Genomic Imprinting in Mammals

Fei Xue

Department of Animal Science

Introduction

- Exception to the Mendelian inheritance
- An unusual yet important mechanism of gene regulation
- Only one of the parental copies of a gene is expressed
- The imprinted copies of the gene is considered to be the silent one
- Maternally expressed genes
- · Paternally expressed genes

Evidence for Mammalian Genomic Imprinting

- Pronuclear transplantation
- Human triploids
- Uniparental chromosome disomies
- Chromosome deficiency in mice and humans
- Analysis of transgene expression
- Expression of specific genes in mice and humans

The Identification of Imprinted Genes

- In 1991, the first gene identified -IGF2: insulin-like growth factor 2
- As of April 1997, 19 imprinted genes had been identified in mammals
- To date, about 41 imprinted genes have been identified

Imprinted gene	Expressed allele	Mouse Chromosome	Human homologue
Igf2	Parental	7	Yes
Igf2R	Maternal	17	Yes
H19	Maternal	7	Yes
Xist	Paternal	Х	NR
Grf1	Paternal	9	NR
U2afbn-rs	Paternal	11	No

Imprinted Genes

Imprinting Mechanism (I)

- DMR-allele-specific differential methylation region
 -Imprinting marker
- Direct repeat near CG-rich DMRs
- Imprinted genes tend to be clustered
- Regional organizations and spreading of the epigenotype during development

		DWR	DMP2	étas.	HIB	DMR1	DMR2	illeff-raf	Aw
	885			-					
	0 12.5	6333			£1253				-
	d 15.5	-		-	-				-
PEMALE	418.5	-			-				-
	421.5	-			-				-
	Occyle	-		-	-	-		-	-
	485			-					
	0 12.5	-			-		-		-
100	d 15.5	-			-				-
CON. B	d 18.5	-							-
	d 21.5	-			-				
	Operm	-	-		-	-	-	-	

Imprinting Mechanism (II)

- Key stages of genomic imprinting during mammalian development
- Erasure
- Establishment
- Maintenance

Genomic Imprinting and Genetic Disease

- Angelman syndrome, mapped to 15-11q-13q abnormal: loss of maternally expressed gene
- Prader-Willi syndrome, mapped to 15-11q-13q abnormal: loss of paternal expressed gene
- Bechwith-Wiedemann Syndrome

Genomic Imprinting and Cancer

- Wilms' tumors preferential loss of maternal 11p15 in BWS population (Bechwith-Wiedemann Syndrome)
- Tumor suppressor gene inactivation by genomic imprinting for a two-hit model of carcinogenesis

A Tale of Two Brains

- Possibilities:
- Human mother's genes make the biggest contribution to the part of the brain that society value most-the cortex.
- Human father's genes contribute more to the primitive regions.