiprogramming

· virtual machine monitor – runs on the bare hardware and does the multiprogramming, providing not one, but several virtual machines to the next layer up

· Conversational Monitor System (CMS) – when executes a system call, the call is trapped to the operating system in its own virtual machine, not to VM/370 – for timesharing

· Client-server model

1. have some critical server processes actually run in kernel mode, with complete access to all the hardware, but sill communicate with other processes using the normal message mechanism

2. build a minimal amount of mechanism into the kernel, but leave the policy decisions up to servers in user space

Chapter 2: Processes

· the interrupt handling and scheduling procedure:

1. hardware stacks program counter

2. hardware loads new program counter from interrupt vector

3. assembly language procedure saves registers

4. assembly language procedure sets up new stack

5. C procedure marks service process as ready

6. Scheduler decides which process to run next

7. C procedure returns to the assembly code

8. Assembly language procedure starts up current process

· message passing – method of interprocess communication – uses two primitives SEND and RECEIVE which are system calls rather than language constructs – use acknowledgement algorithm

· rendnezvous – eliminated the buffer and force both sender and receiver to block if the other one is not ready

· scheduling criteria:

1. Fairness: make sure each process gets its fair share of the CPU

2. Efficiency: keep the CPU busy 100% of the time

3. Response time: minimize response time for interactive users

4. Turnaround: minimize the time batch users must wait for output

5. Throughput: maximize the number of jobs processed per hour

· preemptive scheduling – the strategy of allowing processes that are logically runnable to be temporarily suspended

Chapter 3: Memory Management

· memory compaction – to combine all the holes into one big one by moving all the processes downward as far as possible; requires lots of CPU time

· internal fragmentation – all requests must be rounded up to a power of 2 in the buddy system, creating wasted memory internal to the allocated segments

· external fragmentation (checkerboarding) – holes are created between the segments but no wasted space within the segments in other memory allocation

Virtual Memory

· overlays – split the program into pieces; were kept on the disk and swapped in and out of memory by the OS

· memory management unit (MMU) – a chip or collection of chips that maps the virtual addresses onto the physical memory addresses

· context – a unique number assigned as a process is loaded into the SPARC machine to avoid having to reload the tables when process switching occurs; it is reserved for the process until it terminates

· associative memory (translation lookaside buffer / TBL)

· to equip computers for mapping virtual addresses to physical addresses without going through the page table

· usually inside the MMU and consists of a small number of entries, rarely more than 32

· fit ratio – the fraction of memory references that can be satisfied from the associative memory

· inverted page table – always used with an associative memory; must be searched for an entry whose virtual page number matches the virtual page in the current memory address in a miss

· stack algorithms – do not suffer from Belady’s anomaly

· demand paging – pages are loaded only on demand, not in advance

· locality of reference – during any phrase of execution, the process references only a relatively small fraction of its pages

· working set – set of pages that a process is currently using

· thrashing – a program causing page faults every few instructions

· working set model – try to keep track of each process’ working set, and make sure that it is in memory before letting the process run – use aging algorithm

· prepaging – loading the pages before letting processes run

· wsclock – check to see if that page is part of the working set of the current process; if it is, the page is spared

· a large page size will cause more unused program to be in memory than a small page size

· small pages mean that programs will need many pages (a large page table

· lock pages engaged in I/O in memory so that they will not be removed

· paging daemon – sleeps most of the time, but is awakened periodically to inspect the state of memory

· in a segmented system, the graphical library can be put in a segment and shared by multiple processes, eliminating the need for having it in every process’ address space

Chapter 4: File Systems

· having the operating systems regard files as nothing more than byte sequences provides the maximum flexibility. User programs can put anything they want in files, and name them any way that is convenient

· character special files – related to input/output and used to model serial I/O devices such as terminals, printers, and networks

· block special files – used to model disks

· magic number – identifying the file as an executable tile to prevent the accidental execution of a file not in this format

· sequential files can be rewounded, so they can be read as often as needed; are convenient when the storage medium is magnetic tape, rather than disk

· random access files – files whose bytes or records can be read in any order

· READ operation gives the position in the file to start reading at

· SEEK is provided to set the current position

· File mapping works best in a system that supports segmentation

· each file can be mapped onto its own segment so that byte k in the file is also byte k in the segment

· process can copy the source segment into the destination segment using an ordinary copy loop, without the READ and WRITE system calls

· eliminates the need for I/O and thus makes programming easier

· it is hard for the system to know the exact length of the output file

· a file is mapped in by one process and opened for conventional reading by another

· a file may be larger than a segment, or even larger than the entire virtual address space

· absolute path name – consists of the path from the root directory to the file; always start at the root directory and are unique

· relative path name – used in conjunction with the concept of the working directory

1. contiguous allocation

· simple to implement because keeping track of where a file’s blocks are is reduced to remembering one number, the disk address of the first block

· the performance is excellent because the entire file can be read from the disk in a single operation

· it is not feasible unless the maximum file size is known at the time the file is created

· the fragmentation of the disk that results from this allocation policy

2. linked list allocation

· although reading a file sequentially is straightforward, random access is extremely slow

· the amount of data storage in a block is no longer a power of two because the pointer takes up a few bytes

3. linked list allocation using an index

· the entire table must be in memory all the time to make it work

4. I-nodes

· single indirect block – block contains additional disk addresses

· with only one directory: when it finds the entry, it also has the disk block numbers, since they are stored right in the directory entry, as are all the attributes

· Sharing

· to make changes visible to the other user:

· disk blocks are not listed in directories, but in a little data structure associated with the file itself

· symbolic link

· the new file contains just the path name of the file to which it is linked; subsequent attempts to use the file via a symbolic link will fail when the system is unable to locate the file

· extra overhead required (extra disk accesses, extra I-nodes for each link)

· can be used to link to files on machines anywhere in the world, by simply providing the network address of the machine where the file resides in addition to its path on that machine

· will locate a linked file multiple times and thus make multiple copies

· users may go above their soft limits during a terminal session, provided they remove the excess before logging out. The hard limits may never be exceeded

· to solve for file system checker while testing for consistency, allocate a free block, copy the contents of the doubled block into it, and insert the copy into one of the files

· if the link count is higher than the number of directory entries, then even if all the files are removed from the directories, the count will still be nonzero and the I-node will not be removed

· block cache (buffer cache) – technique to reduce disk access

1. cache – a collection of blocks that logically belong on the disk, but are being kept in memory for performance reasons

· check all read requests to see if the needed block is in the cache

· difference between paging and caching is that cache references are relatively infrequent, so that it is feasible to keep all the blocks in exact LRU order with linked lists

· blocks that might be needed again soon, such as a partly full block that is being written, go on the end of the list, so they will stay around for a long time

· if the block is essential to the file system consistency, and it has been modified, it should be written to disk immediately, regardless of which end of the LRU list it is put on

· SYNC – forces all the modified blocks out onto the disk immediately (no more than 30 seconds of work is lost due to a crash)

· Write-through caches – caches in which all modified blocks are written back to the disk immediately

2. reduce the amount of disk arm motion by putting blocks that are likely to be accessed in sequence close to each other, preferably in the same cylinder

Security

· Trojan horse attack – the idea of modifying a normal program to do nasty things in addition to its usual function and arranging for the victim to use the modified version

· Worm – would exploit the errors and replicate itself in seconds on every machine it could gain access to

· Virus – a program fragment that is attached to a legitimate program with the intention of infecting other programs – files are infected by attaching the virus code to the end of it, and replacing the first instruction with a jump to the virus

· One-time password – the user gets a book containing a list of passwords, and each login uses the next password in the list

· Challenge-response – the user picks an algorithm when signing up as a user

· Rings – a collection of procedures, each one running in some domain

· Procedures could also be linked dynamically to a running process during execution

· When a procedure in one ring called a procedure in another ring, a trap occurred, giving the system the opportunity to change the protection domain of the process

· Access control list (ACL) – associates with each object an (ordered) list containing all the domains that may access the object, and how

· Capability list

· associated with each process, and may be accessed, along with an indication of which operations are permitted on each; must be protected from user tempering

1. tagged architecture – a hardware design in which each memory word has an extra (or tag) but that tells whether the word contains a capability or not

2. keep the C-list inside the operating system

3. encrypt each capability with a secret key unknown to the user

· rights amplification – type managers were given a rights template that gave them more rights to an object than the capability itself allowed

· security policies

1. no process any read any object whose level is higher than its own, but it may freely read objects at a lower level or at its own level. A secret process may read confidential objects, but not top secret ones

2. no process may write information into any object whose level is lower than its own. A secret process may write in a top secret file but not in a confidential one

Chapter 5: Input/Output

· Block device – stores information in fixed-size blocks, each one with its own address – it is possible to read or write each block independently of all the other ones

· Character device – delivers or accepts a stream of characters, without regard to any block structure – not addressable and does not have any seek operation

· Device controller (adapter)

· convert the serial bit stream into a block of bytes and perform any error correction necessary

· the block of bytes is typically first assembled, bit by bit, in a buffer inside the controller

· after its checksum has been verified and the block declared to be error free, it can then be copied to main memory

· DMA – free the CPU from looping to read the bytes one at a time from the controller

· Once a disk transfer has started, the bits keep arriving from the disk at a constant rate, whether the controller is ready for them or not

· Interleaving

· skipping blocks to give the controller time to transfer data to memory

· allow the OS to read consecutively numbered blocks and still achieve the maximum speed of which the hardware is capable

· goals if the I/O software:

1. device independence

2. uniform naming

3. error handling

4. synchronous (blocking) vs asynchronous (interrupt driven) transfers

5. sharable vs dedicated devices

· basic function of the device-independent software is to perform the I/O functions that are common to all devices, and to provide a uniform interface to the user-level software

· major device number – used to locate the appropriate driver (in I-node)

· minor device number – passed as a parameter to the driver to specify the unit to be read or written (in I-node)

· overlapped seeks – possibility of a controller doing seeks on two or more drives at the same time

· shortest seek first (SSF)

· cuts the total arm motion almost in half compared to FCFS

· with heavily loaded disk, the arm will tend to stay in the middle of the disk most of the time, so requests at either extreme will have to wait until a statistical fluctuation in the load causes there to be no requests near the middle

· elevator algorithm

· keep moving in the same direction until there are no more outstanding requests in that direction, then they switch direction

· given any collection of requests, the upper bound on the total motion is fixed: it is just twice the number of cylinders

· track-at-a-time cache

· if a sector that is in the cache is needed, no disk transfer is required

· transfers from the cache to the calling program will have to be done by the CPU using a programmed loop, rather than letting the DMA hardware do the job

· if do the track-at-a-time caching in their own internal memory, transparent to the driver, the transfer between the controller and memory can use DMA

· RAM disk

· uses a preallocated portion of the main memory for storing the blocks

· having instant access (no seek or rotational delay), make it suitable for storing programs or data that are frequently accessed

· one-shot mode – when the clock is started, it copies the value of the holding register into the counter, and then decrements the counter at each pulse from the crystal

· square-wave mode – after getting to zero and causing the interrupt (clock ticks), the holding register is automatically copied into the counter, and the whole process is repeated again indefinitely

Chapter 12: Process and Processors in Distributed Systems

· each thread runs strictly sequentially, and has its own program counter and stack to keep track of where it is

· all threads have exactly the same address space, which means they also share the same global variables

· a process is always owned by a single user, who has persumably created multiple threads so they can cooperate, not fight

· all threads share the same set of open files, child processes, timers, and signals in additional to sharing an address space

· threads make it possible to retain the idea of sequential processes that make blocking system calls and still achieve parallelism

· blocking system calls make programming easier and parallelism improves performance

Threads
Parallelism, blocking system calls

Single-thread process
No parallelism, blocking system calls

Finite-state machine
Parallelism, nonblocking system calls

1. dispatcher structure

· dispatcher – reads incoming requests for work from the system mailbox, and passes it on to a worker thread

2. team model

· a job queue can be maintained, with pending work kept in the job queue

· a thread should first check the job queue before looking in the system mailbox

3. pipeline model

· the first thread generates some data and passes them on to the next one for processing

· instead of letting the signal interrupt the process, one thread is dedicated full time to waiting for signals – using threads can eliminate the need for user-level interrupts

· threads packages – a set of primitives available to the user relating to threads

· with a static design, the choice of how many threads there will be is made when the program is written or when it is compiled. Each one is allocated a fixed stack

· a thread creation call usually specifies the thread’s main program and a stack size, and may specify other parameters as well

· a thread can exit of its own accord its job, or it can be killed from outside

· access to shared data is usually programmed using critical regions, to prevent multiple threads from trying to access the same data at the same time

1. put the threads package entirely in user space

· a user-level threads package can be implemented on an operating system that does not support threads

· allow each process to have its own customized scheduling algorithm

· the run-time system keeps running threads from its own process until the kernel takes the CPU away from it

· letting the thread actually make the system call is unacceptable, since this will stop all the threads

· jacket – the code placed around the system call to do the checking

· if a thread starts running, no other thread in that process will ever run unless the first thread voluntarily gives up the CPU – have the run-time system request a clock signal once a second to give it control

· programmers generally want threads in applications where the threads block often

· many library procedures are not re-entrant

