Indice

Numeri primi, test di primalità, fattorizzazione, crittografia e argomenti correlati.



  1. W.W. Adams - Characterizing pseudoprimes for third order linear recurrences (1987)
  2. M. Agrawal - Primality and identity testing via chinese remaindering
  3. M. Agrawal, N. Kayal, N. Saxena - Primes is in P (2002)
  4. T. Aoyama - Polynomial time primality testing algorithm (2002)
  5. S. Arno - A note on Perrin pseuprime (1991)
  6. A.O.L. Atkin, F. Morain - Elliptic curves and primality proving (1993)
  7. M. Baker, D. Clark - Prime number theorem lecture notes (2002)
  8. R.C. Baker, G. Harman - The Brun-Tichmarsh theorem in average (1996)
  9. P.T. Bateman, J.L. Selfridge, S.S. Wagstaff Jr. - The new Mersenne conjecture (1989)
  10. J. Beauchemin, G. Brassard, C. Crepeau, C. Goutier, C. Pomerance - The generation of random numbers that are propbably prime
  11. D.J. Bernstein - Detecting perfect powers in essentially linear time (1997)
  12. D.J. Bernstein - An exposition pf the AKS primality proving theorem (2002)
  13. D.J. Bernstein - Deterministic polynomial-time primality-tests (2002)
  14. P. Berrizbeitia - Sharpening Primes is in P for a large family of numbers (2002)
  15. D. Bleichenbacher - Efficiency and security of cryptosystems based on numbertheory - (Thesis, 1996, 95 pg)
  16. W. Bosma - Explicit primality criteria for h 2k+-1
  17. J. Brillhart - On the factors of certain Mersenne numbers II (1964)
  18. J. Brillhart, D.H. Lehmer, J.L. Selfridge - New primality criteria and factorizations of 2n +/- 1(1975)
  19. J.W. Bruce - A really trivial proof of teh Lucas-Lehmer test (1993)
  20. R.J. Burther Jr. - Further investigations with the strong probable prime test (1996)
  21. W.N. Colquitt, L. Welsh Jr. - A new Mersenne prime (1991)
  22. I.B. Damgard - An extended quadratic Frobenius primality test with avarage case error estimate (2001)
  23. J. Davenport - Primality testing revisited (1991)
  24. H. Dubner, Y. Gallot - Distribution of generalized Fermat prime numbers (2001)
  25. A.L. Dunn - Primes: identification, generation and application (MS Thesis, 2001,76 pg)
  26. E. Fouvry - Theoreme de Brun-Tichmarsh; application au thereme de Fermat (1985)
  27. Y. Gallot - Cyclotomic polynomials and prime numbers (2001)
  28. D. B. Gillies - The new Mersenne primes and statistical theory (1964)
  29. S. Goldwasser - Square roots mod p and primality testing (2001)
  30. E. Goles, O. Schulz, M. Markus - A biological generator of prime numbers (2000)
  31. S.W. Golomb - Properties of the sequence 3 2^n + 1 (1976)
  32. J. Grantham - There are infinitely many Perrin pseudoprimes (1997)
  33. J. Grantham - A probable prime test with high confidence (1998)
  34. J. Grantham - Frobenius pseudoprimes (1998)
  35. J. Grantham - Recent developments in primality testing
  36. G.H Hardy, J.E. Littlewood - Some problems of Partitio Numerorum; III: on the expression of a number as a sum of primes (1922)
  37. B.C. Higgins - The Rabin-Miller probabilistic primality test
  38. J. Hurd - Verification of the Miller-Rabin probabilistic primality test (2002)
  39. M.J. Jacobson Jr. - An exposition of the AKS primality test (2002)
  40. D. Jarden - Aritmetical properties of sums of powers (1949)
  41. N. Kayal, N. Saxena - Toward a deterministic polynomial time primality tests (2001)
  42. A. Klappenecker - An introduction to the AKS primality test (2002)
  43. A. Klappenecker - The AKS primality test - results from analytical number theory (2002)
  44. K. Kramer - Using Mathematica in a course on number theory (1997)
  45. S. Kravitz - Distributions of Mersenne divisors (1966)
  46. G.C. Kurtz, D. Shanks, H.C. Williams - Fast primality tests for numbers less than 50 10^9 (1986)
  47. M. Smid - Primality testing in polynomial time (2002)
  48. P. Luschny - Maple implementation of AKS (2002)
  49. F. Morain - Primalité théorique et primalité pratique, ou AKS vs ECPP (2002)
  50. C. Noll, L. Nickel, The 25th and 26th Mersenne primes (1980)
  51. P. Pandey, R. Bhattacharjee - Primality testing (Thesis, 2001, 48 pg]
  52. A. Paszkiewicz, A. Schinzel - The least primitive root modulo a prime (2002)
  53. C. Pomerance - Primality testing : variation on a theme of Lucas (2002)
  54. J. Radhakrishnan - Primes is in P (2002)
  55. F. Raynal - Test de primalité de Miller - Rabin (2001)
  56. H. Riesel - Mersenne numbers (1958)
  57. R.M. Robinson - Mersenne and Fermat numbers (1954)
  58. M.I. Rosen - A proof of the Lucas-Lehmer test (1988)
  59. A. Rotkiewicz - On Euler Lehmer pseudoprimes and strong Lehmer pseudoprimes with parameters L, Q in arithmetic progressions (1982)
  60. R.R. Seeber - Mersenne-form and Fermat-form number congruences (1968)
  61. A.K. Singh, S.K. Pathak - Generalized Carmichael numbers (Thesis, 2001, 42 pg]
  62. J.F. Voloch - Improvements to AKS (2002)
  63. S.S. Wagstaff Jr. - Divisors of Mersenne numbers (1983)
  64. G.F. Webb - The prime number periodical cicada problem (2001)
  65. S. Wedeniwski - Primality tests on commutator curves (Thesis, 2001, 167 pg)
  66. H.S. Wilf - Algorithms and complexity (Lecture Notes, 1994, 139 pg)
  67. H.C. Williams - Effective primality tests for some integers of he form A5^n - 1 and A/^n - 1 (1987)
  68. S.Y. Yan - Primality testing of large numbers in Maple (1995)