Assignment 1

The informal design approach can be used to design and construct a system but it is unreliable if used to construct systems on a large scale, however the informal design approach is far better suited and capable of producing effective smaller, uncomplicated systems.

1. What problems could occur if you used this approach? (1)

The various stages of a systems lifecycle may employ different methodology in order for it to be completed successfully. This can be summarised basically as the initiation stage using informal design and the rest of the stages using formal design – the design and planning stages may also use informal design as a tool to quickly ‘try out’ an idea without spending too much time trying to plan it out in length using formal design.

Informal design may be suitable for designing a small system as it would most likely not be too complicated but informal design is not a wise choice when developing a larger, more complex system.

The problems which would most likely arise from using an informal design approach would be disorganization and improper planning.

The obvious problem of disorganization is due to the fact that informal design would most likely not be checked over thoroughly enough to iron out any bugs, which also leads into improper planning. An informal design would not be as in-depth as a formal design, the system would be flawed and most likely contract severe if not fatal bugs very quickly – that is if the system even makes it past the design and implementation stage as these bugs would most likely show themselves during the construction of the system and would halt its progress and development until they were addressed, unfortunately cleaning up the bugs created originally may cause new problems to arise from the changed plan as the plan would have been disorganized and not properly structured so that it could be modified and added to without having to change earlier additions.

As mentioned earlier there would probably also be design flaws which would result in fatal bugs in the system. If this system survived the production and implementation stages of the systems development lifecycle then it could be even more disastrous, time consuming and costly than if it had not survived. A flawed system may not operate at full capacity if at all. This problem can result in a loss of data, this in itself is a major problem, one of the biggest in fact e.g. a bank implements its new system which has been developed using informal design, this system then has a bug which causes all information on accounts to be lost. The bank has not only lost its records but is left with financial problems and public relations issues and would be losing an immense amount of money all the while the system was down.

If the problem were not as severe as the example used then ‘patching’ the problem could be just as inconvenient – the system could be down until the problem is fixed, the costs for sorting it out could also be rather large, time could also be a factor, identifying and locating a problem in a large system could take a large period of time and then even longer for a work-around to be developed and implemented, which could also cause further problems, potentially an endless loop.

2. Briefly describe the methodologies that companies use to overcome these problems.

SSADM (2)

In earlier days of systems development the systems often did not meet the requirements to a satisfactory level. To combat this problem a number of methodologies have been developed. In the next section I will briefly detail some of these.

STRADIS: Stands for; Structured Analysis, Design and Implementation of Information Systems. This was one of the earliest methodologies having been developed in 1979 by Gane and Sarson. This one relies on data flow diagrams and the ‘philosophy of top down functional decomposition’.

YSM: The Yourdon Systems Method, developed by Yourdon in 1993. This too uses functional decomposition to be effective but focuses more on data structures than where the data is going.

MERISE: It is unknown what the acronym stands for but it is widely in Switzerland, Spain and France in ISE. MERISE consists of three ‘cycles’. These are; the decision cycle, the life cycle and the abstraction cycle. The abstraction cycle is the main feature of this methodology, it focuses on looking at the data and processes first at a conceptual level then a logical/organizational level and finally at a physical/operational level. This process is quite thorough in ironing out most bugs involved with handling the data. It was developed by Quang and Chartier-Kastler in 1991.

SSADM stands for Structured Systems Analysis and Design Methodology. SSADM is nothing like these in that it is more involved. SSADM specifies the tasks which have to be carried out in order for the project to be completed. It also splits these tasks up into stages and stages must also be completed in order to continue to the next one. SSADM is unique in that each task in a stage must be ‘signed off’ in order for the next task to begin, the same goes for the stages, all the tasks in one stage must be completed before the next stage can be initiated. All tasks in all stages must be completed for the project to be finished. SSADM however draws the line at construction – it only covers the design and planning stages of systems development. SSADM first appeared in 1981 and over time it has developed to ‘version 4’ which was released in 1990, it is also open standard which means it is freely available to anyone who wishes to use it.

Object Oriented Design (2)

Object Oriented Design focuses on the development of a system by concentrating on its objects then creating the necessary tools to manipulate them in appropriate ways. The most popular methods of this are the Booch, Burh, Wasserman, and the HOOD method. Systems developed through OOD methodology are easier to maintain because of simplified, minimalist problem analysis and system design.

3. Describe the stages of a systems development lifecycle

A systems development lifecycle consists of a number of stages, these stages are;
Specification, Feasibility, Analysis, Design, Implementation, Testing, Evaluation and Maintenance.

Specification: In this stage the system is proposed and what is required of it is outlined and other pre-development issues are addressed.

Feasibility: In this stage the system is looked at as well as time, cost and resources to see whether the proposed system will be worth developing.

Analysis: In this stage the proposed system as well as the existing system would be investigated, users of the system would be queried and a profile would be built of what is required of the new system.

Design: This stage includes the design and planning of the new system, its development and sometimes even the training of staff to use the system. Any hardware or software that needs to be bought or created will also be bought/created in this part of the lifecycle. A prototype may also be created depending on the nature of the system.

Implementation: This is the actual stage of construction after the prototype system has been perfected.

Testing: The system is run under test conditions and any existing errors are rectified and any possible enhancements may be made.

Evaluation: A form of long term testing in which users form their opinions of the system and report them, long-term bugs that may not have appeared in the short-term testing are discovered and destroyed in this stage.

Maintenance: The running of the system, any repairs, upgrades or changes are carried out in this stage, usually an ongoing part of the lifecycle until the system is replaced.

4. Describe what could be expected from each stage and produce a checklist that you can use when undertaking systems analysis.

Specification – System requirements, user requirements, software and hardware needs

Feasibility – Cost, time, resources required, report.

Analysis – Capabilities of old system, Capabilities of new system, user opinions, report.

Design – Theoretical plan, hardware and software map, prototype, basic testing/refining of design.

Implementation – Purchase/creation of hardware/software, construction of planned system, training of users, primary testing.

Testing – Secondary testing, patching if necessary, final implementation of system for actual use after short-term testing is completed.

Evaluation – Long-term testing, gathering of user opinions and patching of problems discovered through use of the system.

Maintenance – Running of the system, repairs, technical support, upgrading of the system if and when necessary.

Bibliography:

(1) Page 193 BTEC National IT Practitioners General Series Editor Jenny Lawson Heineman Oxford 2003

(2) http://www.comp.glam.ac.uk/pages/staff/tdhutchings/chapter4.html
(3) http://www.sei.cmu.edu/str/descriptions/oodesign_body.html

