
Software Packages in Physics 0332481

Session 2: Model Solutions

Quantum Harmonic Oscillator

Part 1: The wavefunction y

1.1 Hints to Algorithm

1. You will first need to solve (S.2.2) for yHxL , this would involve using Mathematica's DSolve[]. We recommend that 
you do not impose your boundary conditions in your application of DSolve[], but later on. Also, when writing your 
differential equation write it exactly as you would when you want to solve it by hand, i.e. your equation must contain Ñ, m  
w, and E . but when writing the symbol for energy, do not forget that E is a reserved by Mathematica for the exponential 
constant; instead use ÂEÂ, which looks the same.

ô Solution

In[1]:= sol = DSolveA−
—2

2 m
 ψ''@xD +

1

2
 m ω2 x2 ψ@xD Ε ψ@xD, ψ@xD, xE@@1DD

Out[1]= 9ψ@xD → − m x2 ω
2 — C@1D HermiteHA 2 Ε − ω —2 ω — ,

è!!!m x è!!!ωè!!!
—

E +
− m x2 ω

2 — C@2D Hypergeometric1F1A− 2 Ε − ω —
4 ω — , 1

2 , m x2 ω
—

E=
ò End of Solution

2. Exclude the unphysical solution by setting its undetermined constant to zero (Hint: since DSolve[] outputs the solu-
tion in the form of a rule, you can use the Replace[] symbol /. to discard the unwanted part of the solution)

ô Solution
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In[2]:= sol1 = Hψ@xD ê. solL ê. C@2D → 0

Out[2]= − m x2 ω
2 — C@1D HermiteHA 2 Ε − ω —2 ω — ,

è!!!m x è!!!ωè!!!
—

E
Notice that the boundary conditions come from two physical considerations: the fact that y vanishes at infinity, 
and that the wavefunction should be normalized to allow for a probabilistic interpretation.

From the series representation of the confluent hypergeometric function given below, one can show that the 
other solution is not zero at infinity, so that it does not satisfy the physical boundary conditions defining our 
problem (see for example Griffiths, §2.3.2).

ò End of Solution

1.2 Exercises and Questions

1. Write down the differential equation and series representation for the Kummer confluent hypergeometric function 
1 F1 Ha; b; zL .

ô Solution

Solution to this exercise can be readily obtained from the Mathematica book! Here's is some of what is said 
about this function there:

The 1 F1  confluent hypergeometric function is a solution to Kummer's differential equation 
z y££ + Hb - zL y£ - a y = 0, with the boundary conditions 1 F1 Ha; b; 0L = 1 and 
∑@1 F1 Ha; b; zLD ê ∑ z »z=0 = a ê b .

The confluent hypergeometric function can be obtained from the series expansion 
1 F1 Ha; b; zL = 1 + a z ê b + a Ha + 1L ê b Hb + 1L z2 ê 2! + ∫ = ⁄k=0

¶ HaLk ê HbLk zk ê k !

where HsymbolLk  is the Pochhammer symbol:HaLn ª aHa + 1L …Ha + n - 1L = GHa + nL ê GHaL
Many special functions can be written as special cases of a hypergeometric function. To understand this, you 
need to look at the series solution above, and to modify it in such a manner so that its terms resemble the 
special function we want (for more details, and some specific examples on this, see Laham and Abdallah, 
Special functions for Scientists and Engineers, ch. 7).

ò End of Solution
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2. Recall that quantization is the result of imposing certain boundary conditions on the solution, and in our case this 
implies that the series defining the Hermite HnHxL  function must be terminated, turning it into a polynomial of integral 
order n, so as to make the wavefunction square-integrable. By imposing this condition on your solution, show from the 
result of DSolve[] that energy gets quantized (use Solve[] to show that).

ô Solution

Solve@sol1@@3, 1DD n, ΕD99Ε → 1
2 H1 + 2 nL ω —==

ò End of Solution

3. For the solution obtained from DSolve[], normalize the wavefunction ynHxL  for n = 0, 1, 2, 3, 4, 5, and then list your 
result in a table of two columns the first containing the order of the wavefunction, and the second containing the normaliza-
tion constant. (Hint: Use Mathematica's Table[]).

Hints:

a. Assume that x ª "#########ÑÅÅÅÅÅÅÅÅÅÅ
m w

, so that the functions to be normalized should have the form:

(S.2.1)yn ~e-x2ë2 x2
 HnHx ê xL

b. When using Integrate[] to find the normalization constant you will need to use the option Assumptions; i.e. you 
need to integrate while imposing a restriction on your integrand, and this will be: Re[ξ^2]>0. What happens if this 
condition is not imposed?

c. Integrate each function individually... or you will run into trouble!

ô Solution

ψn_@xx_D := sol1 êê. 9 2 Ε − ω —

2 ω —
→ n,

è!!!!
m  
è!!!!

ωè!!!!
—

→
1

ξ
,

m ω

—
→ ξ−2, x → xx=
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NormalizationConstants =

Table@8n, C@1D ê. Solve@Integrate@ψn@xD2, 8x, −∞, ∞<, Assumptions → Re@ξ2D > 0D 1,
C@1DD@@2, 1DD<, 8n, 0, 5<D;

TableForm@NormalizationConstantsD
0 1

π1ê4 Hξ2L1ê4
1 1è!!!!2 π1ê4 Hξ2L1ê4
2 1

2è!!!!2 π1ê4 Hξ2L1ê4
3 1

4è!!!!3 π1ê4 Hξ2L1ê4
4 1

8è!!!!6 π1ê4 Hξ2L1ê4
5 1

16è!!!!!!15 π1ê4 Hξ2L1ê4
ò End of Solution

4. Define Mathematica functions for each of your normalized wavefunctions, and plot them using an appropriate range. 
(Hint: What provision should you make about x  when you plot?). Make use of Table[] and GraphicsArray[] to plot 
every two of the six graphs in the same cell (but not on the same graph).

ô Solution

Normalizedψn_@x_D := Hψn@xD ê. C@1D → NormalizationConstants@@n + 1, 2DDL
In order to be able to plot the normalized functions, we need to give a value to x (in which all of the remaining 
undetermined constants have been compounded). We can choose this arbitrarily for the purpose of plotting, so 
let x ª 1. If we don't make a choice we get an error message telling us that the function we are plotting is not a 
machine-sized real number (i.e. does not evaluate to a numerical value).

Do@
p@nD = Plot@Normalizedψn@xD ê. ξ → 1, 8x, −5, 5<,
DisplayFunction → Identity, PlotLabel → ψnD, 8n, 0, 5<D

Do@
Show@GraphicsArray@8p@nD, p@n + 1D<D, DisplayFunction → $DisplayFunctionD, 8n, 0, 4, 2<D

4 Session 2: Quantum Harmonic Oscillator-Model Solutions

2003/2004. Instructors: Usama al-Binni and Hanan Saadah.



-4 -2 2 4
0.1
0.2
0.3
0.4
0.5
0.6
0.7

ψ0

-4 -2 2 4

-0.6
-0.4
-0.2

0.2
0.4
0.6

ψ1

-4 -2 2 4

-0.4
-0.2

0.2
0.4
0.6

ψ2

-4 -2 2 4

-0.6
-0.4
-0.2

0.2
0.4
0.6

ψ3

-4 -2 2 4

-0.4
-0.2

0.2
0.4

ψ4

-4 -2 2 4

-0.4
-0.2

0.2
0.4

ψ5

or using one output cell (this allows us to treat all plots as one unit, e.g. copy or magnify them all together):
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plots1 = Table@8p@nD, p@n + 1D<, 8n, 0, 4, 2<D;
Show@GraphicsArray@plotsD, DisplayFunction → $DisplayFunctionD;
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ò End of Solution

5. Is it possible to know the order of y directly from these plots? What observations can one make regarding the differ-
ences between wavefunctions of odd and even orders?

ô Solution

From the plots above, one can observe that the wavefunction crosses the x -axis a number of times equal to the 
order of that wavefunction. This is an instance of the so-called ‘oscillation theorem’, which states that if the 
discrete eigenvalues of a 1D Schrödinger equation are placed in order of increasing magnitude 
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E1 < E2 < ... < E , then the corresponding eigenfunctions will occur in increasing order of their zeros, the nth 
eigenfunction having n - 1 zeros.

By comparing the plots of wavefunctions of even and odd orders above, one can see that the wavefunctions of 
even order are symmetric about the origin, and that the probability amplitude of finding a particle of such a 
wavefunction at the origin is non-zero, while for an odd-ordered state, the wavefunction is anti-symmetric 
about the origin, so that the amplitude of finding the particle at the origin is zero. These things mean that even 
and odd orders actually describe the parity of the corresponding wavefunctions:

y2 nH-xL = y2 nHxL
y2 n+1H-xL = -y2 n+1HxL

ò End of Solution

6. Using the normalized general expression for ynHxL  (you can get this from a quantum mechanics textbook), plot y-1HxL , 
y-2HxL , y-3HxL , then plot H-1HxL , H-2HxL , H-3HxL . What conclusions can you make?

ô Solution

TextBookψn_@x_D :=
1è!!!!!!!!!!!!!!!!!!!!!!!!!!!

2n π1ê2 ξ n!
 −x2ëI2 ξ2M HermiteH@n, xêξD

pp = Table@Plot@HTextBookψn@xD ê. ξ → 1L, 8x, −1, 1<,
PlotRange → All, DisplayFunction → Identity, PlotLabel → ψnD, 8n, −3, −1<D;

Show@GraphicsArray@ppDD;
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Wavefunctions with negative order are all zeros due to the presence of n!  in the denominator. This is to be 
expected if we are to have a spectrum that starts with a ground state. On the other hand, the Hermite polynomi-
als of negative order are well-defined, but are clearly not suitable for our purpose, as can be seen below:
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Plot@Evaluate@Table@HermiteH@n, xD, 8n, −3, −1<DD, 8x, −1, 1<D;
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Limit@HermiteH@−1, xD, x → −∞D
DirectedInfinityA 1 −è!!!2 E

ò End of Solution

Part 2: Expectation values

2.2 Exercises and Questions

1. For ynHxL  Hn = 0, 1, 2, 3, 4, 5L , plot » ynHxL »2  on the same graph. (On your plot, you should appropriately distinguish 
between curves belonging to different y's).

ô Solution
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Plot@Evaluate@Table@Normalizedψn@xD2 ê. ξ → 1, 8n, 0, 5<DD,8x, −4, 4<, Epilog → 8Text@"»ψ0»2", 8.01, .6<D, Text@"»ψ1»2", 81, .44<D,
Text@"»ψ2»2", 81.6, .4<D, Text@"»ψ3»2", 82.2, .37<D,
Text@"»ψ4»2", 82.85, .34<D, Text@"»ψ5»2", 83.4, .3<D<,

PlotStyle → Table@Dashing@80.005 i, 0.005 i<D, 8i, 0, 5<D, PlotRange → AllD;
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ò End of Solution

2. For ynHxL  Hn = 0, 1, 2, 3, 4, 5L , make a table with the following columns: n , Xx\ , Xp\ , Xx2\ , Xp2\ , and from your result 
state your conclusions. (Ñ, m , and w need to be used explicitly in your wavefunctions).

ô Solution

TableFormAExpectationValues =

SimplifyATable@8n, Integrate@Simplify@Normalizedψn@xD x Normalizedψn@xDD,8x, −∞, ∞<, Assumptions → Re@ξ2D > 0D,
Integrate@Simplify@− — Normalizedψn@xD D@Normalizedψn@xD, xDD,8x, −∞, ∞<, Assumptions → Re@ξ2D > 0D, Integrate@Simplify@
Normalizedψn@xD x2 Normalizedψn@xDD, 8x, −∞, ∞<, Assumptions → Re@ξ2D > 0D,

Integrate@Simplify@− — 2 Normalizedψn@xD D@Normalizedψn@xD, 8x, 2<DD,8x, −∞, ∞<, Assumptions → Re@ξ2D > 0D<, 8n, 0, 5<D ê. ξ → $%%%%%%%%%%—

m ω
EE

0 0 0 —
2 m ω

m ω —
2

1 0 0 3 —
2 m ω

3 m ω —
2

2 0 0 5 —
2 m ω

5 m ω —
2

3 0 0 7 —
2 m ω

7 m ω —
2

4 0 0 9 —
2 m ω

9 m ω —
2

5 0 0 11 —
2 m ω

11 m ω —
2
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ò End of Solution

3. Construct a new table from the one you obtained in the previous exercise so that it has the following columns: n , sp , 
sx . (Hint: Use Mathematica's Transpose[] and Part[] to construct the new table from the old one). What conclusions 
can you draw from this new table?

ô Solution

Xx\ = Transpose@ExpectationValuesD@@2DD;Xx2\ = Transpose@ExpectationValuesD@@4DD;Xp\ = Transpose@ExpectationValuesD@@3DD;Xp2\ = Transpose@ExpectationValuesD@@5DD;
σx = Xx2\ − Xx\29 —

2 m ω , 3 —
2 m ω , 5 —

2 m ω , 7 —
2 m ω , 9 —

2 m ω , 11 —
2 m ω =

σp = Xp2\ − Xp\29 m ω —
2 , 3 m ω —

2 , 5 m ω —
2 , 7 m ω —

2 , 9 m ω —
2 , 11 m ω —

2 =
σx σp9 —2

4 , 9 —2
4 , 25 —2

4 , 49 —2
4 , 81 —2

4 , 121 —2
4 =

TableFormATransposeA9Transpose@ExpectationValuesD@@1DD, σx, σp,
"############σx σp =EE

0 —
2 m ω

m ω —
2

è!!!!!!!
—2
2

1 3 —
2 m ω

3 m ω —
2

3 è!!!!!!!—2
2

2 5 —
2 m ω

5 m ω —
2

5 è!!!!!!!—2
2

3 7 —
2 m ω

7 m ω —
2

7 è!!!!!!!—2
2

4 9 —
2 m ω

9 m ω —
2

9 è!!!!!!!—2
2

5 11 —
2 m ω

11 m ω —
2

11è!!!!!!!—2
2

In general, we can verify analytically that for the harmonic oscillator we have sx sp = In + 1ÅÅÅÅ
2
M Ñ , i.e. the 

product sx sp  increases with the quantum number n , which means that a simultaneous specification of coordi-
nate and momentum can be made with greater accuracy for states with lower quantum number n  than for those 
with larger n , with the minimum uncertainty occurring at the ground state defining a Gaussian wavepacket.
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ò End of Solution

Part 3: Classical vs. Quantum Mechanical Harmonic Oscillator

3.1 Exercises and Questions

1. Solve problem 1.6 from Pain's book.

2. Using the result for the eigenvalues of energy obtained in part 1 above, and the result from problem 1.6 from Pain, and 
using the fact that for the classical oscillator E = 1ÅÅÅÅ

2
 m x0

2 w2 , show that the classical analogue of » ynHxL »2 ª qnHxL  is given 
by:

(S.2.2)pnHxL = 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
p 

"###############################H2 n+1L x2-x2

where x is as defined in part 1, above.

ô Solution

The classical motion takes place between the turning points at which EHxL = V HxL , i.e. at 
x = x0 = ≤

è!!!!!!!!!!!!!!!!!!!!2 E ê m w2 . The probability pHxL dx  of finding the particle in the interval dx around x equals the 
fraction of time the particle spends at that location:

pHxL dx =
1
ÅÅÅÅÅÅ
T

 
2 dx
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

v
=

dx
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
p "###############x0

2 - x2

where T = 2 p ê w  is the period of oscillation, and v  is the speed of the oscillator. Now, since quantum mechani-
cally E  is quantized according to En = In + 1ÅÅÅÅ

2
M Ñw , we may rewrite the probability as:

pnHxL dx =
dx

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
p 

è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!H2 n + 1L x2 - x2

QED

ò End of Solution

3. On the same graph, and for n = 0 plot the quantum probability q0HxL  and the classical probability function p0HxL . On a 
second graph do the same, but this time for n = 20. What do you conclude?
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ô Solution

p@n_, x_D :=
1

π 
è!!!!!!!!!!!!!!!!!!!!!!!!
2 n + 1 − x2

q@n_, x_D := TextBookψn@xD2 ê. ξ → 1

p0 =

Plot@8p@0, xD, q@0, xD<, 8x, −1, 1<, AxesLabel → 8x, "Probability density for n=0"<,
Epilog → 8Text@classical, 8.8, 1.6<D, Text@quantal, 8.18, .7<D<D;
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Solve@2∗ 20 + 1. − x2 0, xD88x → −6.40312<, 8x → 6.40312<<
p20a = Plot@q@20, xD, 8x, −10, 10<, DisplayFunction → IdentityD;
p20b = Plot@p@20, xD, 8x, −6.4, 6.4<, DisplayFunction → IdentityD;
p20 = Show@8p20a, p20b<, AxesLabel → 8x, "Probability density for n=20"<,

Epilog → 8Text@classical, 87, .255<D, Text@quantal, 88.5, .05<D<,
DisplayFunction → $DisplayFunctionD;
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We notice that for n = 0 the behaviours of the classical and quantal oscillators are quite different, however, for 
n = 20, apart from the rapid oscillations in the quantal case, the bahaviour in both cases is quite similar. This 
observation is a verification for the correspondence principle in the case of the harmonic oscillator, so that in 
the limit of large values of the quantum number n  we recover the classical behaviour as expected.

ò End of Solution
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