The Development of Transgenic Livestock for Biomedical Applications

Xenotransplantation: A Therapeutic Solution

- > Organ Replacement
- > Tissue Engineering
- > Cell Transplantation

Unmet Clinical Need: A Severe Shortage of Donor Organs*

* Compiled from UNOS Data December 1998

Unmet Clinical Need: Cell & Tissue Transplantation

> Neurologic Indications

Parkinson's Disease ~1,000,000 affected Individuals

Spinal Cord Injury ~200,000 SCI Patients U.S. alone

> Cartilage Repair

Articular Cartilage Defects ~500,000 cases U.S. alone

Meniscus Repair ~800,000 cases U.S. alone

>Islets

Type I Diabetes ~800,000 affected Individuals

Type II Diabetes ~15,000,000 affected Individuals

The Pig as a Donor

- Many Agricultural, Domestic & Biomedical Uses
- Herd Maintenance & Husbandry
- Organ Size & Physiology
- Genetic manipulation

Immunologic Barriers Discordant Xenotransplantation

- > Hyperacute Rejection
 - >Natural Antibody Reactivity
 - >Activation of Complement
- > Acute Vascular Rejection
 - >Antibody Mediated
 - >Neutrophil & NK Cell Activation
- Acute Cellular Rejection
 - >T Cell Activation And Proliferation

► Immediate Graft Rejection

Delayed Graft
Rejection

Delayed Graft
Rejection

Targeting Complement Inhibitors

(Dalmasso, Platt, Bach)

Alternative Pathway

Antibody and Complement Mediated Rejection

Porcine Cells - Engineered

A Combinatorial Genetic Approach to Prevent Complement Activation

- Hyperacute Rejection is a Major Barrier to Xenotransplantation
- > Strategy: Genetically Engineer the Xenogeneic Donor
 - > Inhibition of Complement Activation: Human CD59
 - Inhibition of Complement Activation:
 Engineered Bi-Functional Complement Inhibitors
 - > Inhibition of Antibody Reactivity: Expression of Glycosyltransferases

Expression of CD59 Prevents Complement-Mediated Cell Lysis

Eliminating Natural Antibody Reactivity

A Critical Component for Eliminating the Xenogeneic Immune Response

- > ~ 1% of Circulating Ig Molecules React to

 Xenogeneic Cell Surface Carbohydrate, Galα1,3Gal

 (Gallili, Lowe, Sandrin)
- > Antibody Reactivity Activates Complement
- > Antibody Reactivity Induces Acute Vascular Rejection:
 Antibody Dependant Cellular Cytotoxicity

Strategies to Inhibit Xenoreactive Natural Antibody Reactivity

Treatment of Recipient

Antibody Removal Therapy

Standard Plasmapheresis

Standard Plasmapheresis

+

Gal Specific Chromatography

Modify the Donor Phenotype

Genetic Modifications

Gene Knock-out

Enzyme Competition

<u>Carbohydrate Remodeling</u>

Enzyme Competition & Carbohydrate Remodeling

GLYCOSYLTRANSFERASE ENZYME COMPETITION STRATEGY

"IMMUNOGENIC"

{Galα1,3Gal Antigen}

"UNIVERSALLY ACCEPTED 'O' PHENOTYPE"

HT Expression Reduces Cell Surface Expression of Gal Epitope

Log Fluorescence Intensity

Development of Transgenic Pigs Expressing Human Complement Inhibitors and H-Transferase

Transgenic Expression Constructs

Expression of hCD59 in Transgenic Pig Cells and Tissues

FACS Analysis of PBMCs

Log Fluorescence Intensity

Immunohistochemistry

Non-Tg Control

CD59-Tg

Relative Cell Number

CD59 Transgenic Pigs Cells Resistant to Human Serum Cytolysis

Immunohistochemical Analyses of HT Transgenic Founder Pig

Maximum Resistance to Human Serum Lysis

Relative Cell Death (%)

Human Serum (%)

Pre-Clinical Studies

- 1. Organ Perfusion Experiments
- 2. Organ Transplant Experiments
- 3. Cell Transplant Experiments
- 4. Tissue Transplant Experiments

Ex Vivo Perfusion Studies

Human Blood *Ex Vivo* Perfusion Transgenic Organs vs. Control

- >**Hearts**
- >Kidneys
- **Lungs**

Enhanced Survival of CD59 Transgenic Pig Organs

Cell & Tissue Transplantation

> Neurologic Indications

Neuron Replacement Therapy for Parkinson's Disease Transplantation of Porcine Fetal Ventral Mesencephalic Neurons

Remyelination of Damaged Spinal Cord
Transplantation of Porcine Schwann Cells/ OECs

> Metabolic Indications

Islet Transplantation Therapy for Insulin Dependant Diabetes

>Tissue Engineering

Cartilage Repair Therapy for Articular Cartilage Defects

Spinal Cord Injury

- 1. Rodent EBX & Transection Models
 - a. Transplantation of Tg SCs & OECs
 - b. Cell Engraftment & Remyelination
 - c. Restore Conduction Across the Defect
- 2. Primate LPC Detergent Demyelination Model a. Studies are on-going

Transection Model & Transplantation

Transplantation of Pig Ensheathing Cells Restores Conduction

Spinal Cord Injury: Transgenic Pig Cells Repair Injured Spinal Cord

Normal Spinal Cord

Injured
Spinal Cord

Injured
Spinal Cord With
Transgenic Pig Cells

Insulin Dependent Diabetes Mellitis

1. Isolation of Porcine Islets

- a. Initial procedures on Non-Tg control Neonates
- b. Transplantation into SCID Mice
- c. Demonstrate Pig Insulin Production

2. Isolation of Transgenic Porcine Islets

- a. Isolation from Tg Neonates
- b. Transplantation into SCID Mice
- c. Assess Pig Insulin Production
- d. Adoptive Transfer Human T-cells

Transplanted Porcine Islets Produce Porcine Insulin

Radio-Immune Assay Analysis for Insulin

Transplanted Porcine Islets Produce Insulin

Immunohistochemical Analysis

- Porcine Islets Transplanted Kidney Capsule of SCID Mouse
- Tissue Harvested at 120d Post Transplant
- Immunohistochemistry

Cartilage Repair:Tissue Engineering

Development of Transgenic Chondrocytes
Resistant to Humoral-Mediated Cytolysis
Resistant to Cell-Mediated Immune Responses

Establish Culture Conditions with ECM

Utilize In Vivo Rodent Models to Establish Efficacy

Murine Heterotopic Model

Rabbit Ear & Knee Model

In Vitro Derived Cartilage from Transgenic Chondrocytes

Collagen Expression in In Vitro Engineered Cartilage

Transgenic Cartilage Heterotopic Transplants

Summary

1. Developed Novel Genetic Approaches to Create Universal Donor Cells, Tissues and Organs

Inhibition of Natural Antibody Reactivity: High Expression of HT
Inhibition of Complement Activation: High Expression of a Human
Complement Inhibitor Proteins, Native & Chimeric Bifunctional
Inhibitors

> The Combinatorial Approach Prevents
Hyperacute Rejection

2. Established Several Pre-Clinical Transplant Models to Test the Efficacy of Transgenic Cells, Tissues and Organs for Restoring Function