Chapter 1: Basic Mathematical Objects

For f: A ( B,  if f(A) = B, the function f is said to be onto, or surjective, or a surjection
Definition 1.1

Assume that R is a relation on a set A; in other words, R ( A * A.  We write aRb instead of (a,b) ( R to indicate that a is related to be via the relation R.

1. R is reflexive if for every a ( A, aRa

2. R is symmetric if for every a and b in A, if aRb, then bRa

3. R is transitive if for every a, b, and c in A, if aRb and bRc, then aRc

4. R is an equivalence relation on A if R is reflexive, symmetric, and transitive

Theorem 1.1

For any partition C of a set A, the relation R on A, defined by xRy if and only if x and y belong to the same element of C, is an equivalence relation on A.  Conversely, if R is any equivalence relation on A, the set of equivalence classes is a partition of A, and two elements of A are equivalent if and only if they are the same equivalence class

· language – a set of strings involving symbols from some alphabet

· alphabet – finite set of symbols

a0 = (

x0 = (

(0 = {(}
L0 = {(}

Chapter 2: Mathematical Induction and Recursive Definitions

· derive – using general principles of logical reasoning

· direct proof – assumes that the statement p is true and, using this assumption, shows that q is true

· indirect proof – (proof by contrapositive) – using the logical equivalence of p ( q and (q ( (p (proof by contradiction)

Principle of Mathematical Induction

Suppose P(n) is a statement involving an integer n.  Then to prove that P(n) is true for every n ( n0, it is sufficient to show these two things:

1. P(n0) is true.

2. For any k ( n0, if P(k) is true, then P(k+1) is true

· minimal counterexample principle – do an ordinary induction proof on it’s counter example

The Strong Principle of Mathematical Induction

Suppose P(n) is a statement involving an integer n.  Then to prove that P(n) is true for every n ( n0, it is sufficient to show these two things:

1. P(n0) is true

2. For any k ( n0, if P(n) is true for every n satisfying n0 ( n ( k, then P(k+1) is true

Principle of Structural Induction

Suppose that U is a set, I is a subset of U, and Op is a set of operations on U.  Suppose also that a subset L of U is defined recursively as follows:

1. I ( L
2. L is closed under each operation in Op
3. L is the smallest set satisfying 1 and 2

Chapter 3: Regular Expressions and Finite Automata

3.1 Regular Languages and Regular Expressions

· regular language – can be obtained from the very simplest languages over (, those containing a single string of length 0 or 1, using only the operations of union, concatenation, and Kleene *

· regular expression – explicit formula describing a regular language by removing brackets etc

Definition 3.1

The class R of regular languages over (, and the corresponding regular expressions, are defined as follows:

1. ( is an element of R, and the corresponding regular expression is (
2. {(} is an element of R, and the corresponding regular expression is (
3. For each a ( (, {a} is an element of R, and the corresponding regular expression is a

4. If L1 and L2 are any elements of R, and r1 and r2 are the corresponding regular expressions, then

a) L1 ( L2 is an element of R, and the corresponding regular expressions is (r1 + r2)

b) L1L2 is an element of R, and the corresponding regular expression is (r1r2)

c) L1* is an element of R, and the corresponding regular expression is (r1*)

Only those languages that can be obtained by using statements 1-4 are regular languages over (
3.2 The Memory Required to Recognize a Language

· abstract machine – a specification of the capabilities that the machine needs to have

· the abstraction that is at the heart of the machine is the set of states and the function that specifies, for each combination of state and input symbol, the state the machine goes to next

3.3 Finite Automata

Definition 3.2

A finite automaton, or finite-state machine (FA) is a 5-tuple (Q, (, q0, (, A), where

Q is a finite set (states)

( is a finite alphabet of input symbols

q0 ( Q (initial state)

A ( Q (accepting state)

( is a function from Q * ( to Q (transition function)

Definition 3.3

Let M = (Q, (, q0, A, () be an FA.  We define the function   (* : Q x (* ( Q  as follows:

1. For any q ( Q, (*(q, () = q

2. For any y ( (*, a ( (, and q ( Q,   (*(q, ya) = (((*(q, y), a)

Definition 3.4

Let M = (Q, (, q0, A, () be an FA.  A string x ( (* is accepted by M if (*(q0, x) ( A.  If a string is not accepted, we say it is rejected by M.  The language accepted by M, or the language recognized by M, is the set     L(M) = {x ( (* | x is accepted by M}

If L is any language over (, L is accepted, or recognized, by M iff L=L(M)

Theorem 3.1

A language L over the alphabet ( is regular iff there is an FA that accepts L

3.4 Distinguishing one String from Another

Definition 3.5

Let L be a language in (*.  Two strings x and y in (* are distinguishable with respect to L if there is a string z ( (* (which may depend on x and y) so that exactly one of the strings xz and yz is in L.  The string z is said to distinguish x and y with respect to L

Lemma 3.1

Suppose that L ( (* and M = (Q, (, q0, A, () is any FA recognizing L.  If x and y are two strings in (* for which (*(q0, x) = (*(q0, y), then x and y are indistinguishable with respect to L

Theorem 3.2 

Suppose that L ( (* and, for some positive integer n, there are n strings in (*, any two of which are distinguishable with respect to L.  Then there can be no FA recognizing L with fewer than n states

Theorem 3.3

The language pal of palindromes over the alphabet {0,1} is not regular

3.5 Unions, Intersections, and Complements

Theorem 3.4

Suppose that M1 = (Q1, (, q1, A1, (1) and M2 = (Q2, (, q2, A2, (2) accept languages L1 and L2, respectively.  Let M be an FA defined by M = (Q, (, q0, A, (), where     Q = Q1 x Q2         q0 = (q1, q2)

And the transition function ( is defined by the formula      (((p, q), a) = ((1(p, a), (2(q, a))

1. If A = {(p, q) | p ( A1 or q ( A2}, M accepts the language L1 ( L2
2. If A = {(p, q) | p ( A1 and q ( A2}, M accepts the language L1 ( L2
3. If A = {(p, q) | p ( A1 and q ( A2}, M accepts the language L1 - L2
Chapter 4: Nondeterminism and Kleene’s Theorem

4.1 Nondeterministic Finite Automata

Definition 4.1

A nondeterministic finite automaton (NFA) is a 5-tuple M = (Q, (, q0, A (), where Q and ( are nonempty finite sets, q0 ( Q, A ( Q, and   ( :  Q x ( ( 2Q   Q is the set of states, ( is the alphabet, q0​ is the initial state, and A is the set of accepting states.  2Q means the set of subsets of Q

Definition 4.2a (Nonrecursive definition of (* for an NFA)

For an arbitrary NFA M = (Q, (, q0, A, () and for any p ( Q, (*(p, () = {p}.  For any p ( Q and for any x = a1a2…an ( (*, (*(p, x) is the set of all states q for which there is a sequence of states p= p0, p1, …, pn-1, pn = q satisfying          pi ( ((pi-1, ai) for each i with 1 ( i ( n

Definition 4.2b (Recursive definition of (* for an NFA)
Let M = (Q, (, q0, A, () be an NFA.  The function (* : Q x (* ( 2Q id defined as follows

1. For any q ( Q, (*(q, () = {q}

2. For any y ( (*, a ( (, and q ( Q,      (*(q, ya) = Up((*(q, y) ((p, a)
Definition 4.3 

Let M = (Q, (, q0, A, () be an NFA.  The string x ( (* is accepted by M if (*(q0, x) ( A ( (.  The language recognized, or accepted, by M is the set L(M) of all strings accepted by M.  For any language L ( (*, L is recognized by M if L=L(M)

Theorem 4.1

For any NFA M = (Q, (, q0, A, () accepting a language L ( (*, there is an FA M1 = (Q1, (, q1, A1, (1) that also accepts L

4.2 Nondeterministic Finite Automata with (-Transitions

Definition 4.4

A nondeterministic finite automaton with (-transitions (NFA-() is a 5-tupl3 (Q, (, q0, A, (), where Q and ( are finite sets, q0 ( Q, A ( Q, and   ( : Q x (( ( {(}) ( 2Q
Definition 4.5a (Nonrecursive definition of (* for an NFA-()
For any NFA-( M = (Q, (, q0, A, (), any states p, q ( Q, and any string x = a​1a2…an ( (*, we say M moves from p to q by a sequence of transitions corresponding to x if there exist and integer m ( n, a sequence b1,b2,…,bm ( ( ( {(} satisfying b1b2…bm = x, and a sequence of states p = p0, p1, …, pm = q so that for each i with 1 ( i ( m, pI ( ((pi-1, bi)

Definition 4.6 ((-closure of a set of states)
Let M= (Q, (, q0, A, () be an NFA-(, and let S be any subset of Q.  The (-closure of S is the set ((S) defined as follows:

1. Every element of S is an element of ((S)

2. For any q ( ((S), every element of ((q, () is in ((S)

3. No other elements of Q are in ((S)

Algorithm to calculate ((S)
Start with T=S.  At each step, consider all the sets ((q, () for element q ( T, and add to T any elements in any of these sets that are not already included in T.  Stop when this step does not change T.  The set ((S) is the final value of T

Definition 4.5b (Recursive definition of (* for an NFA-()
Let M = (Q, (, q0, A, () be an NFA-(.  The extended transition function  (*: Q x (* ( 2Q is defined as follows:

1. For any q ( Q, (*(q, () = (({q})

2. For any q ( Q, y ( (*, and a ( (,       (*(q, ya) = ((Up((*(q, y) ((p,a))

A string x is accepted by M if (*(q0, x) ( A ( (.  The language recognized by M is the set L(M) of all strings accepted by M

Theorem 4.2 

If L ( (* is a language that is accepted by the NFA-( M = (Q, (, q0, A,(), then there is an NFA M1 = (Q1, (, q1, A1, (1) that also accepts L

Theorem 4.3

For any alphabet (, and any language L ( (*, these three statements are equivalent:

1. L can be recognized by an FA

2. L can be recognized by an NFA

3. L can be recognized by an NFA-(
4.3 Kleene’s Theorem

Theorem 4.4 (Kleene’s theorem, part 1)
Any regular language can be accepted by a finite automaton

Theorem 4.5 (Kleene’s theorem, part 2)
The language accepted by any finite automaton is regular

Chapter 5: Regular and Nonregular Languages

5.3 The Pumping Lemma

Theorem 5.2

Suppose L is any regular language recognized by an FA with n states.  For any x ( L with |x| ( n, x may be written as x = uvw for some strings u, v, and w satisfying
|uv| ( n       |v| > 0    for any m(0, uvmw ( L

Theorem 5.2a (The pumping lemma)
Suppose L is a regular language.  Then there is an integer n so that for any x ( L with |x| ( n, there are strings u,v, and w so that  x = uvw     |uv| ( n     |v| > 0     for any m ( 0, uvmw ( L

· when using the pumping lemma to show that L is nonregular, we are free to choose x any way we wish, as long as |x| ( n and as long as it allows us to derive a contradiction.  We try to choose x so that obtaining the contradiction is as simple as possible.  Once we have chosen x, we must be careful to showt that a contradiction follows inevitably.  Unless we show that we can obtain a contradiction in every conceivable case, we have not accomplished anything

Theorem 5.3 (Weak form of the pumping lemma)
Suppose L is an infinite regular language.  Then there are strings u, v, and w so that |v| > 0 and uvmw ( L for every m ( 0

Theorem 5.4 (Even weaker form of the pumping lemma)
Suppose L is an infinite regular language.  There are integers p and q, with q > 0, so that for every m ( 0, L contains a string of length p + mq.  In other words, the set of integers   lengths(L) = {|x| | x ( L}   contains the “arithmetic progression” of all integers p + mq (where m ( 0)

5.4 Decision Problems

· calculate Tk, the set of states that can be reached from q0 by using strings of length k or less, as follows:

T0 = ( {q0}




if k = 0

        (  Tk-1 ( {((q, a) | q ( Tk-1 and a ( (}
if k > 0

· Tk contains, in addition to the elements of Tk-1, the states that can be reached in one step from the elements of Tk-1
Decision Algorithm for problem 1 (Given an FA M, is L(M) = (?)
1. Compute the set Tk for each k, until either Tk contains an accepting state or Tk = Tk-1
2. If Tk contains an accepting state, then L(M) ( (
3. If Tk contains no accepting state for the last k considered, then L(M) = (
· Begin testing all input strings, in nondecreasing order of length, for acceptance by M.  If no string of length n or less are accepted, then L(M) = (
Decision Algorithm for problem 2 (Given an FA M, is L(M) finite?)
1. Begin testing all input strings, in nondecreasing order of length and beginning with those of length n, where n is the number of states of M

2. If no strings of length less than 2n are accepted, L(M) is finite

3. Otherwise, L(M) is infinite

Chapter 6: Context-Free Grammars

· non-palindromes – as we work out way in from both ends simultaneously, we may encounter matching symbols for awhile; however, eventually we will find a symbol on the left that is different from the corresponding one on the right – use more than one variables to represent some auxiliary class of strings that might be involved in a recursive definition of the language

Definition 6.1

A context-free grammar (CFG) is a 4-tuple G = (V, (, S, P), where V and ( are disjoint finite sets, S is an element of V, and P is a finite set of formulas of the form  A ( (, where A ( V and ( ( (V ( ()*

The elements of V are called variables, or nonterminal symbols, and those of the alphabet ( are called terminal symbols, or terminals.  S is called the start symbol; and the elements of P are called grammar rules, or productions

Definition 6.2

Let G = (V, (, S, P) be a CFG.  The language generated by G is  L(G) = {x ( (* | S ( G* x }

A language L is a context-free language (CFL) if there is a CFG G so that L = L(G)

Theorem 6.1

If L1 and L2 are context-free languages, then the languages L1 ( L2, L1L2, and L1* are also CFLs

Corollary 6.1

Every regular language is a context-free language

· expression trees – binary trees in which terminal nodes correspond to identifiers or constants and nonterminal nodes correspond to operators  (only terminal symbols are drawn)

Definition 6.3

A context-free grammar G is ambiguous if there is at least one string in L(G) having two or more distinct derivation trees (or, equivalently, two or more distinct leftmost derivations

6.5 An unambiguous CFG for Algebraic Expressions

Theorem 6.2 

Let G be the context-free grammar with productions 

S ( S + S | S * S | (S) | a

And let G1 be the CFG with productions
S1 ( S1 + T | T






T ( T * F | F






F ( (S1) | a

Then L(G) = L(G1)

Definition 6.4

A string of left and right parentheses is balanced if it has equal numbers of left and right parentheses, and no prefix has more right than left.  The mate of a left parenthesis in a balanced string is the first right parenthesis following it for which the string containing those two and everything in between is balanced.  If x is a string containing parentheses and other symbols, and the parentheses within x form a balanced string, a symbol ( in x is within parentheses if ( appears between some left parenthesis and its mate

Theorem 6.3

The context-free grammar G1 with productions  
S1 ( S1 + T | T







T ( T * F | F







F ( (S1) | a

is unambiguous

6.6 Simplified Forms and Normal Forms

1) eliminate (-productions of the form  A ( (  and unit productions, in which one variable is simply replaced by another

Definition 6.5

A nullable variable in a CFG G = (V, (, S, P) is defined as follows

1. Any variable A for which P contains the production  A ( ( is nullable

2. If P contains the production  A ( B1B2…Bn and B1, B2, …, Bn are nullable variables, then A are nullable

3. No other variables in V are nullable

Algorithm FindNull (Finding the nullable variables in a CFG (V, (, S, P))
N0 = {A ( V | P contains the production
A ( (};

i = 0;

do


i = i + 1;


Ni = Ni-1 ( { A | P contains  A ( ( for some ( ( Ni-1*}

While Ni ( Ni-1 ;

Ni is the set of nullable variables

Algorithm 6.1 

Given a CFG G = (V, (, S, P), construct a CFG G1 = (V, (, S, P1) with no (-productions as follows

1. Initialize P1 to be P

2. Find all nullable variables in V, using Algorithm FindNull

3. For every production  A ( ( in P, add to P1 every production that can be obtained from this one by deleting from ( one or more of the occurrences in ( of nullable variables

4. Delete all (-productions from P1.  In addition, delete any duplicates and delete productions of the form  A ( A

Theorem 6.4

Let G = (V, (, S, P) be any context-free grammar, and let G1 be the grammar obtained from G by Algorithm 6.1.  Then G1 has no (-productions, and L(G1) = L(G) – {(}

· if CFG G is unambiguous, the G1 produced by Algorithm 6.1 is also

Algorithm 6.2

Given a CFG G = (V, (, S, P) with no (-productions, construct a grammar G1 = (V, (, S, P1) having no unit productions as follows

1. Initialize P1 to be P

2. For each A ( V, find the set of A-derivable variables

3. For every pair (A, B) such that B is A-derivable, and every nonunit production  B ( (, add the production  A ( ( to P1

4. Delete all unit productions from P1

Theorem 6.5

Let G be any CFG without (-productions, and let G1 be the CFG obtained from G by Algorithm 6.2.  Then G1 contains no unit productions, and L(G1) = L(G)

Definition 6.6

A context-free grammar is in Chomsky normal form (CNF) if every production is one of these two types:


A ( BC

A ( a

where A, B, and C are variables and a is a terminal symbol

Theorem 6.6

For any CFG G = (V, (, S, P), there is a CFG G’ = (V’, (, S, P’) in Chomsky normal form so that L(G’) = L(G) – {(}

S ( AACD

A ( aAb | (
C ( aC | a

D ( aDa | bDb | (
1. Eliminating (-productions.

Nullable variables: A, D

S ( AACD | ACD | CD | AC | AAC | C

A ( aAb | ab

C ( aC | a

D ( aDa | bDb | aa | bb

2. Eliminating unit productions.

Add production  S ( aC | a   and deletes S ( C

3. Restricting the right sides of productions to single terminals or strings of two or more variables.

S ( AACD | ACD | CD | AC | AAC | XaC | a

A ( XaAXb | XzXb
C ( XaC | a

D ( XaDXa | XbDXb | XaXa | X​bXb
Xa ( a

Xb ( b

4. Final step to CNF (break long productions into smaller ones)

S ( AT1
T1 ( AT2
T2 ( CD

S ( AU1
U1 ( CD

S ( AV1
V1 ( AC

S ( CD | AC | XaC | a

A ( XaW1
W1 ( AXb
A ( XaXb

C ( XaC | a

D ( XaY1 
Y1 ( DXa
D ( XbZ1
Z1 ( DXb
D ( XaXa | XbXb
Xa ( a

Xb ( b

Chapter 7: Pushdown Automata

Definition 7.1

A pushdown automaton (PDA) is a 7-tuple M = (Q, (, (, q0, Z0, A, (), where

Q is a finite set of states

( and ( are finite sets (input and stack alphabets, respectively)

q0, the initial state, is an element of Q

Z0, the initial stack symbol, is an element of (
A ( Q (the set of accepting states)

( : Q x (( ( {(}) x ( ( (finite subsets of Q x (*)

· configuration of M – a snapshot of the current status of the machine

Definition 7.2

If M = (Q, (, (, q​0, Z0, A, () is a pushdown automaton and x ( (*, x is accepted by M if  

(q0, x, Z0) |-M (q, (, ()
for some ( ( (* and some q ( A.  A language L ( (* is said to be accepted by M if L is precisely the set of strings accepted by M; in this case, we write L=L(M)

· acceptance by empty stack – a string is said to be accepted if it allows the PDA to reach a configuration in which the stack is empty, regardless of wether the state is an accepting state

· acceptance by final state – whether or not a configuration is an accepting configuration does not depend on the contents of the stack

Definition 7.3

Let M = (Q, (, (, q0, Z0, A, () be a pushdown automaton.  M is deterministic if there is no configuration for which M has a choice of more than one move.  In other words, M is deterministic if it satisfies both the following conditions:

1. For any q ( Q, a ( ( ( {(}, and X ( (, the set ( (q, a, X) has at most one element

2. For any q ( Q and X ( (, if ((q, (, X) ( (, then ((q, a, X) = ( for every a ( (
A language L is a deterministic context-free language (DCFL) if there is a deterministic PDA (DPDA) accepting L

Theorem 7.1

The language pal = {x ( {a, b}* | x = xr } cannot be accepted by any deterministic pushdown automaton

· starting with a CFG G, we want to build a PDA that is able to test an arbitrary string and determine whether it can be derived from G.  The basic strategy is that the PDA will attempt to simulate a derivation of the string in the given grammar

Theorem 7.2

Let G = (V, (, S, P) be a context-free grammar.  Then there is a pushdown automaton M so that L(M) = L(G)

Theorem 7.3

Suppose M + (Q, S, (, q0, Z0, A, () is a pushdown automaton accepting the language L ( (*.  Then there is another PDA M1 = (Q1, (, (1, q1, Z1, A1) so that for any string x, x ( L iff (q1, x, Z1) |-M1* (q, (, () for some state q ( Q1
Theorem 7.4

Let N = (Q, (, (, q0, A, () be a pushdown automaton accepting a language L by empty stack; that is, L = Le(M).  Then there is a context-free grammar G with L(G) = L

Chapter 8: Context-Free and Noncontext-Free Languages

8.1 The Pumping Lemma for Context-Free Languages

Lemma 8.1 

For any h ( 1, a binary tree having more than 2h-1 leaf nodes must have height greater than h

Theorem 8.1 

Let G = (V, (, S, P) be a context-free grammar in Chomsky normal form, with a total of p variables.  Any string u in L(G) with |u| ( 2p+1 can be written as u = vwxyz, for some strings v, w, x, y, and z satisfying


|wy| > 0


|wxy| ( 2p+1

for any m ( 0, vwmxymz ( L(G)

Theorem 8.1a (Pumping lemma for context-free languages)
Let L be a CFL.  Then there is an integer n so that for any u ( L satisfying |u| ( n, there are strings v, w, x, y, and z satisfying  
u = vwxyz




|wy| > 0




|wxy| ( n




for any m ( 0, vwmxymz ( L

Theorem 8.2 (Ogden’s lemma)
Suppose L is a context-free language.  Then there is an integer n so that if u is any string in L of length n or greater, and any n or more positions of u are designated as “distinguished,” then there are strings v, w, x, y, and z satisfying

u = vwxyz




wy contains at least one distinguished position




wxy contains no more than n distinguished positions




x contains at least one distinguished position




for every m ( 0, vwmxymz ( L

Lemma 8.2 

If the binary tree consisting of a node on the path and its descendants has h or fewer branch points, its leaf nodes include no more than 2h distinguished nodes

8.2 Intersections and Complements of Context-Free Languages

Theorem 8.3

There are context-free languages L1 and L2 so that L1 ( L2 is not a CFL, and there is a CFL L so that L’ is not a CFL

Theorem 8.4

If L1 is a context-free language and L2 is a regular language, then L1 ( L2 is a CFL

Decision algorithm for the membership problem (Given a pushdown automaton M and a string x, does M accept x?)

1) Use the construction in the proof of Theorem 7.4 to find a CFG G generating the language recognized by M

2) If x = (, use Algorithm FindNull to determine whether the start symbol of G is nullable

3) Otherwise, eliminate (-productions and unit productions from G, using Algorithm 6.1 and 6.2

4) Examine all derivations with one step, all those with two steps, and so on, until either a derivation of x has been found or all derivations of length 2|x| - 1 have been examined

5) If no derivation of x has been found, M does not accept x

Decision algorithms for problems 1 and 2. (Given a CFG G, is L(G) = (?  Is L(G) finite?)
1) Test whether ( can be generated from G, using the algorithm for the membership problem

2) If it can, then L(G) ( (
3) In any case, let G’ be a Chomsky-normal-form grammar generating L(G) – {(}, and let n = 2p+1, where p is the number of variables in G’

4) For increasing values of i beginning with 1, test strings of length i for membership in L(G) 

5) If for no i < n is there a string of length i in L(G’), and ( ( L(G), then L(G’) = L(G) = (
6) If for no i with n ( i < 2n is there a string of length i in L(G), then L(G) is finite

7) If there is a string x ( L(G) with n ( |x| < 2n, then L(G) is infinite

Chapter 9: Turing Machines

1. examine an individual symbol on the paper

2. erasing a symbol or replacing it with another

3. transfer one’s attention from one part of the paper to another

1. Change the symbol in the current square

2. Move the tape head one square to the left or right (unless the head is already centered on the leftmost square)

3. Change state

Definition 9.1

A Turing machine TM is a 5-tuple T = (Q, (, (, q0, (), where 

Q is a finite set of states, assumed not to contain the halt state

( and ( are finite sets, the input and tape alphabets, respectively, with ( ( (; ( is assumed not to contain (, the blank symbol

q0, the initial state, is an element of Q

(: Q x (( ( {(}) ( (Q ( {h}) x (( ( {(}) x {R, L, S} is a partial function (that is, possibly undefined at certain points)

· configuration : (q, xay) where q is a state, x and y are strings over ( ( {(}, a ( ( ( {(}, and the underlined symbol represents the current position of the tape head

· initial configuration corresponding to input x: (q0, (x)

Definition 9.2

If T = (Q, (, (, q0, () is a TM, and x ( (*, x is accepted by T if, starting in the initial configuration corresponding to input x, T eventually reaches a halting configuration.  In other words, x is accepted if there exist y, z ( (( ( {(})* and a ( ( ( {(} so that   (q0, (x) |-T* (h, yaz)

In this situation we say T halts on input x.  The language accepted by T is the set L(T) of input strings on which T halts

1. A string can lead to some nonhalting configuration from which the TM cannot move  (Crashing state)

2. At some point in the processing of the string, the tape head is scanning square 0 and the next move specifies moving the head left, off the end of the tape (Crashing state)

3. An input string might cause the TM to enter an infinite loop, a never-ending sequence of moves

· a string can fail to be accepted by being explicitly rejected, as a result of the machine’s crashing, or it can fail to be accepted because the machine is unable to make up its mind whether to accept

· accepts means to accept the string of input symbols read so far

Definition 9.3 

Let T = (Q, (, (, q0, () be a Turing machine, and let f be a partial function on (* with values in (*.  We say that T computes f if for every x ( (* on which f is defined,  (q0, (x) |-T* (h, (f(x))  and for every other x ( (*, T fails to halt on input x

If f is a partial function on ((*)k with values in (*, T computes f if for every k-tuple (x1, x2, …, xk) on which f is defined,  (q0, (x1(x2(…(xk) |-T* (h, (f(x1, x2, …, xk))  and for any other input that is a k-tuple of strings, T fails to halt.  For two alphabets (1 and (2, and a positive integer k, a partial function f : ((1*)k ( (2* is Turing-computable, or simply computable, if there is a TM computing f

Definition 9.4

Let T = (Q, {1}, (, q0, () be a Turing machine.  If f is a partial function from N, the set of natural numbers, to itself, T computes f if for every n at which f is defined,  (q0, (1n) |-T* (h, (1f(n))  and for every other natural number n, T fails to halt on input 1n.  Similarly, if f is a partial function from Nk to N, T computes f if for every k-tuple (n1, n2, … , nk) at which f is defined,  (q0 (1n1(1n2( … (1nk) |-T* (h, (1f(n1, n2, …, nk))  and T fails to halt if the input is any k-tuple at which f is not defined

Theorem 9.1

Let n(2, and let T1 = (Q1, (, (1, q1, (1) be an n-tape Turing machine.  Then there is a one-tape TM T2 = (Q2, (, (2, q2, (2), with (1 ( (2, satisfying the following two conditions

1. L(T​2) = L(T1); that is, for any x ( (*, T2 halts on input x iff T1halts on input x

2. For any x ( (*, if  (q1, (x, (, … , () |-T1* (h, yaz, y2a2z2, … , ynanzn)  (for some a, aI ( (1 ( {(} and y, z, yI, zI ( ((1 ( {(})*), then  (q2, (x) |-T2* (h, yaz) 

If T1 halts on input x, then T2 halts on input x and produces the same output as T1
Corollary 9.1

Any language that is accepted by an n-tape TM can be accepted by an ordinary TM, and any function that is computed by an n-tape TM can be computed by an ordinary TM

Theorem 9.2

Let T1 = (Q1, (, (1, q1, (1) be a nondeterministic Turing machine.  Then there is an ordinary (deterministic) TM T2 = (Q2, (, (2, q2, (2) with L(T2) = L(T1)

Giving T2 three tapes:

1. used to save the original input string, and its contents are never changed

2. used to keep track of the sequence of moves of T1 that T2 is currently attempting to execute

3. “working tape”, corresponding to T1’s tape, where T2 actually carries out the steps specified by the current string on tape 2

· universal computing machine – a TM Tu whose input consists of two parts: a string specifying some other (special-purpose) TM T1, and a second string z that is interpreted as input to T1.  The TM Tu then simulates the processing of z by T1
Convention

We assume from this point on that there are two fixed infinite sets Q = {q1, q2, …} and S = {a1, a2, …} so that for any Turing machine T = (Q, (, (, q0, (), we have Q ( Q and ( ( S
Definition 9.5 (Encoding function e)
First we associate to each tape symbol (including (), to each state (including h), and to each of the three directions, a string of 0’s.  Let


s(() = 0


s(aI) = 0I+1
(for each aI ( S)


s(h) = 0



s(qI) = 0I+1
(for each aI ( Q)


s(S) = 0


s(L) = 00


s(R) = 000

Each move m of a TM, described by the formula  ((p, q) = (q, b, D)  is encoded by the string 

e(m) = s(p)1s(a)1s(q)1s(b)1s(D)1  and for ant TM T with initial state q, T is encoded by the string

e(T) = s(q)1e(m1)1e(m2)1…e(mk)1  where m1, m2, … , mk are the distinct moves of T, arranged in some arbitrary order.  Finally, any string z = z1z2…zk, where each zI ( S, is encoded by

e(z) = 11s(z1)1s(z2)1…s(zk)1

Chapter 10: Recursively Enumerable and Recursive Languages

Definition 10.1 

Let L( (* be a language.  A Turing machine T with input alphabet ( is said to accept L if L(T) = L.  The TM T recognizes, or decides, L if T computes the characteristic function XL : (* ( {0, 1}.  In other words, TY recognizes L if T halts for every string x in (*, producing output 1 if x ( L and output 0 otherwise.


A language L is recursively enumerable if there is a TM that accepts L and recursive if there is a TM that recognizes L

Theorem 10.1 

If L is accepted by a nondeterministic Turing machine T, and every possible sequence of moves of T results in a halt or a crash, the L is recursive

Theorem 10.2 

If L1​ and L2 are recursively enumerable languages over (, then L1(L2 and L​1(L2 are also recursively enumerable

Theorem 10.3

If L is recursive, so is L’

Theorem 10.4

If L is a recursively enumerable language whose complement is recursively enumerable, then L is recursive

Definition 10.4

Let NSA (not self-accepting) be the following subset of {0,1}*:  
NSA = NSA1 ( NSA2  
where

NSA1 = {w ( {0,1}* | w = e(T) for some TM T, and T does not accept w}

NSA2 = {w ( {0,1}* | w is not e(T) for any TM T}

Let SA (self-accepting) be the complement of NSA in {0,1}*, so that 

SA = {w ( {0,1}* | w = e(T) for some TM T, and T accepts w}

Theorem 10.9

The language NSA is not recursively enumerable

Theorem 10.10

SA is recursively enumerable but not recursive.  In other words, although SA can be accepted by a Turing machine, any TM accepting it will loop forever on at least one input string not in the language

Chapter 12: Unsolvable Problems

· an instance of the problem is a particular string, and when the string is provided as input to the TM, the eventual result is the answer “yes” represented by 1, or the answer “no”, represented by 0

· a problem is unsolvable if the corresponding language, the language of yes-instances encoded by some appropriate encoding function, is not recursive

· what makes Self-accepting unsolvable is that there is no single algorithm guaranteed to produce the correct answer for every instance

· Halting Problem: Given a TM T and a string w, is w(L(T)?

· H = {e(T)e(w) | w ( L(T)} is not recursive

Definition 12.1 (Reducing one language to another)
If L1 and L2 are languages over alphabets (1 and (2, respectively, then we say that L1 is reducible to L2 (denoted by L1(L2) if there is a Turing-computable function f:(1* ( (2* so that for any x((1*, x(L1 iff f(x)(L2
Theorem 12.1

If L1 and L2 are languages over alphabets (1 and (2, respectively, and L1(L2, then if L2 is recursive, L1 is also recursive

Definition 12.1a (Reducing one decision problem to another)
If P1 and P2 are decision problems, we say P1 is reducible to P2 (P1(P2) if there is an algorithm procedure that allows us, given an arbitrary instance I1 of P1, to find an instance F(I1) of P2 so that for every I1, I1 is a yes-instance of P1 iff F(I1) is a yes-instance of P2
Theorem 12.1a

If P1 and P2 are decision problems and P1(P2, then if P2 can be solved algorithmically, so can P1
Theorem 12.2

The halting problem is unsolvable

Theorem 12.3

There is at least one TM T0 for which the problem P: Given the string w, is w ( L(T0)? Is unsolvable

Theorem 12.4

The problem Accepts(() is unsolvable

Theorem 12.5

The following decision problems are all unsolvable

AcceptsSomething Given a TM T, is L(T) nonempty?

AcceptsEverything Given a TM T, with input alphabet (, is L(T) = (*?

Subset Given two TMs T1 and T2, is L(T1) ( L(T2)?

WritesSymbol Given a TM T and a symbol a in its tape alphabet, does T ever write a if it is started with a blank tape?

Chapter 14: Measuring and Classifying Complexity

Definition 14.1

If f, g: N ( N are partial functions and each is defined at all but a finite number of points, we write f(n)=O(g(n)) or simply f=O(g), if there are constants C and n0 so that for every n(n0, f(n) and g(n) are defined and f(n)(Cg(n).  We write f(n)=o(g(n)) or f=o(g), if for every positive constant C, there is a constant n0 so that for every n(n0, f(n)(Cg(n).  Finally, f=((g) means that f=O(g) and g=O(f)

Theorem 14.1

The relation R1 defined by  fR1g iff f=O(g)  which is interpreted informally to mean that the growth rate of f is no larger than that of g, is reflexive and transitive

The relation R2 defined by  fR2g iff f=o(g)  which is interpreted to mean that the growth rate of f is less than that of g, is transitive and asymmetric (if  fR2g, then –gR2f)

The relation R3 defined by  fR3g iff f=((g) is an equivalence relation

Theorem 14.2

Let p be the polynomial  p(n)=aknk+ak-1nk-1+…+a1n+a0  where k(0 and ak>0, and let q be the exponential function q(n)=an, where a>1.  Then p(n)=((nk) and p=o(q)

Definition 14.2 (Time and space complexity of a Turing machine)
Let T be a TM.  The time complexity of T is the function (T defined on the natural numbers as follows.  For a natural number n, (T(n) is the maximum number of moves T can make on any input string of length n.  If there is an input string x with |x|=n so that T loops forever on input x, (T(n) is undefined


The space-complexity function sT of T is defined as follows.  If no input string of length n causes T to use an infinite number of tape squares, sT(n) is the maximum number of tape squares used by T for any input string of length n.  (If T is a multitape TM, the “number of tape squares” means the maximum of the numbers for the individual tapes.)  Otherwise – if some input of length n causes T to loop forever, and this infinite loop causes an infinite number of tapes squares to be used – sT(n) is undefined

Definition 14.3 (Time and space complexity of a nondeterministic Turing machine)
Let T be an NTM accepting a language L((*.  For an input string x, we define the computation time (x as follows.  First, (x is undefined if it is possible for T to loop forever on input x; otherwise, if x ( L, (x is the minimum number of moves required for T to halt on input x, and if x ( L, (x is the minimum number of moves required for T to crash.  The nondeterministic time complexity of T is the function (T, where (T(n) is the maximum value if (x over strings x with |x|=n.  Thus (T(n) is defined unless there is a string of length n on which T might loop forever


Similarly, sx is undefined if T might loop forever on input x; otherwise it is the minimum number of tape squares that might be used in accepting x, if x ( L, and the minimum number of tape squares that might be used before crashing on input x, if all choices of moves on input x lead to a crash.  As in the deterministic case, for a multitape TM, “number of tape squares” means the maximum over all the tapes.  The nondeterministic space complexity of T is the function sT, where sT(n) us undefined of T can loop forever on some input of length n, and otherwise sT(n) is the maximum of the numbers sx for |x|=n

