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V. The Van der Waals Equation 
 
5.1 Formulation of the Problem 
 
In this session we will see how can the computer be of help to gain a deeper understanding of a simple 
equation of physics and to test the agreement between theory and experiment. We consider the van der 
Waals gas equation.  It is obtained from the ideal gas equation by including corrections for real gases.  
It is well known that the equation of state for ideal gases describes a gas of point-like particles in the limit of 
vanishing mutual interaction. The gas particles interact with the container walls only by the transfer of 
momentum during reflection.  The ideal gas equation for one mole of gas is: 

RTPV =                                                              (5.1) 
Where P is the pressure exerted by the, V the volume of one mole, R the gas constant and T the absolute 
temperature. The ideal gas equation is a good approximation for inert gases at room temperature and 
atmospheric pressure, and under these conditions it also applies quite well to air.  On the other hand it is 
no longer valid for butane or carbon dioxide compressed in steel flasks.  
Van der Waals adapted the ideal gas equation to real gases by the following changes:  

1. Real gas particles have a finite size.  When packed as densely as possible they occupy the so-called eigen-
volume.  The steep rise in pressure shown by the ideal gas equation as V  0 must occur in reality when 
the gas is compressed to its eigen-volume.  This is achieved by replacing the volume V in the ideal gas 
equation by (V - b), where b is the total volume of the particles in one mole. 

2. Beyond the short-range region of repulsion there is an attractive force between the gas particles, which is 
today known as the van der Waals force.  It can be calculated in quantum mechanical models as an 
interaction of induced electric dipoles, which decreases with a high power of the distance between the 
particles.  In the gas equation this attractive force has the effect that the pressure exerted by the container 
walls on the gas is augmented by an internal pressure, which helps the external pressure to compress the 
gas.  Van der Waals takes account of this internal pressure by the term a/V2. 
If one inserts the two corrections in the ideal gas equation one obtains the van der Waals equation: 
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In this equation of state b represents the finite volume of a gas molecule and represents forces of attraction 
between gas molecules. The van der Waals equation of state predicts a phase transition between liquid, 
vapor, and critical point above, which there is no phase transition. These aspects are very realistic. However, 
the above equation of state is not well suited for most molecular liquids.  
The isotherms of this equation represent curves of equal temperature in the P-V diagram. For temperatures 
below a critical temperature Tc; one has three Values of V for each value of the pressure. This at first 
appears physically unrealistic. Real gases behave differently. If one decreases the volume at a constant 
temperature the Pressure increases until the vapour Pressure of the liquid phase is reached. Then 
condensation follows, and the, pressure no longer increases, until all the gas is liquefied.  For further 
decrease in the volume, the pressure then climbs very steeply.  
 
The van der Waals equation does not contain the Phenomenon of condensation. However it is not physically 
unrealistic. At least in the immediate neighbourhood of the values of P, V and T where condensation would 
occur, it still describes rather well the formation of the super-saturated vapour. The incipient condensation in 
the presence of condensation nuclei must be incorporated 
into the van der Waals equation by means of an additional 
prescription. Maxwell has done this by introducing the lines 
named after him.  For each isotherm below the critical 
temperature Maxwell defines a horizontal line in the P-V 
diagram, such that the two shaded areas in Fig. 5.1 are of 
equal size. This can also he formulated as follows: The area 
of the rectangle below the 
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Fig. 5.1. Isotherm curves of the van der Waals equation and the Maxwell line. 
Maxwell line must be as large as the integral under the isotherm in the same interval.  Then, whenever the 
gas phase and the liquid phase co-exist, the state of the real gas lies on the Maxwell line and not on the van 
der Waals isotherm. 
As already mentioned, van der Waals adjusted the ideal gas equation to real gases using only two 
parameters a and b. It was not to be expected that this simple correction would lead to complete agreement 
between theory and experiment for all real gases.  Especially in the overlapping region between repulsion 
and attraction of the gas particles, the two parameters cannot describe the details of the interaction.  With 
the computer and the repertoire of programs already constructed for numerical and graphical output we can 
display the isotherms of the van der Waals equation without much effort.  The inclusion of the Maxwell lines 
requires only little computation time.  Once one has determined the Maxwell lines for a number of 
temperatures one obtains a theoretical vapour pressure curve and can compare it with a vapour pressure 
curve obtained experimentally. 
 
5.2 Numerical Method 
 
The van der Waals equation determines a point in the P-V diagram where the two zeros of the derivative 

V/P ∂∂ on an isotherm coincide, and as a result the second derivative V/P 22 ∂∂  is also zero; see Fig. 
5.1. This point is called the critical point. The associated physical quantities are the critical pressure Pc, the 
critical temperature Tc and the critical volume Vc. We obtain the critical values such that: 

ccc

2c

c

c

RT
8
3VP

b27
aP

Rb27
a8T

b3V

=

=

=

=

                                                                               (5.3) 

(Derive Eq.5.3) 
from which we see that the gas pressure at the critical point is 3 times as great as that of the ideal gas at 
the same density and temperature. 
 
An abbreviated way of writing the van der Waals equation is obtained by introducing the reduced 
(dimensionless) quantities p = P/Pc, v = V/Vc and t = T/Tc: 
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This makes it clear that the P-V diagrams for all van der Waals gases are similar and differ from each 
other only by scale factors.  It follows from (5.4) that the reduced eigen-volume (volume of the particles) is 
just 1/3. 
The condition for the Maxwell lines is the same in the p-v diagram as in the P-V diagram: the integral 
under the isotherm must be equal to the area under the Maxwell line.  Denoting the end points of the 
Maxwell line by vl and v3, and the vapour pressure by pm, the condition is 
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Using (5.4), evaluate the LHS and RHS of (5.5); then equate to obtain: 
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With the relation between v1 and v3 (Eq.(5.4)), obtain\;   
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Derive Eq.(5.6) 
Using this equation we can replace v3 in (5.4) by an expression in vl and t. The desired solution for vl is 
then obtained as the vanishing point of the function on the left-hand side of (5.4), at the specified 
temperature t. We cannot calculate this zero analytically, but we can find it on the computer using nested 
intervals. 
For this method we need a lower and an upper limit for vl.  As the lower limit we take the reduced volume vA 
corresponding to the point A in Fig. 5.1. We obtain vA as the lowest zero of the discriminator occurring in 
(5.6), because the discriminant states whether there are any volumes other than vl giving the same pressure 
on the isotherm.  The upper limit vlim. is taken as the reduced volume vB corresponding to the zero point B in 
Fig. 5.1, whenever this zero point exists.  It is easy to show that the zero point exists if the reduced 
temperature is lower than 27/32.  From the van der Waals equation (5.4) one obtains for p = 0 
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Derive Eq.(5.7) 
When t < 27/32 there are two real solutions.  The smaller one is the desired limit vB. For reduced 
temperatures t > 27/32 the isotherms have no zeros.  In this case it can be shown analytically (or 
demonstrated numerically) that vlim.=1 fulfils all the conditions which we place on an upper limit, namely: a) 
vlim=1 lies between the minimum and the maximum of the van der Waals isotherm, i.e. it is certainly greater 
than the left-hand end of the Maxwell line, b) equation (5.6) is valid in the entire interval [vA, 1] and fulfils the 
condition v3 > v1.  As the upper limit vlim, we accordingly have vlim.= vB if t < 27/32 and vlim=1,  if t > 27/32. 
 
5.3 Programming 
 
The method of nested intervals, which we shall use to determine the zero point of (5.4) taking account of 
(5.6), is also known by the name of the bisection method.  It is applicable in the following problem 
formulation: given a continuous function f (x) on an interval [a, b], it is required to find a zero point xo of the 
function f (x) with a < xo < b. The bisection method assumes that either f (a) > 0, f (b) < 0 or f (a) < 0, f (b) > 
0, i.e. that at least one zero point of odd order exists.  This assumption can be expressed in compact form by 

f (a) . f (b) < 0                                                                  (5.8) 
With x1 = a and x2 = b we come to the first step of the method: bisecting the interval [x1, x2], one obtains 

xo = 1/2(x1+x2)                                                                        (5.9) 
and calculates f(xo). 
The second step is to test whether, for a pre-specified accuracy limit E 

|x1-x2| <E                                                     (5.10) 
If this is the case, then xo is the desired approximation to the zero point.  If this is not so, one tests 

whether the condition 
f (xo) . f (x2) < 0   (5.11) 

is fulfilled.  If so, then a zero point lies between xo and x2.  We take [xo, x2] as the new interval [x1, x2] and 
return to the first step.  If not, then either 

 f(xo)=0 , (5.12a) 
in which case we have found the required zero point, or else 
 

f(x1) - f(xo) < 0                (5.12b) 
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In the latter case we take [xi, xo] as the new interval [x1, x2] and return to the first step. 
 
In order to be independent of our particular example, we do not incorporate the zero point determination into 
the main program THERM, but write a subroutine with the name BISEKT. 

The subroutine BISEKT needs 4 input parameters, namely the function f, the interval limits a and b, and 
also the accuracy limit e. As output one obtains (at most) one zero point xo (see list of parameters in line 
100).  The function f must be available as a FUNCTION subprogram F(x). One can follow the execution of 
the bisection method line by line. The progress of the calculation is guided by the four questions: (5.8) in line 
106 (in the case of non-fulfilment the program stops), (5.10) in line 111, (5.11) in line 112 and (5.12) in line 
116. 

The function f(v1), whose zero point we wish to determine, stands on the left-hand side of (5.4), 
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where v3 is to be substituted using (5.8). The function f (vi) is defined in the interval [vA, vlim.]. In the bisection 
method one may extend the region of definition of the function f by appending functions, as long as no new 
zero points are created thereby.  We make use of this possibility and extend the region of definition of f (v,) 
over the interval [l/3,1], by setting 

 f(v1) = +1 in the interval [l/3, vA] (5.14) 
 f(v1) = -1 in the interval [vlim., 1] (5.15) 

The limit viimit can easily be determined.  From (5.15) one then has at once the function values in the 
(possibly null) interval [vlimit ,1]. 
The limit vA, which would be more difficult to determine, need not be explicitly calculated. If, for an argument 
v1 in the interval [l/3,vlinj, the discriminant of equation (5.6) 
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has a negative value, then (5.14) is valid.  If the value of the discriminant is greater than or equal to zero, 
then one calculates v3 from (5.6) and f(vi) from (5.13). We generate the function f(v1) by the FUNCTION sub-
program FKT(v1). We transfer the temperature value needed for the computation by means of the COMMON 
block /TEMPER/ (line 203), as tile calling program BISEXT does riot know this variable. In order to 
economise in writing and computing we work with the following abbreviations: the variable TERM contains 
the value of the expression 3v1 - 1 (line 214), the variables DENOM and DISKRI relate to the denominator 
and the discriminant in equation (5.6) (lines 215 and 216). 
One recognises in FKT the following equations: (5.6) in line 218, (5.7) in line 207, (5.15) in line 212 and 
(5.14) in line 222.  The lines (209-212) ensure that FKT is defined for all values of the argument. One 
therefore avoids the question whether the argument lies in the region where the function is defined. 
So far the discussion has been almost entirely about how the volumes v1 and v3 for the Maxwell line could 
be calculated. We shall now also consider the van der Waals isotherm in a definite volume interval [vmin, 
vmax]. For this purpose we shall divide this interval into iv=200 sub-intervals and obtain iv + 1 grid points. 
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We notice, meanwhile, that vmin must be greater than The values of the pressures at the grid points follow 
from (5.4) and are 
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The pressure pm at the Maxwell line is obtained in the same way: 
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(Derive Eq.5.20) 
Consider now the main program. The values for iv and ε, together with the eigen-volume are specified in a 
PARAMETER instruction (line 302); the values for vmin, vmax and t are input. 
  



Software Packages in Physics, Department of Physics, University of Jordan 
 

Instructor: Prof. Dia-Eddin Arafah 
2001-2002 
 

After the grid points have been calculated from (5.17) in the DO-loop of lines 307 to 309, the pressure 
values on the van der Waals isotherm are calculated from (5.19) in the DO-loop of lines 310 to 312.  If the 
temperature is smaller than the critical temperature, i.e. t < 1, the subroutine BISEXT is called (line 314), 
which transfers the value of v1 to THERM.  With the abbreviations TERM, DENON and DISKRI already 
known, V3 is calculated from (5.6) in line 318, and in the following line we obtain Pm from (5.20). 
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5.4 Exercises 
 5.4.1  Plot P versus V to show the isotherms of the van der Waals equation Eq(5.1), i.e. the curves of equal 

temperature in the P-V diagram. 
 
5.4.2 Consider the p-v diagram for a number of different temperatures.  Find the vapour pressure pm for 
various reduced temperatures t. Draw the function PM(t) between t = 0.25 and t = 1 on a logarithmic scale. 
 
5.4.3 Carbon dioxide has a critical temperature of 31.1oC and a critical pressure of 72.95atm. Calculate 
the critical volume according to van der Waals. Compare the volume of one mole of CO2 according to the 
ideal gas equation and according to van der Waals, at 40oC and for 1, 10, 100 and 1000 atmospheres. 

Note: One mole of ideal gas at one atmosphere and 0oC has a volume of 22420 cm3, and consequently 
at one atmosphere and 40oC it has a volume of 25700 cm3. 
 
5.4.4 Table 1 shows the measured boiling temperatures for the gases CH4, NH3, H20, HF and Ne at 
various pressures. Find the boiling temperatures according to van der Waals, using the curve obtained in 
Exercise 5.4.I. For which gases do you find good agreement, and for which poor? 
 
Table 1: Measured boiling temperatures of CH4, NH3, H2O, HF, Ne.  

Gas CH4 NH3 H20 HF Ne 

Molecular Weight 16.04 17.03 18.02 20.01 20.18 

Critical press. (atm) 47.2 115.2 218.0 66.2 27.1 

Critical Temp. (K)  190.6 405.5 647.4 461 44.4 

Boiling temperature (K) measured 

At 1atm 111.7 239.7 373.2 292.7 27.07 

At 2atm  254.5 393.3 313.3  29.63 

At 5atm 134.9 277.9 425.6 343.1 33.81 

At 10atm 148.4 298.9 453.7 371.5 37.65 

At 20atm 164.7 323.3 486.3  42.35 

At 40atm 186.9 352.1 524.3   

       
5.4.5 Propane (C3H8), butane (C4H10) and mixtures of the two are handled as liquid gas in canisters for 
heating of camp-cookers, soldering irons, etc.  Notices on the canisters warn the user not to subject the 
containers to any high temperatures. Using the vapour pressure curve from Exercise 5.4.2, estimate to what 
extent these warnings are justified.  How high in the pressure according to van der Waals at 20oC, and how 
much does it increase if the container in heated to 50, 70 or 1001oC?  

Table 2: Critical data for liquid gases in household use. 

Gas C3N8 C4H10 

Molecular Weight 44.10 58.12 

Critical Pressure (atm) 42.1 37.4 

Critical Temperature (oC) 96.8 152.01  
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5.5 Solutions to the Exercises 

 
5.5.1  Isotherms of the van der Waals equation. 
 
 
 
 
 
5.5.2  Figure 5.12 shows the curve of the vapour pressure PM(t) 

versus t. Since PM(t) varies by about three orders of 
magnitude between t = 0.25 and t = 1, a logarithmic scale is 
required. As one can see, in the neighbourhood of the critical 
point a fall of about 15% in t leads to a halving of the vapour 
pressure. Further below the critical point a fall of a few per 
cent in 1 is enough to halve tile vapour pressure. 
 

5.5.3 The exercise can be carried out by the program most simply 
if the desired pressure is chosen as the lower or upper limit 
of the pressure region displayed in the graphics window. 
After some calculation one obtains the following values for 
the volume of a mole at 40oC: 

Volume of a mole in cm3 
ideal gas equationVAN DER WAALS equation 

At 1 atm 25700 25590 25574 
At 10 atm 2570 2470 2448 
At 100 atm 257 89 69.3 

 

At 1000 atm 25.7 54 40 
 
We see that especially at higher pressures the volumes of a mole determined from the van der Waals 
equation lie nearer to the experimental values than those determined from the ideal gas equation.  That the 
agreement cannot be perfect is clear from the fact that the values Pc=72.95 atm and Tc=31.1oC lead to a 
critical volume for the mole Vc=128 cm3, whereas the experimentally determined value for Vc is about 
100cm3. 
 

5.5.4 The calculated boiling temperatures (Table 3) do not agree particularly well with the experimental values for 
any of the gases. The agreement is particularly poor for H2O, nearly as bad are those of NH3 and HF, and 
hence for the molecules with a permanent electric dipole moment. Accurate agreement is indeed not to be 
expected, however, since the van der Waals equation was developed as an improvement for the ideal gas 
equation, seeking to describe better the behaviour of real gases by the introduction of only two new 
parameters. 

Gas    CH4 NH3 H2O     HF Ne 
Boiling temperature (K) calculated 
 
At 1 atm 92 173 240 212 23 
At 2 atm 102 190 261 233 26 
At 5 atm 118 217 295 270 31 
At 10 atm 135 243 328 306 35 
At 20 atm 156 276 368 351 41 
At 40 atm 183 318 418 408  

 
5.5.5 Obtain the following vapour pressures: 

Temperature (oC) 0 20 50 70 100 
Vapour pressure (atm) 
 
for propane (C3H8) 11.0 15.4 23.9 30.9  
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for butane (C4H10) 4.8 6.9 11.3 14.9 21.7 
A rise from 20oC to 70oC more than doubles the pressure in the container for both gases.  The actual 
increase is even greater than that calculated from the van der Waals equation.  Since even 70oC can be 
exceeded if one leaves the containers in the boot of a car in the sunshine, the warnings are thoroughly 
justified. 


