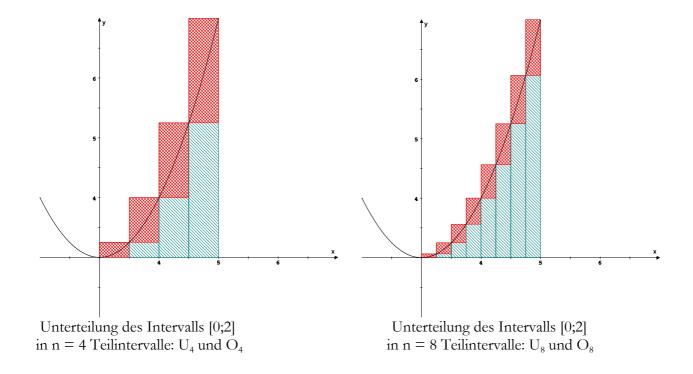
HAUSAUFGABEN:

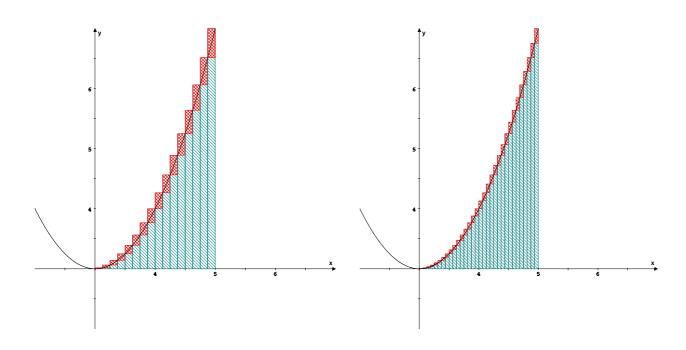
S. 116 Nr 3,4, S.119 Nr. 3 + Online-Arbeitsblatt durcharbeiten, nicht nur lesen... Besser zuerst durcharbeiten, danach die Aufgaben lösen.

Wiederholung:

1.)Flächenberechnung mittels oberer und unterer Rechteckssummen

Fläche zwischen dem Schaubild von $f(x) = x^2$, der x-Achse sowie den Geraden x = 0 und x = 2





Unterteilung des Intervalls [0;2] in n = 16 Teilintervalle: U_{16} und O_{16}

Unterteilung des Intervalls [0;2] in n = 32 Teilintervalle: U_{32} und O_{32}

2.)Das Integral

Die Funktion f sei auf dem Intervall I stetig und a, $b \in I$ mit a < b. Für jedes $n \in IN^*$ sei S_n eine

Zerlegungssumme mit
$$S_n = h \cdot f(x_1) + h \cdot f(x_2) + h \cdot f(x_3) + \dots + h \cdot f(x_n)$$
 und $h = \frac{b-a}{n}$

Dann heißt der Grenzwert $\lim_{n\to\infty} S_n$ das Integral der Funktion f zwischen den Grenzen a und b.

Schreibweise:
$$\lim_{n\to\infty} \mathbf{S}_n = \int_a^b f(x) dx$$
 lies: Integral von $\mathbf{f}(\mathbf{x})$ dx von a bis b.

Bezeichnungen: f(x) heißt Integrandenfunktion oder kurz Integrand, x heißt Integrationsvariable, a heißt untere Integrationsgrenze, b heißt obere Integrationsgrenze, dx heißt Differenzial.

3.) Die Integralfunktion

<u>Definition</u>: Die Funktion $f: t \to f(t)$ sei in einem Intervall I stetig und $a \in I$ sei fest.

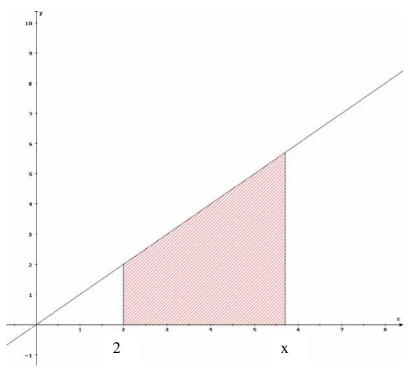
Dann heißt die Funktion
$$J_a$$
 mit $J_a(\mathbf{x}) = \int_a^x f(t) dt \quad \forall \mathbf{x} \in I$

Integralfunktion von f zur unteren festen Grenze a.

Die Integralfunktion ordnet jeder Stelle x den Wert des Integrals zu. Beachte:

- $\int_{a}^{x} f(t)dt$ Integral funktion, f(t): Integranden funktion
- $J_a(x)$ ist auch für $x \le a$ definiert.

Beispiel: Gegeben sei f(x) = x. Bestimme einen Funktionsterm für die Integralfunktion $J_2(x)$.



J₂(x) entspricht dem Inhalt der Fläche unter dem Schaubild von f über [2;x]. Man erhält sie als Differenz zweier Dreiecke:

$$\begin{split} J_2(x) &= J_0(x) - J_0(2) \\ &= 0.5 * x * x - 0.5 * 2 * 2 \\ &= 0.5 * x^2 - 2 \end{split}$$

Neues:

Der Hauptsatz der Differenzial- und Integralrechnung

Bisher haben wir lediglich zu einer Funktion f(t) die Integralfunktion $J_a(x)$ aufgestellt. Unser Ziel ist es nun, eine Regel zu finden, mit der man zu einer gegebenen Integrandenfunktion f(t) die Integralfunktion

 $J_a(x) = \int_a^x f(t) dt$ bestimmen kann. Dazu wollen wir zunächst anhand von Beispielen Integralfunktion und

Integrandenfunktion miteinander vergleichen:

a)
$$f(t) = t$$
; $a = 0$

$$J_0(x) = \int_0^x (t)dt$$

$$= \frac{1}{2} \cdot x^2 \text{ (Flächeninhalt ist Dreieck, siehe Beispielrechnung oben)}$$

b)
$$f(t) = 4$$
; $a = -2$
 $J_{-2}(x) = J_0(x) - J_0(-2)$
 $= \int_{-2}^{x} 4dt$ (Flächeninhalt ist Rechteck)
 $= x * 4 - (-2) * 4$
 $= 4x + 8$

Es fällt auf: Bildet man die Ableitung der Integralfunktion, so erhält man die Integrandenfunktion!

Bildet man die Ableitung der Integralfunktion J_a mit $J_a(x) = \int\limits_a^x \ f(t) \ dt$, so erhält man die Integrandenfunktion f, d.h. es gilt: $J_a(x) = f(x)$

Satz: Hauptsatz der Differenzial- und Integralrechnung

Ist die Funktion f stetig, so ist die Integralfunktion J_a mit $J_a(x) = \int_a^x f(t) dt$ differenzierbar und die Ableitung ist gleich der Integrandenfunktion f, d.h. es gilt:

$$J_a(x) = f(x)$$

Man sagt dann: J_a ist eine **Stammfunktion** zu der Funktion f.

Definition: Eine differenzierbare Funktion F heißt Stammfunktion der Funktion f über dem Intervall [a;b], falls gilt:

$$F'(x) = f(x)$$

für alle x aus [a;b].

Beispiele:

Gib drei mögliche Stammfunktionen F₁, F₂ und F₃ an.

a)
$$f(x) = x^2$$

 $F_1(x) = \frac{1}{3}x^3$, da $F_1(x) = x^2$; $F_2(x) = \frac{1}{3}x^3 + \frac{1}{2}$, da $F_2(x) = x^2$; $F_3(x) = \frac{1}{3}x^3 - \sqrt{5}$, da $F_3(x) = x^2$

b)
$$f(x) = 3x + 4$$

 $F_1(x) = \frac{3}{2}x^2 + 4x$, da $F_1(x) = 3x + 4$; $F_2(x) = \frac{3}{2}x^2 + 4x + \frac{47}{11}$, da $F_2(x) = 3x + 4$;
 $F_3(x) = \frac{3}{2}x^2 + 4x - \sqrt{45}$, da $F_3(x) = 3x + 4$

c)
$$f(x) = \sin(x)$$

 $F_1(x) = -\cos(x)$, $da F_1(x) = \sin(x)$; $F_2(x) = -\cos(x) + 3$, $da F_2(x) = \sin(x)$;
 $F_3(x) = -\cos(x) - 7$, $da F_3(x) = \sin(x)$