Quaternary fault segmentation and interaction in the epicentral area of the 1561 earthquake (Mw = 6.4), Vallo di Diano, southern Apennines, Italy

V. Spina,⁎, E. Tondi, P. Galli, S. Mazzoli, G. Cello

⁎ Corresponding author. Now at Fugro Robertson Ltd., Llandudno, UK.
E-mail address: vincenzo.spina@fugro-robertson.com (V. Spina).

Available online at www.sciencedirect.com

© 2008 Elsevier B.V. All rights reserved.

doi:10.1016/j.tecto.2007.06.012

1. Introduction

Fault interaction processes strongly control the seismic hazard of a region. It is well known that pre-linkage fault interaction combined with post-linkage displacement readjustment influences the measured displacement–length ratio (Peacock and Sanderson, 1991; Cartwright et al., 1995; Willemse et al., 1996; Willemse, 1997; Gupta and Scholz, 2000; Cowie and Roberts, 2001; Roberts et al., 2004), while the mean recurrence interval tends to decrease as slip-rate increases. The proposed mechanism explaining how displacement profile re-adjustment occurs during growth by linkage (Cowie, 1998) is based on the observation that during earthquakes the stress level increases along fault strike. The increasing stress level can also determine the distortion of the displacement profile (Gupta and Scholz, 2000) and can advance the timing of future earthquakes on neighbouring along-strike faults (Hodgkinson et al., 1996). In particular, Cowie (1998) demonstrates that along-strike neighboring faults may interact through their stress fields to generate larger earthquakes.

Therefore, to determine the seismic hazard of a region is fundamental to understand if neighbouring along-strike faults interact. For example, the strongest historical earthquakes along the Italian peninsula were generated by the activation, almost simultaneously, of more than one along-strike seismogenic fault (e.g. the 1703 Norcia-L’Aquila earthquake, Cello et al., 1997, Galadini and Galli, 2000; Tondi, 2000; the 1980 Irpinia earthquake, Pantosti and Valensise, 1990, Porfido et al., 2002; the 1857 Basilicata earthquake, Benedetti et al., 1998; Cello et al., 2003).

The integration of geological, morphotectonic and geophysical information appears to be fundamental for the interpretation of the subsurface structure of fault zones and for understanding the
Fig. 1. (A) Simplified geological map of the southern Apennines. (B) Geological map of the northeastern sector of the Vallo di Diano Basin.
related fault growth processes. This, in turn, is fundamental for any seismotectonic modelling and assessment of earthquake-related hazards.

In this work, we investigate the main structural characteristics of the Caggiano and Polla faults (two active fault segments belonging to the Vallo di Diano Fault System in southern Italy, DIFS in Cello et al., 2003). The goal is the evaluation of their modes of interaction, and the definition of the seismic hazard associated with these structures, which were probably re-activated (Cello et al., 2003) during both the 1561 (Mw = 6.4) and the 1857 (Mw = 6.9) earthquakes (CPTI, 2004).

2. Geological setting

The Southern Apennines are a NE-vergent fold-and-thrust belt, which evolved within the framework of the convergent motion between the Afro-Adriatic and European plates since Late Cretaceous times (Butler et al., 2004; Cello et al., 1989; Dewey et al., 1989; Mazzoli and Helman, 1994; Rosenbaum et al., 2002). Except for the remnants of the ophiolite-bearing Liguride Units that occur on top of the thrust pile, outcropping units consist of Mesozoic and Cenozoic rocks derived from the sedimentary cover of the Afro-Adriatic continental margin. These include both Mesozoic–Tertiary shallow-water-to-slope sediments of the so-called ‘Apennines’ carbonate platforms and pelagic (Lagonegro Basin) successions, as well as unconformable Miocene siliciclastic deposits (e.g., Mostardini and Merlini, 1986; Sgrosso, 1998; Cello and Mazzoli, 1999, Mazzoli et al., 2001).

Neogene thrusting in the southern Apennines was accompanied by back-arc extension and sea-floor spreading in the southern Tyrrhenian Sea (e.g., Kastens et al., 1988, Fig. 1). According to several Authors (e.g., Cello et al., 1982; Cinque et al., 1993; Hippolyte et al., 1994; Cello and Mazzoli, 1999), around the Early-Middle Pleistocene boundary (ca. 0.8 Ma), the SW–NE shortening ceased in the frontal parts of the southern Apennines and a new tectonic regime was established in the chain and adjacent foothills. The structures related to this new regime consist of extensional and transcurrent faults postdating and dissecting the thrust belt (e.g., Cello et al., 1982, 2003; Butler et al., 2004).

The Vallo di Diano is a Plio-Quaternary basin filled with fluvio-lacustrine fan and slope deposits (Ascione et al., 1992; Cinque et al., 1993; Giano et al., 2000) (Fig. 1B). This basin is bounded to the west by the Monti Alburni Ridge, which consist of Mesozoic and Cenozoic rocks derived from the sedimentary cover of the of the Afro-Adriatic continental margin. These ridge. To the east, it is limited by the Monti della Maddalena Ridge, which is made up of Mesozoic–Palaeogene...
Fig. 4. Morphotectonic features of the CF (A, B and C) in the northernmost tip of the fault escarpment into contact Meso-Cenozoic carbonates with Upper Pleistocene slope deposits. In the southern sector, this fault is characterized by a complex fault array (D) and offset diachronous colluvial Upper Pleistocene and Holocene deposits (E).
successions, that include both Apenninic carbonate platform units and Lagonegro Basin units (Scandone and Bonardi, 1968). The general architecture of the basin depicts a half-graben structure, bounded by a major NW–SE striking fault to the east (Ascione et al., 1992; Cinque et al., 1993; Catalano et al., 2004).

3. Seismotectonic background

Within the instrumental time windows, the study area of Italy, is affected by several moderate earthquakes (Mw < 6) that depict a seismic belt trending roughly NW–SE (Fig. 2A). However, in the last millennium many events with Mw > 6 struck the southern sector of the Italian peninsula (Fig. 2B). These occurred mainly along the axial zone of the Apennines, and have been related to normal, transtensional, and/or strike-slip faults (Pantosti & Valensise, 1990; Montone et al., 1999; Cello et al., 2003; Galli et al., 2006). In the last centuries, the most destructive events in the area were: the 1561 earthquake (Mw = 6.4, CPTI, 2004), the 1857 earthquake (Mw = 6.9, CPTI, 2004), and the 1980 Irpinia earthquake (Mw = 6.9, CPTI, 2004).

Of particular interest are the macroseismic fields reconstructed for the 1857 and the 1561 earthquakes, which struck the Vallo di Diano and the Val d’Agri areas, respectively (Boschi et al., 1997). In particular, the 1857 earthquake was characterized by an epicentral zone elongated in a NW–SE direction for about 60 km. Within this area, there are several faults belonging to two different fault systems (i.e. the Vallo di Diano Fault System: DIFS, and the Val d’Agri Fault System: VAFS; see Cello et al., 2003), both showing evidences of recent tectonic activity. In between, the roughly north–south trending calcareous ridge of the Monti della Maddalena represents a topographic high separating the two basin areas. Branno et al. (1983) propose that the isoseismal field related to the 1857 event could be due to the cumulative effects of two main shocks, one located in the Vallo di Diano and the other in the Val d’Agri area. Cello et al. (2003) and Galli et al. (2006) suggested that this seismogenic zone is characterized by a twofold behaviour, as it is capable of causing: (i) large earthquakes (M ≥ 7.0) as a result of composite ruptures on both fault systems, and (ii) medium-size earthquakes (M = 6–6.5), in case only one of the two fault systems ruptures.

This mode of seismic energy release is typical also of other areas in peninsular Italy. The strongest historical earthquakes in the Italian peninsula (i.e. the 1703 Norcia-L’Aquila earthquake, see Cello et al., 1997; Tondi, 2000; Galadini & Galli, 2000; the 1980 Irpinia earthquake, see Pantosti and Valensise 1990 and Porfido et al., 2002; the 1857 Basilicata earthquake, see Benedetti et al., 1998 and Cello et al., 2003) were, in fact, all accompanied by multiple fault reactivation.

4. Structural analysis

Detailed structural data were collected on two active faults belonging to the Vallo di Diano Fault System: the Caggiano and Polla Faults (Figs. 1 and 3). The Caggiano Fault (CF) is a 17 km-long structure cutting across different rock units of Meso-Cenozoic age (Cello et al., 2003; Galli and Bosi,
Fig. 6. Azimuthal distribution and pitch variation along the strike of the mapped active faults. This analysis has been carried out with Daisy 3, a Structural Data Integrated System Analiser, developed by Salvini F. and available at the following website: http://host.uniroma3.it/progetti/fralab/Downloads/Programs/.
For most of the exposed fault trace, it brings into contact Mesozoic carbonate and Miocene flysch units with Quaternary slope breccias; at its southern termination, it cuts through Middle Pleistocene slope deposits (Fig. 4). The geomorphic signature of the CF is given by a 3–6 m high fault scarp in the northern sector (Fig. 4) developed within carbonates. In the southern sector, the fault zone displays a segmented pattern, with fault scarps arranged *en echelon* and bordering the intermountain basins filled with upper Pleistocene alluvial–colluvial deposits (Fig. 4). Fault rocks, represented by breccia and gouge have a thickness ranging between a few millimeters and 15 cm, in the hanging wall, and between a few millimeters and 8 cm in the footwall (see also Cello et al., 2001a,b).

The Polla Fault (PF) is a 13 km-long structure exposed along the western foothill of the Monti della Maddalena Ridge. This fault cuts and backtilts Middle Pleistocene slope deposits (Ascione et al., 1992) cropping out near the Polla village (Fig. 5), and Late Pleistocene slope deposits (according to Cello et al., 2003) exposed at its southern termination. Fresh fault scarps may be observed all along its length, which consist of smoothed and striated fault surfaces and of breccia and gouge with a thickness varying between a few millimetres and 7 cm.

The overlap (O) between the CF and PF is almost 7 km, whereas the separation (S) is around 3 km; hence the ratio O/S ∼ 2.3.

In the Vallo di Diano area, we performed detailed geological mapping (at the scale of 1:10,000) and a systematic structural study that include: (i) fault orientation analysis, (ii) displacement–length profiling, and (iii) kinematic indicator analysis. The above data were then re-assessed using the *Transect Analysis* method (Salvini et al., 1999). This statistical method includes three progressive steps: Histogram Analysis, Multiple Gaussian Analysis, and Spectral Analysis. By applying these methods, it is possible to filter the distribution and frequency data of the selected parameters. Histogram Analysis allows the obtaining frequency-histograms plotted along a transect parallel to the fault trace. Multiple Gaussian and Spectral Analyses allows the definition of the shape of the Gaussian wave and of the Gaussian peak along the same transect.

4.1. Transect Analysis

Transect Analysis of the CF and PF assess the azimuthal distribution and pitch variations of fault-related mesostructures along the fault-parallel transects. The diagrams in Fig. 6 show that the trend of the main fault-related meso faults is roughly NW–SE in the external fault tip areas, whereas in the overlap zone the mesoscale structures exhibit a mainly WNW–ESE orientation. The pitch distribution of striations also appears to be site-dependent (Roberts and Ganas, 2000; Roberts et al., 2003; Galli et al., 2006).
at the northern tip zone, the mean pitch value is about 65° (hence indicating that here oblique left-lateral motion is dominant), whereas at the southern termination the pitch value ranges between 90° and 120° (indicating a right-lateral component of the motion). In the central sector, we recorded pitch values close to 90° (indicating a pure dip–slip motion).

Fig. 8. Length–displacement profiles obtained from morphological offsets (represented by the height of the fault scarps), which were measured using topographic profiles across the fault scarps. (A) Diagram related to the long-term (since Middle Pleistocene times, according to Cello et al., 2003 and Galli et al., 2006) tectonic activity of the CF. The strong complexity shown by the several spites in the diagram can be related to shallow fault segmentation. Note that the angles between the tangent to the profiles and the horizontal computed at the northern and southern tip zones (FTT angles, Scholz and Gupta, 2000) show different values. (B) Diagram representative of the post last-glacial peak (18 ka) tectonic activity of the CF. (C) Diagram related to the long-term (since Middle Pleistocene times, according to Ascione et al., 1992; Cello et al., 2003; Galli et al., 2006) tectonic activity of the PF. The throw distribution shows that the highest values are concentrated in the northernmost sector of the fault. As for the CF fault, the FTT angles show different values. (D) Diagram of the southern fault scarp related to the post last-glacial peak reactivation of the PF.
The results of stress inversion, which is based on measured fault planes and striae, as well as rotaxes are shown in Fig. 7. This permitted us to reconstruct the stress field geometry and the stress axial ratio \((R) \) of the stress ellipsoid acting in the area. In particular, the rotaxes (rotational axes, sensu Wise & Vincent, 1965) represent structural lineations on fault planes orthogonal to the slip vector (corresponding to the direction of the maximum shear stress). When a conjugate set of faults develops, rotaxes are the only structural elements which keep exactly the same orientation. Because their clustering on a stereogram indicate the intermediate axis of the stress ellipsoid \((\sigma_2) \), it is thus possible to differentiate many tectonic phases or deformations events based on the occurrence of more clusters.

4.2. Length–displacement profiles

Based on the results of our field mapping, we constructed several geological profiles across the Vallo di Diano basin; this allowed us to estimate the offset of significant geological markers. One of such markers is the unconformable contact, formed prior to the extension, of the Miocene flysch units with the Apenninic carbonate rock units below. The cumulative offset of this contact, as measured from geological profiles, is consistent with the geomorphological offset (represented by the height of the fault scarps), which were measured using topographic profiles across the fault scarps. This means that it is reasonable to use the geomorphological offset to build up appropriate length–displacement diagrams (Figs. 8A and C).

At the base of the CF scarp we recognized a steep and smooth fault surface involving 16Ka slope deposits, which are younger than the last glacial peak (18 ka old, Galli et al., 2006). We also observed faulted deposits of Late Pleistocene or Holocene age (according to Cello et al., 2003) along the southernmost sector of the PF at the Timpa la Rapanza (see also Fig. 4D in Cello et al., 2003). Those deposits are similar, in terms of stratigraphic position, to the faulted soils dated 20–40 ka and described by Giano et al. (2000) in the Val d’Agri area. Based on the above information, we consider the morphological break exposed at the base of both the CF and PF scarps as the result of fault slip after the Last Glacial Maximum (almost 18 ka, see Fig. 8B and D).

In Fig. 8A and C, it is also possible to observe that the length–displacement profiles of the long-term activity (since
Middle Pleistocene times, according to Ascione et al., 1992; Cello et al., 2003; Galli et al., 2006) of the CF and the PF faults, are asymmetric. In fact, the angles between the tangent to the profiles and the horizontal (FTT angles, Scholz and Gupta, 2000) computed at the northern and southern tip zones of each faults show different values. Furthermore, using the cumulative displacement for both faults, a throw/length ratio (γ) of 0.01 is obtained for the CF, whereas a γ value of 0.04 characterises the PF. Moreover, the cumulative length–displacement profiles computed for both faults (Fig. 9) shows different value of the tangent angles (FTT) indicating a possible interaction with the Val d’Agri Fault System, as suggested by Cello et al. (2003).

4.3. Structural interpretation and Coulomb stress analysis

Following Galli et al. (2006, for the CF) and Cello et al. (2003, for both CF and PF), we infer that the two parallel faults (CF and PF), bounding the eastern side of the Vallo di Diano basin, are both active, because they locally offset very young slope deposits. The structural characterization of the CF and the PF suggests that, from a kinematics point of view, these faults may behave as a single structure (Roberts and Ganas, 2000; Roberts et al., 2004). The resulting length–displacement profiles are representative of both long-term (since Middle Pleistocene times, according to Ascione et al., 1992; Cello et al., 2003 and Galli et al., 2006) and short-term tectonic activities (since 18 ka) of both CF and PF. The length–displacement diagram resulting from the CF long-term tectonic activity (Fig. 8A) shows an heterogeneous pattern. We interpret this pattern as the evidence of an unconnected growing array of lower-rank fault segments (in the Early–Middle Pleistocene). On the other hand, the length-displacement diagram resulting from the long-term tectonic activity of the PF exhibits a more homogeneous shape, showing a maximum in the northern sector of the fault (Fig. 8C). Although both the CF and the PF show a clear morphological evidence of a recent tectonic activity, it should be noted that geological evidences of active deformation during the Holocene are found mainly along the CF (Cello et al., 2003; Galli et al., 2006) and at the southern termination of the PF (Cello et al., 2003).

The length–displacement profile constructed across individual faults show a marked asymmetry (see Fig. 8). In fact, at the tip points, the angles between the tangent to the profiles and the horizontal (FTT angles), are quite different. Following Scholz and Gupta (2000), we suggest that this geometric property is indicative of the strong interaction between the two analysed faults. The shear stress drop, due to fault motion, generates an energetic barrier that restricts fault lateral growth (Fig. 10). In the case of the CF and PF, we suggest that the shear stress distribution related to the long-term tectonic activity of both faults is such that it favours offset accumulation in the stress shadow area, hence producing a distorted length–displacement profile in the overlapping zone. The above information is consistent with the following statement. Within the structural context of this sector of the Apennines, any earthquake event associated with one of the two faults may impose positive increments to the local stress state and hence enhance an almost simultaneous release of seismic energy by rupture processes on nearby along-strike seismogenic faults, generating larger earthquakes (Cowie, 1998).

In order to model the positive or negative variations of the local stress state, we computed the Coulomb stress changes due to the activation of the CF by using the GNstresses software (Robinson, 2002). The geometric parameters used for computation are listed in Table 1, and are based on our field observations. Using the Wells & Coppersmith (1994) relations we also inferred the average displacement and the seismic potential of the CF ($M \sim 6.5$, see also Tondi, 2000 and Galli et al., 2006). Other parameters needed for the computation are shown in Table 2. In our model the fault is considered to be an inclined (65°) rectangular surface with the longer side corresponding to the fault length (17 km) and the shorter side set by the depth of the seismogenic crust (15 km). In order to take into account the kinematic complexity of the structure (i.e. pitch variations and slip distribution), the CF has been subdivided into five cells (Fig. 11). The first one, corresponding to the northernmost section of the fault, is characterized by an oblique left-lateral component of motion, whereas the last cell, corresponding to its southern termination, is characterized by a

Table 1

<table>
<thead>
<tr>
<th>Dimensional parameters representative of the CF</th>
</tr>
</thead>
<tbody>
<tr>
<td>CF length=15 km</td>
</tr>
<tr>
<td>Wells & Coppersmith (1994)</td>
</tr>
</tbody>
</table>

D is the average displacement, M is the magnitude, and λ is the rigidity of the fault.

Please cite this article as: Spina, V., et al., Quaternary fault segmentation and interaction in the epicentral area of the 1561 earthquake (Mw = 6.4), Vallo di Diano, southern Apennines, Italy, Tectonophysics (2008), doi:10.1016/j.tecto.2007.06.012

Fig. 11. Conceptual model of a rectangular surface approaching a fault. In order to keep into account the different pitch distributions, we sub-divided the CF in an almost 3 Km long rectangular cells.
We assume a vertical co-seismic displacement of 0.40 m, which is consistent with the results of recent palaeoseismological investigations (Galli et al., 2006). The software used to compute Coulomb stress changes (CFS) within a half-space model expresses those variations as:

\[
\delta CFS = \delta T_{\text{shear}} + \mu (\delta T_n + \delta P)
\]

where \(\mu\) is the coefficient of dry friction, \(\delta T_{\text{shear}}\) is the induced change in shear stress, \(\delta T_n\) is the induced change in normal stress, and \(\delta P\) is the induced change in pore pressure. The latter is given by:

\[
\delta P = \left(\beta / 3\right) \sum \delta T_{\bar{i}i}
\]

where \(\beta\) is Skempton’s coefficient (for details, see also Harris, 1998; Okada, 1992; King and Cocco, 2001; Steacy et al., 2005).

Assuming that the fault is optimally oriented for re-shear with respect to the remote stress field, and that it reactivates for its entire length, the resulting CFS distribution on flat surfaces at 5, 10, and 17 km depth is shown in Fig. 12. (A) Maps and (B) Block diagram showing co-seismic Coulomb stress distribution and possible fault geometry at depth. (C) Conceptual patterns of the co-seismic Coulomb stress distribution along each fault due to CF re-activation. This produces a large stress drop along almost the entire CF plane, with two stress increase zones concentrated at the tip points. This scenario determines a stress drop along the PF, but a stress loading of its southernmost part. This part of the fault can be re-activated because stress triggering in occasion of the 1561 earthquake.
10 and 15 km depth is shown in Fig. 12. Reactivation of the CF induces two zones of stress accumulation at depths of 5 and 10 km, which are localized at the northern and southern fault tip areas. However, at 15 km depth a stress-increasing zone develops in the footwall of the CF. This almost continuous front of stress accumulation is not different from that induced by a single fault extending laterally for about 20 km. On the other hand, reactivation of the CF is also responsible for the development of a stress shadow area in the overlap zone. This latter process could be, in our opinion, the major factor inhibiting seismic energy release, as also suggested by the lack of geological evidence of active deformation in this sector of the PF.

5. Conclusions

Integrated structural and morphotectonic analyses were carried out on the fault zones bounding the eastern side of the Vallo di Diano tectonic depression, in southern Italy. The analysed structures include two active fault segments: the Caggiano Fault (CF) and the Polla Fault (PF). Our study outlines the following main features:

1) Although forming separate fault segments, the CF and PF are characterized by space-dependent slip variations that are consistent with a changing kinematic behaviour towards a single structure (see also Roberts and Ganas, 2000).

2) The length–displacement profile for each fault segment shows a significant asymmetry, suggesting that the long-term activity was strongly influenced by interaction processes in the overlap zone between the two faults (see also Gupta & Scholz, 2000).

3) The fault slip distribution is consistent with the two active segments being part of a single fault zone.

4) Activation of the CF may generate $M = 6.5$ earthquakes (i.e. the 1561 earthquake, $M_w = 6.4$). The Coulomb Stress Changes due to any event of this size indicate that the coseismic stress drops in the hanging wall of the CF would tend to inhibit further activity along the PF, except for its southern termination.

Acknowledgements

Professors G.P. Roberts and A.M. Michetti strongly improved the manuscript. Professor S. Critelli is thanked for discussions and the support during field work.

Finally, V. Spina is indebted to Dr. Mauro Alessandrini for the assistance.

References

Okada, Y., 1992. Internal deformation due to shear and tensile faults in a half
Mazzoli, S., Barkham, S., Cello, G., Gambini, R., Mattioni, L., Shiner, P., Tondi,
Porfido, S., Esposito, E., Vittori, E., Tranfaglia, G., Michetti, A.M., Blumetti, A.M.,
cluces from earthquake sequences. Advances in Geophysics 44, 1–38.
Okada, Y., 1992. Internal deformation due to shear and tensile faults in a half-
November 1980, Campania–Lucania earthquake, inferred from surface
relationships, deformation rates and seismic hazard: an example from the
Robinson, R., 2002. GmStress_2: A Computer Programme for Inverting First Motion
Observations to a Regional Stress Tensor. Institute of Geological & Nuclear Sciences Box 30368, Lower Hutt, New Zealand.
Sgroso, I., 1998. Possibile evoluzione cinematica miocene dell’orogenese
Steacy, S., Gomberg, J., Cocco, M., 2005. Introduction to special section: Stress
Tondi, E., 2000. Geological analysis and seismic hazard in the Central
of slip distributions on normal fault arrays with consequences for fault
magnitude, rupture length, rupture width, rupture area, and surface