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Abstract 

Color images often must be color balanced to remove 
unwanted color casts. We extend previous work on using a 
neural network for illumination, or white-point, estimation 
from the case of calibrated images to that of uncalibrated 
images of unknown origin. The results show that the 
chromaticity of the ambient illumination can be estimated 
with an average CIE Lab error of 5∆E. Comparisons are 
made to the grayworld and white patch methods. 
 

Introduction 

To remove a color cast from an image so that it is properly 
color balanced, the color of the scene illumination must be 
estimated. Illumination estimation in this sense is also 
commonly referred to as white point estimation. Even when 
the imaging device’s characteristics are fully known, 
accurate illumination for color cast removal has proven 
difficult, but there has been progress [1–6]. In this paper, we 
test a neural-network-based method for estimating the 
illuminant in the general case in which the imaging 
parameters are unknown.  
 

In the case of digital photography images, the camera 
can be calibrated so that the sensor sensitivities as a function 
of wavelength are known as well as their response as a 
function of intensity. Many existing color constancy 
algorithms [1–6] depend on having calibrated sensors. In 
many situations—images downloaded over the Internet or 
scanned from film—the imaging characteristics are either 
unknown or else, as in the case of film, very difficult to 
control. In previous work [7], we proposed a computational 
framework for color correction of uncalibrated images given 
an estimate of the illumination chromaticity. In this paper, 
we test how well various illumination-estimation algorithms 
(greyworld, white patch, neural net, and bootstrapping) work 
when presented with uncalibrated image data.  

Unknown Imaging Parameters 

Calibrating specifies three important aspects of a 3-channel 
color imaging system: (1) the response of each channel as a 
function of intensity; (2) the white balance, which is an input 
spectrum which creates equal, and usually maximal, output 

across all 3 channels; and (3) for each channel, the relative 
sensor sensitivity as a function of wavelength. We will 
assume there is no spatial variation in these characteristics. 

In terms of the channel response as a function of 
intensity, it is possible for this function to be an arbitrary 
function but generally it will be monotonic. However, we 
will restrict our attention to “gamma” functions of the form 
I=SDγ, where I is the resulting luminance, S is the camera 
gain and D is a pixel value in the 0..1 range.  

Such functions are typical in imaging systems. Poynton 
[8] discusses gamma in detail. In what follows, we will 
assume that any non-linearity in the sensor response has 
been created by gamma, but that the value of gamma is not 
known since it generally differs between imaging systems. 
We will term images for which gamma does not equal unity 
to be ‘gamma-on’ images. Linear images are ‘gamma-off’ 
and have gamma equal one. 

For a gamma-on image, we have shown [7] that it is 
possible to color correct it by a diagonal transformation 
without first linearizing the image. The off-diagonal terms of 
the general image transformation (i.e. the best linear fit) are 
larger for gamma-on images than gamma-off ones, so the 
average error of a diagonal transformation (which ignores 
the off-diagonal terms) is greater. However, the perceptual 
error induced by such a transformation is still small. Also, 
although gamma introduces a color shift, the shift is 
independent of pixel intensity. Finally, diagonal color 
correction [9] and application of gamma are commutative. 
As a result, we can color correct gamma-on images in the 
same way we as linear, gamma-off images. 

The second problem in handling uncalibrated images 
concerns the imaging device’s color balance. We assume 
that the device was balanced so that it produced equal RGB 
values for a white patch under some chosen illuminant, but 
that we do not know which illuminant it was. In theory, 
color correcting an image taken with an unknown balance 
does not pose a problem, since the calibrating coefficients 
(used to scale the sensors) can be absorbed into the diagonal 
transformation required for color correction. In effect, the 
color balance problem folds in with the illumination. 
However, finding the resulting diagonal transformation 
could prove difficult for the algorithms [4,5] whose results 
depend on an expected set of illuminants. The combined 
balance-illumination transformation will likely fall outside 



the range of expected illuminants thereby causing inaccurate 
results.  

The third aspect of working with uncalibrated images is 
not knowing the sensor sensitivity functions. Sensors differ 
significantly, even for the simple case of digital cameras 
balanced for the same illuminant. Two camera models 
balanced for the same illuminant will by definition have the 
same response to white, but can have different sensors 
responses to other colors. Figure 1 shows the difference 
between responses of a SONY DXC-930 and a Kodak 
DCS460. To eliminate the effects of noise or other artifacts 
from the comparison, RGB values were synthesized using 
the sensor sensitivity curves of the two cameras along with 
the surface reflectances of the 24 Macbeth Colorchecker 
patches. Both cameras were balanced for the same 
illuminant. Figure 1 plots the sensor responses in rg-
chromaticity space:  

 r=R/(R+G+B) and (1) 

 g=G/(R+G+B) (2) 

It can be seen in the figure that the responses vary 
significantly. This variation in sensor response can adversely 
affect color constancy algorithms that rely on prior 
distributions of sensor responses. 
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Figure 1. Comparison of rg-chromaticities obtained by two 
cameras balanced for the same illuminant. 

Illumination-Estimation Algorithms 

We test several different illumination-estimation algorithms 
on a database of ‘uncalibrated’ images. The images are 
uncalibrated in the sense that the imaging characteristics are 
not provided to the algorithms, even though we have the 
calibration parameters available so that we can evaluate the 

results. In particular, we test the white patch algorithm 
(WP), a version of the grayworld algorithm (GW) and two 
neural-network-based methods. The gamut-constraint 
methods [3,4] were not tested because they require 
information about the expected gamuts of reflectances or 
illuminants. 

 The image database contains 116 images taken with a 
Kodak DCS-460 camera and 67 images scanned with a 
Polaroid Sprintscan 35+ slide scanner from various film 
types: Kodak Gold, Kodak Royal, Agfa Optima, Polaroid 
HiDef and Fuji Superia. The slides were scanned using a 
‘generic’ pre-defined scanner setting. This setting is 
consistent with the assumption of unknown pre-processing. 
Using the manufacturer’s setting for each film type would 
have allowed the scanner driver to accomdate for the 
different film characteristics. 

We divide the image database into two sets, the first for 
training and the second for testing. The training set contains 
102 images and is used for training the neural network and 
computing the average color for use in the database 
grayworld algorithm. The test set contains the other 81 
images (57 DCS images and 24 slides). 

For the GW algorithm, the chromaticity of the 
illuminant is determined from the average of all the pixels in 
an image. GW assumes that the average color of the scene is 
gray and that any departure from this average in the image is 
caused by the color of the illuminant. The average is 
computed relative to the average chromaticity computed 
using all pixels in the training database. Using the database 
average as the definition of gray compensates for the fact 
that gray may not have exactly equal r and g chromaticities. 
Nonetheless, GW’s performance will be poor when the test 
images have different average distributions than the ones 
used for computing the database average. 

The WP algorithm determines white, and hence the 
illuminant color, as the maximum R, maximum G and 
maximum B found in the image. The WP algorithm has 
roots in the family of retinex algorithms[1], but it is only 
equivalent to it under restricted circumstances. 

Two differently trained neural networks were used for 
illumination estimation. The network architecture was the 
same in both cases; namely, a Perceptron with two hidden 
layers as we have previously described [10,11]. The 
networks are trained to estimate the chromaticity of the 
illuminant based on the binarized rg-chromaticity histogram 
of an input image. The 3600-node input layer is fed binary 
values representing the presence or absence of 
chromaticities falling within a particular chromaticity bin. 
The first hidden layer contains 50 neurons and the second 
layer 20 neurons. The output layer consists of only two 
neurons representing the chromaticity of the illuminant. All 
neurons have a sigmoid activation function. 

 
Both neural networks were trained using the back 

propagation algorithm. The error function for training and 



testing is the Euclidean distance in rg-chromaticity space 
between the actual illuminant and its estimate.  

The difference between the training of the two networks 
concerns the method of determining the actual illuminant. 
For the first network, the illuminant chromaticity is simply 
measured from the reference white standard that was 
contained within each image. This provides an accurate 
value for the illuminant’s chromaticity. For the second 
network, a less accurate method is used, which we have 
called the bootstrapping method [11]. The bootstrapped 
network uses the GW algorithm to “measure” the 
chromaticity of the illuminant for training. Clearly, the 
illuminant value determined by GW will only be 
approximately correct; nonetheless, previous experiments 
with calibrated image data have shown that the network 
“learned” to make a better estimate than the simple GW 
algorithm used to train it. Our new experiments described 
below show that bootstrapping works even for the more 
general case of non-linear images acquired from various 
sources. This approach allows us to train a neural network 
for a range of uncalibrated cameras and scanners, without 
explicitly having to measure white patches in the set of 
training images. 

Experimental Results 

The algorithms presented above were tested on an image 
database containing 81 images. Figures 2 and 3 show the 
relative performance of the color constancy algorithms. The 
figures show the average errors over the whole test set as 
well as for each type of input (i.e. for DCS images and 
slides).  

In Figure 2, the average errors are computed in the rg-
chromaticity space, the same space in which the neural 
network was trained.  “Nothing” refers to assuming that the 
illuminant is the one for which the device is calibrated and 
reflects the variation in the chromaticity of the illuminant 
across the test set of images, relative to white (located at 
r=g=1/3 in rg-chromaticity space). “NN” refers to the neural 
network trained with accurately measured illumination data, 
while “Bootstrapped NN” refers to the same network trained 
using GW illumination estimates. 
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Figure 2. Average errors measured in rg-chromaticity space. 

Figure 3 presents similar results, but with the error 
measured in CIE Lab space. The conversion from the RGB 
space to CIE Lab assumes the images are to be viewed on a 
sRGB-compliant [9] monitor. 
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Figure 3. Average CIE Lab ∆E space between actual and 
estimated illuminant fixed to the same L* value. 

Discussion 

Previous studies [10,11] based on calibrated, linear image 
data have shown that a neural network can accurately 
estimate the illumination chromaticity. Often we must work 
with uncalibrated image data, so we trained and tested 
several algorithms on uncalibrated data, but in a controlled 
manner. On this test data, the neural net average error is 
5.14∆E. We believe this to be useful for removing color 
casts from images of unknown origin. In the tests with the 
bootstrapping method of training the neural network, the ∆E 
error increased to 9.38. Nonetheless, this is better than either 
the GW or WP methods and the bootstrapping method can 
be applied in situations where accurate measurements of the 
illuminant chromaticity are unavailable for training. 
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