
Software Support & Training

Information Systems

Last Revised:November 13,

CONFIDENTIAL AND PROPRIETARY INFORMATION

INTRO TO PERL PROGRAMMING

MC4081

MC4081 INTRO TO PERL PROGRAMMING

Target Audience Micron Team Members who use or will be using Perl

Course Goal After completing this course, team members will be able to recognize and
apply the basic elements of Perl programming.

Prerequisite MC4024 Intro to UNIX Basics
MC4061 Programming Fundementals
MC4040 Exceed Basics (highly recommended)

Course Hours Six hours

Total Sessions Two (a homework assignment will be given out during the first session)

Test-Out Available None at this time

Objectives Discuss Perl History .4

Access Exceed .5

Discuss and Identify Basic Perl Concepts .7

Create a Program using Scalar Data .8

Create a Program using Arrays and Lists .18

Create a Program using Control Structures .24

Create a Program using Hashes .30

Understand Basic Input/Output .34

Create a Program using Functions .37

Other Information Appendix 1 - Resources .46

Appendix 2 - ASCII Character Set .47

Appendix 3 - Requesting a UNIX Account .48

What’s Next .49
3

PERL HISTORY

Early History 1987: Perl 1.000 is unleashed, written by Larry Wall, Perl’s creator and chief
architect, implementor, and maintainer. Perl is short for “Practical Extraction
and Report Language” or “Pathologically Eclectic Rubbish Lister.”

1988: Perl 2.000 is released with some enhancements from Perl 1.

1989: Perl 3.000 is released and distributed by Larry Wall for the first time
under the GNU General Public License. The goal of the General Public
License is “to make sure that you have the freedom to distribute copies of free
software, that you receive source code or can get it if you want it, that you can
change the software or use pieces of it in new free programs; and that you
know that you can do these things.”

1991: Perl 4.000 is released.

Perl 5 1994: The much anticipated Perl 5.000 is unveiled, which is a complete rewrite
of Perl.

1995: Rasmus Lerdorf created a Perl CGI script which inserted a tag into the
HTML code of his page, and collected the information on the visitors to his
website.

Today From Tom Christiansen's and Nathan Torkington's excellent Perl FAQ:

Perl is a high-level programming language with an eclectic heritage
written by Larry Wall and a cast of thousands. It derives from the
ubiquitous C programming language and to a lesser extent from sed,
awk, the Unix shell, and at least a dozen other tools and languages. Perl's
process, file, and text manipulation facilities make it particularly well-
suited for tasks involving quick prototyping, system utilities, software
tools, system management tasks, database access, graphical
programming, networking, and world wide web programming. These
strengths make it especially popular with system administrators and CGI
script authors, but mathematicians, geneticists, journalists, and even
managers also use Perl.
4 Perl History

USING EXCEED

The Exceed X server transforms your computer into a fully functional X
Window terminal, allowing you to access UNIX-based applications (X clients)
from within the familiar Microsoft Windows environment.

Installing Exceed To install Exceed:

1. Go to START > SERVER APPS > SERVER APPS SETUP.
2. Click OK.
3. Click SPECIAL USE.
4. Click EXCEED 6.2 (UNIX).
5. Click OK. - The PC will have to be rebooted.

How to Start a
Xsession

Launch Xsession from Exceed program group

1. Go to START > PROGRAMS > EXCEED > XSESSION.
2. Click on the OPTIONS button in the X Session Starter window.
3. Select SINGLE for the WINDOW MODE.
4. Select XDMCP-QUERY for the STARTUP MODE.
5. Enter the host name in the CONNECT HOST text box (e.g. hobbes,

admin-srv94).

6. Click OK.
7. Click the RUN button in the X Session Starter window. Exceed

launches the CDE (Solaris) login window.
Using Exceed 5

8. Enter your UNIX LOGIN NAME and press ENTER.

9. Enter your UNIX PASSWORD and press ENTER. Wait until the CDE
(Common Desktop Environment) loads.

See “Appendix 3 - Requesting a UNIX Account” on page 48 for information
on obtaining a UNIX account.

Exceed Main Screen

Opening Terminal 1. Select APPLICATION MANAGER from the MAIN PANEL CONTROL.

2. Select DESKTOP_APPS.
3. Double-click on TERMINAL.
6 Using Exceed

le is

 is a
e is
t.
pro-
e at

.

, new-

the

,

typi-

 the
DISCUSS AND IDENTIFY BASIC PERL CONCEPTS

Perl Programs • A shell script is a sequence of shell commands in a text file. The text fi
made executable by using the chmod command and then the name of the
file is typed at the command prompt. In the same way, a Perl program
group of Perl statements and definitions inserted into a text file. The fil
made executable and the file name is typed in at the command promp
The main difference is that the Perl file has to indicate that it is a Perl
gram. To designate the file as a Perl program, place the following cod
the first line of every new text file:

 #!/usr/local/bin/perl

It is important that this line is the first line of every Perl program written

• Perl is mainly a free format language where whitespace (spaces, tabs
lines, returns) is optional.

• All statements in Perl must end with a semi-colon (;). You can think of
semi-colon as a punctuation mark, like a period in English.

• Although virtually any Perl program can be written entirely on one line
usually a Perl program is indented, with nested parts of statements
indented more than the surrounding parts. There will be examples of
cal indentation style covered in this class.

• All comments in Perl are preceded by a pound sign (#) until the end of
line.
Discuss and Identify Basic Perl Concepts 7

CREATE A PROGRAM USING SCALAR DATA

What is Scalar Data? A scalar is the simplest kind of data that Perl manipulates. A scalar is either a
number (like 8 or 3.25e20) or a string of characters (like hello or this manual).
Numbers and strings may appear to be very different things, but Perl uses
them almost interchangeably. A scalar value can be acted upon with
operators (like minus and greater than), usually resulting in a scalar result. A
scalar value can be stored into a scalar variable.

Numbers Although a scalar can be either a number or a string, it is useful to look at
them separately for now. In Perl, you can specify both integers (8 or 365) and
floating-point numbers (4.145 or 2.35 times).

A literal is the way a value is represented in the text of a Perl program.
Literals are the way data is represented in the source code of your program as
input to the Perl compiler. For example: 8.5 (8 and about a half), 4.25e24 (4.25
times 10 to the 24th power).

On the contrary, integer literals are simple, such as: 8, 42, -4. You should not
start your number with a 0, because Perl supports octal and hexadecimal
(hex) literals. Octal numbers start with a leading 0, and hex numbers start
with a leading 0x.

Strings Strings are simply sequences of characters (like hello). Each character is an 8-
bit value from the entire 256 character set. The shortest possible string has no
character; the longest string could fill all of your available memory. Typical
strings are printable sequences of letters and digits and punctuation in the
ASCII 32 to ASCII 126 range.

Like numbers, strings have a literal representation. There are two types of
literal strings: single-quoted strings and double-quoted strings.

Single-Quoted Strings

A single-quoted string is a sequence of characters enclosed in single quotes.
The single quotes are not part of the string itself but are there to let Perl
identify the beginning and the ending of the string. Any character between
the single quote marks is permitted inside a string. The two exceptions: to
place a single quote inside of a single-quoted string, precede it by a backslash.
To place a backslash into a single-quoted string, precede the backslash by a
backslash. Some examples:

‘hello’ # five characters: h, e, l, l, o
‘Larry\’s’ # six characters: L, a, r, r, y, single-quote, s
‘here\\there’ # here\there

52
8 Create a Program using Scalar Data

Double-Quoted Strings

A double-quoted string is a sequence of characters, like a single-quoted string,
but enclosed in double quotes. Now the backslash character has full power to
specify certain control characters or any character at all through octal and hex
representations. Some examples:

“hello world\n” # hello world, and a newline character
“hey \177” # hey, space, and the delete character (octal 177)
“time\tspace” # time, a tab, and space

The backslash can precede many different characters to mean different things
(usually called a backslash escape).

Table 1 provides a complete list of double-quoted string escapes:

Table 1: Double-Quoted String Representations

Construct Meaning

\n Newline

\r Return

\t Tab

\f Formfeed

\b Backspace

\a Bell

\e Escape

\007 Any octal ASCII value (here, 007 = bell)

\x7f Any hex ASCII value (here, 7f = delete)

\cC Any “control” character (here, CNTL-C)

\\ Backslash

\” Double quote

\l Lowercase next letter

\L Lowercase all following letters until \E

\u Uppercase next letter

\U Uppercase all following letters until \E

\Q Backslash-quote all nonalphanumerics until \E

\E Terminate \L, \U, or \Q
Create a Program using Scalar Data 9

Another feature of double-quoted strings is that they are variable interpolated,
meaning that scalar and array variables within strings are replaced with their
current values when the strings are used. See “Interpolation of Scalars into
Strings” on page 15 for more detail.

Scalar Operators An operator produces a new value (the result) from one or more other values
(the operands). For example, - is an operator because is takes two numbers
(the operands, like 8 and 3), and produces a new value (5, the result). An
operator expects either numeric or string operands, or possibly a combination
of both.

Operators for Numbers

Perl provides the classic addition, subtraction, multiplication, and division
operators. For example:

8 + 3 # 8 plus 3, or 11
4 - 1 # 4 minus 1, or 3
10 * 2.5 # 10 times 2.5, or 25
33 / 11 # 33 divided by 11, or 3

Perl also provides the exponentiation operator which is represented by the
double asterisk, like 2**4, which is two to the fourth power, or 16. In addition,
Perl supports a modulus operator. The value of the expression 10 % 3 is the
remainder when 10 is divided by 3, which is 1.

The logical comparison operators are < <= == >= > !=. These operators
compare two values numerically, returning a value of either true or false. For
example, 4 > 3 returns true because four is greater than three, while 8 != 8
returns false because it is not true that 8 is not equal to 8. Think of the return
value for true as a non-zero number and the return value for false as zero.
10 Create a Program using Scalar Data

Operators for Strings

String values can be concatenated with the “.” operator. Concatenation is to
arrange strings of characters into a chained list. The resulting longer string is
then available for further computation or to be stored into a variable. For
example:

“Mic” . “ron” # same as “Micron”
“Hey” . “ “ . “you” # same as “Hey you”

Another set of operators for strings are the string comparison operators. The
operators compare ASCII values of the characters of the strings as usual, see
“Appendix 2 - ASCII Character Set” on page 47. The complete set of
comparison operators (for both numbers and strings) is outlined in Table 2:

In addition, string operator is the string repetition operator, consisting of the
single lowercase letter x. This operator takes its left operand (a string), and
makes as many concatenated copies of that string as indicated by its right
operand (a number). For example:

“dog” x 4 # is “dogdogdogdog”
(4+3) x 5 # is “7” x 5, which is “77777”

Operator Precedence and Associativity

Operator precedence defines how to resolve the ambiguous case where two
operators are trying to operate on three operands. For example, in the
expression 4+2*5, do we do the addition first or the multiplication first?
Luckily, Perl uses common mathematical definition, performing the
multiplication first in this example. Based upon this, we say multiplication
has a higher precedence than addition.

The operator precedence can be overridden by using parentheses. Anything
in parentheses is completely computed before the operator outside of the
parentheses is applied.

Table 2: Numeric and String Comparison Operators

Comparison Numeric String

Equal = = eq

Not equal != ne

Less than < lt

Greater than > gt

Less than or equal to <= le

Greater than or equal to >= ge
Create a Program using Scalar Data 11

While precedence is intuitive for addition and multiplication, problems arise
when faced with an expression like string concatenation compared with
exponentiation. The best way to resolve this is to consult the chart shown in
Table 3:

In the chart above, any given operator has higher precedence than those listed
below it, and lower precedence than all of the operators listed above it.

Table 3: Associativity and Precedence of Operators: Highest to Lowest

Associativity Operator

Left The “list” operators (leftward)

Left -> (method call, dereference)

Nonassociative ++ -- (autoincrement, autodecrement)

Right ** (exponentiation)

Right ! ~ \ + - (logical not, bit-not, references operator,
unary plus, unary minus)

Left =~ !~ (matches, doesn’t match)

Left * / % x (multiply, divide, modulus, string replicate)

Left + - . (add, subtract, string concatenate)

Left << >>

Nonassociative Named unary operators (like chomp)

Nonassociative < > <= >= lt gt le ge

Nonassociative == != <=> eq ne cmp

Left & (bit-and)

Left | ^ (bit-or, bit-xor)

Left && (logical and)

Left || (logical or)

Nonassociative (noninclusive and inclusive range)

Right ?: (if-then-else)

Right = += -= *=, etc. (assignment and binary-assignment)

Left , => (comma and comma-arrow)

Nonassociative List operators (rightward)

Right not (logical not)

Left and (logical and)

Left or xor (logical or, logical xor)
12 Create a Program using Scalar Data

Operators at the same precedence level resolve according to rules of
associativity instead. Just like precedence, associativity resolves the order of
operations when two operators of the same precedence compete for three
operands. For example:

4 ** 2 ** 3 # 4 ** (2 ** 3), or 4 ** 8, or 65,536
28 / 4 * 3 # (28/4)*3, or 21

In the first case, the ** operator has right associativity, so the parentheses are
implied on the right. The * and / operators have left associativity, putting the
implied parentheses on the left.

Conversion Between Numbers and Strings

If a string value is used as an operand for a numeric operator (like +), Perl
automatically converts the string to its equivalent numeric value. Trailing
nonnumerics and leading whitespace are ignored, so “ 128.4opps” converts to
128.4. Something that is not a number at all, like “opps”, converts to zero
with a warning.

Similarly, if a numeric value is given when a string value is needed, the
number value is expanded into whatever string would have been printed for
that number. For example:

“S” . (2 * 300) # same as “S” . 600, or “S600”

In other words, you don’t need to worry about whether you have a number or
a string (in most cases). Perl will perform all of the conversions for you.

Scalar Variables A variable is the name for a container that stores one or more values. The
name of the variable is constant throughout the program, but the value(s)
contained in the variable usually change throughout the execution of the
program.

A scalar variable holds a single value (a number, a string, or a reference).
Scalar variable names begin with a dollar sign followed by a letter, and then
possibly more letters, numbers, or underscores. Upper- and lowercase letters
are distinct: the variable $Z is a different variable from $z. You should try to
select variable names that mean something regarding the value of the
variable. For example, $gr81 is not as descriptive as $secret_word.

Scalar Operators and
Functions

The most common operation on a scalar variable is assignment, which is the
way to assign a value to a variable. The Perl assignment operator is the equal
sign, which takes a variable name on the left side and gives it the value of the
expression on the right side. For example:

$a = 8; # assign $a the value 8
$b = $a + 4; # assign $b the current value of $a plus 4 (12)
$b = $b / 2; # assign $b the value of $b divided my 2 (6)

The last line uses the $b variable twice: once to get its value (on the right side
of the =), and once to define where to put the computed expression (on the
left side of the =). This is legal and common in Perl.
Create a Program using Scalar Data 13

Binary Assignment Operators

Expressions like $z = $z + 8 (where the same variable appears on both
sides of an assignment) occur regularly in Perl, and there is a shorthand for
the operation of altering a variable: the binary assignment operator. Almost all
binary operators that compute a value have a corresponding binary
assignment form with an appended equal sign. For example:

$a = $a + 4; # without the binary assignment operator
$a += 4; # with the binary assignment operator
$z = $z * 8; # without
$z *= 8; # with

Another common assignment operator is the string concatenate operator:

$word = $word . “ “; # append a space to $word
$word .= “ “; # same thing but with the assignment operator

Autoincrement and Autodecrement

Perl also has a way to shorten $a += 1 even further. The ++ operator
(known as the autoincrement operator) adds one to its operand and returns the
incremented value. For example:

$a += 1; # with assignment operator
++$a; # with prefix autoincrement
$z = 8;
$x = ++$z; # $z and $x are both 9 now

As shown above, the ++ operator is being used as a prefix operator (it appears
to the left of its operand). The autoincrement can also be used in a suffix form
(to the right of its operand). In this instance, the result of the expression is the
old value of the variable before the variable is incremented. For example:

$y = 12;
$w = $y++; # $w is 12, but $y is now 13

The autodecrement operator (--) is similar to the autoincrement operator, but
it subtracts one instead of adding one. The autodecrement operator also has
both the prefix and suffix forms. For example:

$a = 8;
--$a; # $a is now 7
$b = $a--; # $b is 7, and $a is now 6
14 Create a Program using Scalar Data

The chop and chomp Functions

A useful built-in function in Perl is chop. This function takes a single
argument within its parentheses and removes the last character from the
string value of that variable. For example:

$a = “micronx”;
chop ($a); # $a is now “micron”

Notice that the value of the argument is altered here, showing the
requirement for a scalar variable, rather than simply a scalar value.

When you chop a string that has already been chopped, another character
disappears. For example:

$b = “Micron\n”;
chop ($b); # $b is now “Micron”
chop $b; # $b is now “Micro”

If you are not sure whether the variable has a newline on the end, you can use
the chomp operator, which removes only a newline character. For example:

$b = “Micron\n”;
chomp ($b); # $b is now “Micron”
chomp $b; # $b is still “Micron”, no change

Interpolation of Scalars into Strings

When a string literal is double-quoted, it is subject to variable interpolation.
This means that the string is scanned for possible scalar variable names (a
dollar sign followed by letters, digits, and underscores). When a variable
reference is found, it is replaced with its current value. For example:

$a = “micron”;
$b = “We all work for $a tech”; # $b is now “We all work for

micron tech”
$c = “This is $wrong”; # $c is now “This is “

To prevent the substitution of a variable with its value, you must either
change that part of the string so that is appears in single quotes, or precede
the dollar sign with a backslash, which turns off the dollar sign’s significance.
For example:

$dram = ‘wow’;
$sram = “testing of “ . ‘$dram’; # literally: ‘testing of $dram’
$sram = “testing of \$dram”; # same as above
Create a Program using Scalar Data 15

<STDIN> as a Scalar
Value

Now we will consider how to get a value into a Perl program. Every time you
use <STDIN> in a place where a scalar value is expected, Perl reads the next
complete text line from standard input, and uses that string as the value of
<STDIN>.

The string value of <STDIN> typically has a newline character on the end of
it. Usually, you will want to discard the newline immediately. The chomp
function is the best way to accomplish this. For example:

$b = <STDIN>; # get the text from the user
chomp $b; # discard the newline (\n)

A common way these two lines are combined is:

chomp($b = <STDIN>);

The assignment inside the parentheses continues to refer to $b, even after it
has been given a value with <STDIN>. Thus, the chomp function is working
on $b.

Output with print To get input we use <STDIN> and to get output we use the print function.
This function takes the values within its parentheses and puts them out onto
standard output. For example:

print “hello world\n”; # hello world is printed followed by a
 # newline

The Undefined Value If you use a scalar variable before you assign it a value you will get the undef
(undefined) value. This value looks like a zero when used as a number, or the
zero-length empty string when used as a string. Many operators (like
<STDIN>) return undef when the arguments are out of range or don’t make
sense.
16 Create a Program using Scalar Data

Exercise 1: welcome
1. Open a Terminal window in Exceed
2. At the command line, type: mkdir perl
3. Press ENTER

4. Open Text Editor in Exceed
5. Type this code into Text Editor:

#!/usr/local/bin/perl

print "What is your name: ";
$name = <STDIN>;
chomp ($name);
print "Welcome to Perl, $name!\n";

6. Click FILE/SAVE

7. Select the perl Folder
8. Name the file: welcome
9. Click OK
10. In the Terminal window at the command line type: cd

perl
11. Press ENTER

12. At the command line type: chmod a+x welcome
13. Press ENTER

14. At the command line type: welcome
15. Press ENTER to execute the welcome program

Exercise 2: circ
1. Write a program to prompt for and accept a radius from

the user so you can compute the circumference of a circle.
The circumference is 2 multiplied by the radius, or 2
multiplied by 3.141592654 multiplied by the radius.

2. Follow the steps in Exercise 1 and name this program circ.

Exercise 3: x2
1. Write a program that prompts for and reads two

numbers, and prints out the result of the two numbers
multiplied together.

2. Follow the steps in Exercise 1 and name this program x2.

Π

Create a Program using Scalar Data 17

CREATE A PROGRAM USING ARRAYS AND LIST DATA

A List or Array A list is ordered scalar data. An array is a variable that holds a list. Each
element of the array is a separate scalar variable with an independent scalar
value. These values are ordered, which means they have a particular
sequence from the lowest to the highest element. Arrays can have any
number of elements. The smallest array has no elements, while the largest
array can fill all available memory.

Literal Representation A list literal is the way you represent the value of a list within your program.
A list literal consists of comma-separated values enclosed in parentheses.
These values form the elements of the list. For example:

(7,8,9) # array of three values 7, 8, and 9
(“micron”,.15) # array of two values, “micron” and .15

The elements of a list do not need to be constants; they can be expressions that
will be re-evaluated each time the literal is used. For example:

($cool,”whip”) # two values: the current value of $cool and “whip”
($z+$x,$a+$b) # two values

The empty list (array with no elements) is represented by an empty pair of
parentheses. For example:

() # the empty list (no elements)

An item of the list literal can include the list constructor operator, indicated by
two scalar values separated by two consecutive periods. This operator
creates a list of values starting at the left scalar value up through the right
scalar value, incrementing by one each time. For example:

(5 .. 9) # same as (5, 6, 7, 8, 9)
(12 .. 15,18,19) # same as (12, 13, 14, 15, 18, 19)
($a .. $z) # range determined by current values of $a and $z

If the right scalar value is less than the left scalar value the result will be an
empty list. Perl doesn’t allow you to count down by switching the order of
values.

List literals with large amounts of short text strings will start to look messy
with all of the quotes and commas. Perl provides a shortcut known as the
“quote word” function, which creates a list from the non-whitespace parts
between the parentheses. For example:

@u2 = (“bono”,“edge”,“larry”,“adam”,“boy”,”war”); # messy
@u2 = qw(bono edge larry adam boy war); # much better
18 Create a Program using Arrays and List Data

Array Variables An array variable holds a single list value (zero or more scalar values). Array
variable names are similar to scalar variable names, differing only in the
initial character, which is an “at sign” (@) as opposed to a “dollar sign” ($).
For example:

@micron # the array variable @micron
@sst_training_group # a longer array variable

The array variable @micron is completely unrelated to the scalar variable
$micron.

The value of an array variable that has not yet been assigned is (), an empty
list.

Array Operators and
Functions

Array functions and operators act on entire arrays. Some will return a list,
which can then either be used as a value for another array function, or
assigned into an array variable.

Assignment

Possibly the most important array operator is the array assignment operator,
which assigns an array variable a value. The array assignment operator is an
equal sign, exactly like the scalar assignment operator. Perl will determine
whether the assignment is a scalar assignment or an array assignment by
discerning whether the assignment is to a scalar or an array variable. For
example:

@micron = (.18,.15,.13); # the @micron array gets a three-element
 # literal

@test = @micron; # the three-elements are now copied to @test

If a scalar value gets assigned to an array variable, the scalar variable becomes
the single element of an array. For example:

@zoo = 1; # 1 is promoted to the list (1) automatically

Array variable names can appear in a literal list. When the value of the list is
computed, Perl will replace the names with the current values of the array.
For example:

@micron = qw(efficient innovative);
@team = (1,2,@micron,3,4); # @team is now (1,2,”efficient”,

 # ”innovative”,3,4)
@team = (7, @team); # puts a 7 in front of @team
@team = (@team,”agile”); # adds “agile” to the end of the array
Create a Program using Arrays and List Data 19

If a list literal contains only variable references, the list literal can also be
treated as a variable. This kind of list literal can be used on the left side of an
assignment. Each scalar variable in the list literal takes on the corresponding
value from the list on the right side of the assignment. For example:

($a,$b,$c) = (1,2,3); # this gives 1 to $a, 2 to $b, 3 to $c
($a,$b) = ($b,$a); # this swaps $a and $b
($z,@oh) = ($a,$b,$c); # this gives $a to $z and ($b,$c) to @oh
($x,@oh) = @oh; # this removes the first element of @oh to $x and

makes @oh = ($c) and $x = $b

When the number of elements assigned do not match the number of variables
to hold the values, the excess values (right side of =) are discarded, and the
excess variables (left side of =) are given the undef value.

An array variable appearing in the array literal must be last, because the array
variable is “greedy” and will consume all remaining values.

If an array variable is assigned to a scalar variable, the number assigned is the
length of the array. For example:

@micron = (1,2,3); # initialize @micron
$z = @micron; # $z gets 3, the current length of @micron

Array Element Access

Until now, we have been treating the array as a whole. Perl also provides a
traditional subscripting function to access an array element by numeric index.
For the subscripting function, array elements are numbered using sequential
integers, starting at zero and increasing by one for each array element. The
first element of the @micron array is accessed as $micron[0]. Please note
that the @ on the array name becomes a $ on the element reference. This is
because accessing an element of the array identifies a scalar variable (part of
the array), which can either be assigned to or have its current value used in an
expression. For example:

@micron = (3,4,5);
$fab = $micron[0]; # this gives 3 to $fab (the first element of

@micron)
$micron[0] = 1; # now @micron = (1,4,5)

Here are some more examples of accessing elements of an array:

$probe = $micron[1]; # this gives 4 to $probe
$micron[2]++; # this increments the third element of @micron
$micron[1] -= 2; # this subtracts 2 from the second element

Accessing a list of elements from the same array is known as a slice, and is
used often enough that there is a special representation for it. For example:

@micron[0,1]; # this is the same as ($micron[0], $micron[1])
@micron[0,1] = @micron[1,0]; # swaps the first two elements
@micron [0,1,2] = @micron [2,2,2]; # makes all 3 elements like

 # the 3rd
@micron[0,2] = (7,8); # this changes the first and third value

 # to 7 and 8
20 Create a Program using Arrays and List Data

Please notice that slices use an @ prefix instead of a $. This is because you are
creating an array variable by selecting part of the array rather than a scalar
variable accessing just one element.

The index values in the above examples are literal integers, but the index can
also be any expression that returns a number, which is then used to select the
appropriate elements. For example:

@micron = (4,5,6);
$fab = 2;
$test = $micron[$fab]; # same as $micron[2], or the value 6
$is = $micron[$fab-1]; # $is gets $micron[1], or 5

If you access an array element beyond the end of the array, the undef value is
returned. For example:

@micron = (4,5,6);
$test = $micron[8]; # $test is now undef

Assigning a value beyond the end of the current array automatically extends
the array and gives undef to all intermediate values. For example:

@micron = (4,5,6);
$micron[3] = “tech”; # @micron is now (4,5,6,”tech”)
$micron[6] = “hi”; # @micron is now (4,5,6,”tech”,undef,undef,”hi”)

The push and pop Functions

One common use of an array is as a stack of information, where new values
are added to and removed from the right-hand side of the list. These
operations occur often enough to have their own special functions know as
the push and pop functions. For example:

push(@arr,$new); # like @arr = (@arr,$new)
$oldie = pop(@arr); # removes the last element of @arr

The pop function will return undef if it is given an empty list.

The push function also accepts a list of values to be pushed. The values are
pushed together onto the end of the list. For example:

@arr = (1,2,3);
push(@arr,4,5,6); # @arr = (1,2,3,4,5,6)

The shift and unshift Functions

The push and pop functions affect the right side of a list. Likewise, the
unshift and shift functions perform the corresponding actions on the left
side of a list. For example:

unshift(@arr,$z,$y); # like @arr = ($z,$y,@arr);
$a = shift @arr); # like ($a,@arr) = @arr;
@arr = (4,5,6);
unshift(@arr,1,2,3); # @arr is now (1,2,3,4,5,6)
$a = shift(@arr); # $a is now 1, @arr is now (2,3,4,5,6)

As with pop, shift returns undef if given an empty array variable.
Create a Program using Arrays and List Data 21

The reverse Function

The reverse function reverses the order of the elements of its arguments,
returning the resulting list. For example:

@arr = (3,4,5);
@rev = reverse(@arr); # @rev gets (5,4,3)
@rev = reverse(3,4,5); # same result as example above

The argument list remains unaltered because the reverse function works on
a copy. If you want to reverse an array already in place, you need to assign it
back into the same variable. For example:

@rev = reverse(@rev); # this gives @rev the reverse of itself

The sort Function

The sort function sorts its arguments as if they were single strings in
ascending ASCII order. It returns the sorted list without altering the original
list. For example:

@s = sort(qw(small medium large)); # @s gets “large”,“medium”,
 #“small”

@b = (1,2,4,8,16,32,64);
@b = sort(@b); # @b gets 1, 16, 2, 32, 4, 64, 8

Variable Interpolation
of Arrays

As with scalars, array values may be interpolated into a double-quoted string.
A single element of an array will be replaced by its value. For example:

@micron = (“test”,”probe”,”is”);
$a = 2;
$b = “Shaun works in $micron[1]”; # “Shaun works in probe”
$b = “Laura works in $micron[$a]”; # “Laura works in is”

A list of values from an array variable can also be interpolated. The simplest
interpolation is an entire array, specified by giving the array name. The array
elements are interpolated in sequence with a space character between them.
For example:

print(“Some departments at Micron are @micron\n”);
 # Some departments at Micron are test probe is

It is also possible to select a portion of an array with a slice. For example:

print (“Two large departments are @micron[0,1]\n”);
 # Two large departments are test probe

<STDIN> as an Array As described previously, <STDIN> returns the next line of input in a scalar
context. However, in a list context, it returns all remaining lines up to the end
of a file. Each line is returned as a separate element of the list. For example:

@input = <STDIN>; # read standard input in a list context

If a user types three lines, then presses CNTL-D (to indicate “end of file”), the
array now contains three elements. Each element will be a string that ends in
a newline, corresponding to the three newline-terminated lines entered.
22 Create a Program using Arrays and List Data

Exercise 4: input
1. Type this code into Text Editor:

#!/usr/local/bin/perl

print ("Enter a list of strings (CNTL-D to end):\n");
@array = <STDIN>;
print (@array);

2. Click FILE/SAVE

3. Select the perl Folder
4. Name the file: input
5. Click OK
6. At the command line in the Terminal window type:

chmod a+x input
7. Press ENTER

8. At the command line type: input
9. Press ENTER to execute the input program

Exercise 5: tupni
1. Write a program that reads a list of strings on separate

lines and prints out the list in reverse order.
2. Follow the steps in Exercise 4 and name this program

tupni.
Create a Program using Arrays and List Data 23

CREATE A PROGRAM USING CONTROL STRUCTURES

All the programs we have looked at thus far are unconditional statements,
which means they are executed sequentially, regardless of what is happening
in the program. In some situations, however, you might want to have
statements that are executed only when certain conditions are true. This is
where Control Structures come in. Perl supports a variety of conditional
statements including if, if-else, if-elsif-else, while-until, for
and foreach, which will be covered in the following section.

Statement Blocks A statement block is a sequence of statements that are enclosed in matching
curly braces. For example:

{
 first_statement;
 second_statement;
 third_statement;
 ...
 final_statement;
}

Perl will execute each statement in sequence, from the first to the final.

The if/unless Statement The if statement construct takes a control expression and a block. It can
optionally have an else followed by a block as well. For example:

if (an_expression) {
 true_statement1;
 true_statement2;
 true_statement3;
} else {
 false_statement1;
 false_statement2;
 false_statement3;
}

During execution, Perl evaluates the control expression. If the expression is
true, the first block (true_statements) is executed. If the expression is
false, the second block (false_statements) is executed instead.

How do we determine what is true and what is false? In Perl, the control
expression is evaluated for a string value in scalar context. If this string is
either the empty string or a string consisting of the single character “0” (zero),
then the value is false. Everything else is true. For example:

0 # converts to “0”, false
1-1 # converts to 0, then to “0”, false
1 # converts to “1”, true
“ “ # empty string, false
“00” # not “ “ or “0”, true (be careful)
“0.0000” # not “ “ or “0”, true
undef # equal to “ “, false
24 Create a Program Using Control Structures

Here is an example of a complete if statement:

print “What is your age? “;
$age = <STDIN>;
chomp($age);
if ($age < 21) {
 print “Well, no wine for you!\n”;
} else {
 print “Old enough to enjoy a nice glass of wine!\n”;
}

It is possible to omit the else block, leaving just a “then” part. For example:

print “What is your age? “;
$age = <STDIN>;
chomp($age);
if ($age < 21) {
 print “Well, no wine for you!\n”;
}

You can leave off the “then” part and have just an else part, which is more
natural than “do that if this is not true.” Perl does this with the unless
variation. For example:

print “What is your age? “;
$age = <STDIN>;
chomp($age);
unless ($age < 21) {
 print “Old enough to enjoy a nice glass of wine!\n”;
}

Replacing if with unless is the same as saying “If the control expression is
false, do....”

If you have more than two possible choices, add an elsif branch to the if
statement. For example:

if (an_expression_one) {
 one_true_statement1;
 one_true_statement2;
 one_true_statement3;
} elsif (an_expression_two) {
 two_true_statement1;
 two_true_statement2;
 two_true_statement3;
} elsif (an_expression_three) {
 three_true_statement1;
 three_true_statement2;
 three_true_statement3;
} else {
 false_statement1;
 false_statement2;
 false_statement3;
}

Create a Program Using Control Structures 25

Each expression (an_expression one, two, and three) is computed
in turn. If an expression is true, the corresponding branch is executed, and all
remaining control expressions and corresponding statement blocks are
skipped. If all expressions are false, the else branch is executed. You don’t
need to have an else block, but it is always a good idea. You can have as
many elsif branches as you need.

The while/until
Statement

Iteration is the repeated execution of a block of statements. In Perl, you can
iterate using the while statement. For example:

while (an_expression) {
 statement_one;
 statement_two;
 statement_three;
}

To execute this while statement, Perl evaluates the control expression. If its
value is true, the body of the while statement is evaluated once. This is
repeated until the control expression becomes false, at which point Perl
moves on to the next statement after the while loop. For example:

print “What is your age? “;
$age = <STDIN>;
chomp($age);
while ($age > 0) {
 print “Not so long ago, you were $age.\n”;
 $age--;
}

Sometimes it is easier to say “until something is true.” Replacing the while
with until yields the desired effect. For example:

until (an_expression) {
 statement_one;
 statement_two;
 statement_three;
}

In both the while and the until form, the body statements are skipped
entirely if the control expression is the starting termination value.

It is possible that the control expression never lets the loop exit. This is legal,
and sometimes desired, and is not considered an error. For example, you
may want a loop to repeat as long as you don’t have an error, and then have
some error-handling code following the loop.

The do {} while/until Statement

The while/until statement tests its condition at the top of every loop and
before the loop is entered. If the condition was already false, the loop won’t
be executed at all.
26 Create a Program Using Control Structures

There are times when you may want to test the condition at the bottom of the
loop instead of the top. The do {} while statement doesn’t test the
expression until after executing the loop once. For example:

do {
 statement_one;
 statement_two;
 statement_three;
} while an_expression;

Perl executes the statements in the do block. When it reaches the end, it
evaluates the expression for truth. If the expression is false, the loop is done.
If it is true, then the whole block is executed one more time before the
expression is checked again.

As with a normal while loop, you can invert the sense of the test by changing
do {} while to do {} until. The expression is still tested at the bottom
but its sense is reversed.

The for Statement Another Perl iteration construct is the for statement. For example:

for (initial_exp; test_exp; re-init_exp) {
 statement_one;
 statement_two;
 statement_three;
}

To put it into terms that have already been covered:

initial_exp;
while (test_exp); {
 statement_one;
 statement_two;
 statement_three;
 re-init_exp;
}

In both cases, the initial_exp expression is evaluated first. This
expression usually assigns an initial value to an iterator variable, but there are
no restrictions on what it can contain. Then the test_exp expression is
evaluated for truth or falsehood. If the value is true, the body is executed,
followed by the re-init_exp. Perl will then re-evaluate the test_exp,
repeating as necessary.

This example prints the numbers 1 through 8, each number followed by a
space:

for ($a = 1; $a <= 8; $a++) {
 print “$a “;
}

Create a Program Using Control Structures 27

Initially, the variable $a is set to 1. Then this variable is compared with 8,
which it is less than or equal to. The body of the loop (print statement) is
executed, and then the re-init expression ($a++) is executed, changing the
value in $a to 2. Because the value is still less than or equal to 8, the process is
repeated until the last iteration where the value of 8 in $a is changed to 9.
The value is then no longer less than or equal to 8, so the loop exits.

The foreach Statement Another iteration construct is the foreach statement. This statement takes a
list of values and assigns them one at a time to a scalar variable, executing a
block of code with each successive assignment. For example:

foreach $a (@a_list) {
 statement_one;
 statement_two;
 statement_three;
}

When this loop exits, the original value of the scalar variable is automatically
restored. The scalar variable is local to the loop. Here is an example of a
foreach loop:

@a = (1,2,3,4,5);
foreach $b (reverse @a) {
 print “$b\n”;
}

It is possible to omit the name of the scalar variable, in which case Perl
presumes that the $_ variable name has been specified. The $_ variable is
used as a default for many of Perl’s operations, so it can be thought of as a
scratch area. For example, the print function prints the value of $_ if no other
value is specified. Here is an example that works like the previous one:

@a = (1,2,3,4,5);
foreach (reverse @a) {
 print;
}

The implied $_ variable can make things easier. Once you learn more
functions and operators that default to $_, this construct will become even
more useful.
28 Create a Program Using Control Structures

Exercise 6: temp
1. Type this code into Text Editor:

#!/usr/local/bin/perl

print ("What temperature is it today? ");
chomp($temp = <STDIN>);
if ($temp > 74) {
 print “Too hot!\n”;
} else {
 print “Too cold!\n”;
}

2. Click FILE/SAVE

3. Select the perl Folder
4. Name the file: temp
5. Click OK
6. At the command line in the Terminal window type:

chmod a+x temp
7. Press ENTER

8. At the command line type: temp
9. Press ENTER to execute the temp program

Exercise 7: thetemp
1. Modify the above program so that it prints “too hot” if the

temperature is above 75, “too cold” if the temperature is
below 67, and “perfect!” if it is between 67 and 75.

2. Follow the steps in Exercise 7 and name this program
thetemp.
Create a Program Using Control Structures 29

CREATE A PROGRAM USING HASHES

What Is a Hash? A hash is similiar to an array because it is a collection of scalar data, with
individual elements selected by some index value. Unlike a list array, the
index values of a hash are not small non-negative integers, but instead are
arbitrary scalars. These scalars (known as keys) are used later to retrieve the
values from the array.

The elements of a hash have no particular order. Perl puts them in the order
that will optimize search time. Consider the elements of a hash like a deck of
filing cards. The top half of each card is the key, and the bottom half is the
value. Each time you put a value into the hash, a new card is created. Later,
when you want to modify the value, you give the key and Perl finds the right
card. So the order of the cards is not important.

Hash Variables A hash variable name is a percent sign (%) followed by a letter, followed by
zero or more letters, numbers, and underscores. The part after the percent
sign is the same as what was discussed earlier for scalar and array variable
names.

Rather than referencing the entire hash, usually the hash is created and
accessed by referring to its elements. Each element of the hash is a separate
scalar variable, accessed by a string index, called the key. Elements of the
hash %micron are thus referenced with $micron{$key} where $key is any
scalar expression.

As with arrays, you can create new elements merely by assigning to a hash
element. For example:

$micron{“aaa”} = “bbb”; # creates key “aaa”, value “bbb”
$micron{128.5} = .15; # creates key “128.5”, value .15

These two statements create two elements in the hash. Subsequent accesses to
the same element (using the same key) return the previously stored value:

print $micron{“aaa”}; # prints “bbb”
$micron{128.5} += 10; # makes the value 10.15

Referencing an element that does not exist returns the undef value, just as
with a missing array element or an undefined scalar variable.
30 Create a Program Using Hashes

Literal Representation
of a Hash

At times you may wish to access the hash as a whole, either to initialize the
hash or to copy the hash to another hash. Perl does not have a literal
representation for a hash; instead, it unwinds the hash as a list. Each pair of
elements in the list defines a key and its corresponding value. This unwound
representation can be assigned into another hash, which recreates the same
hash. For example:

@micron_list = %micron; # @micron_list gets
#(“aaa”,”bbb”,”128.5”,.15)

%test = @micron_list; # makes %test like %micron
%test = %micron; # faster way to do the previous example
%probe = (“aaa”,”bbb”,”128.5”,.15);
 # creates %probe like %micron, from literal values

Hash Functions The keys Function

The keys(%hashname) function produces a list of all the current keys in the
hash %hashname. It is like the odd-numbered (first, third, fifth, etc.) elements
of the list returned by unwinding %hashname in an array context. If there are
no elements to the hash, the keys returns an empty list. For example, using
the hash from the previous example:

$micron{“aaa”} = “bbb”;
$micron{128.5} = .15;
@eng = keys(%micron); # @eng gets (“aaa”,128.5)

As with all other built-in functions, the parentheses are optional.

foreach $key (keys (%micron)) { # once for each key of %micron
 print “At $key we have $micron{$key}\n”; # show key and value
}

This example shows that individual hash elements can be interpolated into
double-quoted strings. An entire hash cannot be interpolated.

The values Function

The values(%hashname) function returns a list of all the current values of
the %hashname in the same order as the keys returned by the
keys(%hashname) function. For example:

%lastname = (); # force %lastname empty
$lastname{“miles”} = “davis”;
$lastname{“stan”} = “getz”;
@lastname = values(%lastname); # get the values

Now @lastname contains either (“davis” ,“getz”) or (“getz” ,“davis”).
Create a Program Using Hashes 31

The each Function

Use keys to iterate over an entire hash, looking up each returned key to get
the corresponding value. Although this method is frequently used, a more
efficient way is to use each(%hashname), which returns a key-value pair as
a two-element list. On each evaluation of this function for the same hash, the
next succesive key-value pair is returned until all the elements have been
accessed. When there are no more pairs, each returns an empty list.

So, for example, to step through the %lastname hash from the previous
example, you would do something like this:

while (($first,$last) = each(%lastname)) {
 print “The last name of $first is $last\n”;
}

If you assign a new value to the entire hash it will reset the each function to
the beginning. Adding or deleting elements of the hash will most likely
confuse each.

The delete Function

Up to this point, you have learned how to add elements to a hash, but not
how to remove them. Perl provides the delete function to remove hash
elements. The operand of delete is a hash reference, just as if you were merely
looking at a particular value. Perl removes the key-value pair from the hash.
For example:

%micron = (“aaa”,”bbb”,”128.5”,.15); # give %micron two elements
delete $micron{“aaa”}; # %micron is now only a one key-value pair

Hash Slices Like an array variable, a hash can be sliced to access a collection of elements
instead of just one element at a time. For example:

$month{“febuary”} = 2;
$month{“july”} = 7;
$month{“october”} = 10;

This example seems redundant and can be shortened to:

($month{“febuary”},$month{“july”},$month{“october”}) = (2,7,10);

Even this example seems redundant. You can use a hash slice:

@month{“febuary”,”july”,”october”} = (2,7,10);

Hash slices can be used with variable interpolation also. For example:

@num_month = qw(febuary july october);
print “Three of the 12 months are @month{@num_month}\n”;
32 Create a Program Using Hashes

Exercise 8: fruit
1. Type this code into Text Editor:

#!/usr/local/bin/perl

%fruit = qw(red apple green lime yellow banana);
print “Please type a string: “;
chomp($string = <STDIN>);
print “The value from $string is $fruit{$string}\n”;

2. Click FILE/SAVE

3. Select the perl Folder
4. Name the file: fruit
5. Click OK
6. At the command line in the Terminal window type:

chmod a+x fruit
7. Press ENTER

8. At the command line type: fruit
9. Press ENTER to execute the fruit program

Exercise 9: wordy
1. Write a program that reads a series of words with one

word per line until end-of-file, then prints a summary of
how many times each word was seen.

2. Follow the steps in Exercise 9 and name this program
wordy.
Create a Program Using Hashes 33

UNDERSTAND BASIC INPUT/OUTPUT

Input from STDIN We have been reading from standard input already with the <STDIN>
operation. Evaluating this in a scalar context gives the next line of input, or
undef if there are no more lines. For example:

$val = <STDIN>; # read the next line

Evaluating in a list context produces all remaining lines as a list where each
element is one line, including its terminating newline. As a reminder, the
code looks like this:

@val = <STDIN>;

Usually you will want to read all lines individually and process each line.
One common way to do this is:

while (defined($input = <STDIN>)) {
 # process $input here
}

As long as a line has been read in, <STDIN> evaluates to a defined value, so
the loop continues to execute. When <STDIN> has no more lines to read, it
returns undef, which terminates the loop.

Reading a scalar value from <STDIN> into the $_ variable and using that
value as the controlling expression of a loop happen frequently, and Perl has
an abbreviation for it. Whenever a loop test consists solely of the input
operator (like <...>), Perl automatically copies the line that is read into the $_
variable. For example:

while (<STDIN>) { # like “while(defined($_ = <STDIN>)) {“
 chomp; # like “chomp($_)”
 # the other operations with $_ go here
34 Understand Basic Input/Output

Input from the
Diamond Operator

You can also read input with the diamond operator: <>. This works like
<STDIN> in that it returns a single line in a scalar context or all remaining
lines if used in a list context. On the other hand, unlike <STDIN>, the
diamond operator gets its data from the file or files specified on the command
line that invoked the Perl program. For example, you have a program named
reader, consisting of:

#!/usr/local/bin/perl

while (<>) {
 print$_;
}

You invoke reader with:

reader file1 file2 file3

Then, the diamond operator reads each line of file1 followed by each line of
file2 and file3 in turn, returning undef only when all the lines have been
read. If you don’t specify any file names on the command line, the diamond
operator reads from standard input automatically.

Output to STDOUT Perl uses the print function to write to standard output.

Using print for Normal Output

The print function takes a list of strings and sends each string to standard
output in turn, without any additional intervening or trailing characters. So
far we have used print to display text on standard output. What might not
be obvious is that print is really just a function that takes a list of arguments
and returns a value like any other function. For example:

$m = print(“micron “, “is great”, “\n”);

This is another way to say “micron is great.” The return value of print is a
true or false value, indicating the success of the print. It almost always
succeeds, unless you get some I/O error, so $m here would usually be 1.

Sometimes it is necessary to add parentheses to print, especially when the
first thing you want to print starts with a left parenthesis. For example:

print (5+3), “dinner”; # incorrect, this prints 8 but ignores
“dinner”

print ((5+3, “dinner”); # correct, this prints 8dinner
print 5+3, “dinner”; # this also prints 8dinner
Understand Basic Input/Output 35

Exercise 10: inputline
1. Type this code into Text Editor:

#!/usr/local/bin/perl

while($inputline = <>) {
 print($inputline);
}

2. Click FILE/SAVE

3. Select the perl Folder
4. Name the file: inputline
5. Click OK
6. At the command line in the Terminal window type:

chmod a+x inputline
7. Press ENTER

8. At the command line type: inputline copy data
9. Press ENTER to execute the inputline program
36 Understand Basic Input/Output

CREATE A PROGRAM USING FUNCTIONS

So far we have seen and used built-in functions, such as chomp and print.
Now, let’s look at functions that you can define for yourself.

Defining a User
Function

A user function, usually called a subroutine or even just a sub, is defined in
your Perl program using a construct like this:

sub subname {
 statement_one;
 statement_two;
 statement_three;
}

The subname is the name of the subroutine, which is any name similiar to the
names we have had for scalar variables, arrays, and hashes. Once again, these
come from a different namespace, which means you can have a scalar
$micron, an array @micron, a hash %micron, and now a subroutine fred.

The block of statements following the subroutine name becomes the
definition of the subroutine. When the subroutine is invoked, the block of
statements that makes up the subroutine is executed, and any return value is
returned to the caller. For example:

sub welcome {
 print “Welcome to Perl!\n”;
}

Subroutine definitions can be located anywhere in your program text, but
most Perl programmers put them at the end of the file so the main part of the
program is at the beginning of the file.

Subroutine definitions are global and there are no local subroutines. If there
are two subroutine definitions with the same name, the latter will overwrite
the earlier. Within the subroutine body, you can access or give values to
variables that are shared with the rest of the program. Any variable reference
within a subroutine body refers to a global variable. For example:

sub welcome_who {
 print “Welcome, $name\n”;

Here, $name refers to the global $name that is shared with the rest of the
program.
Create a Program Using Functions 37

Invoking a User
Function

You can invoke a subroutine from within any expression by following the
subroutine name with parentheses. For example:

welcome(); # a simple expression
$test = 8 - welcome(); # part of a larger expression
for ($a = begin_value(); $a < end_value(); $a += increment()) {
 ...
} # invoke three subroutines to define values

A subroutine can invoke a second subroutine, that second subroutine can in
turn invoke another subroutine, and so on.

Return Values A subroutine is always part of some expression. The value of the subroutine
invocation is known as the return value. The return value of a subroutine is
the value of the return statement or of the last expression that is evaluated in
the subroutine. For example:

sub sum_of_a_and_b {
 return $a + $b;
}

The last expression evaluated in the body of this subroutine is the sum of $a
and $b, therefore $a and $b will be the return values. Here is how it works:

$a = 8; $b = 4;
$c = sum_of_a_and_b(); # $c is 12
$d = 2 * sum_of_a_and_b(); # $d is 24

A subroutine is also able to return a list of values when evaluated in a list
context. Consider this subroutine and invocation:

sub list_of_a_and_b {
 return($a,$b);
}
$a = 3; $b = 5;
@z = list_of_a_and_b(); # @z gets (3,5)

The last expression evaluated really means the last expression evaluated,
rather than the last expression defined in the body of the subroutine. For
example, this subroutine returns $a > 0; otherwise it returns $b:

sub return_a_or_b {
 if ($a > 0) {
 print “choosing a ($a)\n”;
 return $a;
 } else {
 print “choosing b ($b)\n”;
 return $b;
 }
}

All of these examples are somewhat simple. Now we will look at passing
values that are different for each invocation into a subroutine instead of
relying on global variables.
38 Create a Program Using Functions

Arguments While subroutines that have one specific action are useful, an entire new level
of usefulness becomes available when you pass arguments to a subroutine. In
Perl, the subroutine invocation is followed by a list within parentheses,
causing the list to be automatically assigned to a special variable name @_ for
the duration of the subroutine. The subroutine can access this variable to
determine the number of arguments and the value of those arguments. For
example:

sub welcome_to_perl {
 print “Welcome to Perl $_[0].\n”;

Here, we have a reference to $_[0], which is the first element of the @_ array.
Please note that though they look similiar, the $_[0] value is not at all
related to the $_ variable. From the example, it appears to say Welcome to
whomever we pass as the first parameter. This means we can invoke like this:

welcome_to_perl(“everyone”); # gives Welcome to Perl everyone.
$b = “folks”;
welcome_to_perl($b); # gives Welcome to Perl folks.
welcome_to_perl(“me”)+welcome_to_perl(“you”); # and me and you

Note that in the last line, the return values were not actually used. But in
evaluating the sum, Perl has to evaluate all of its parts, so the subroutine was
invoked twice.

Here is an example using more than one parameter:

sub hey {
 print “$_[0], $_[1]!\n”;
}

hey(“hey”,”you”); # hey you!
hey(“see”,”ya”); # see ya!

The @_ variable is private to the subroutine. Therefore, if there is a global @_,
it is saved before the subroutine is invoked and restored to its previous value
upon return from the subroutine. This also means that a subroutine can pass
arguments to another subroutine without losing its own @_ variable; the
nested subroutine invocation gets it own @_ in the same way.

Let’s take look at the “add a and b” routine from earlier. Here is a subroutine
that adds two values; specifically, the two values passed to the subroutine
parameters. For example:

sub add_two {
 return $_[0] + $_[1];
}
print add_two(5,3);# prints 8
$x = add_two(8,4);# $x gets 12
Create a Program Using Functions 39

Now let’s generalize this subroutine. What if we had 5, 3, or 100 values to
add together? It can be done with a loop. For example:

sub add {
 $sum = 0; #intialize the sum
 foreach $_ (@_) {
 $sum += $_; # add each element
 }
return $sum; # last expression evaluated: sum of all elements
}
$z = add(7,8,9); # adds 7+8+9 = 24, and assigns to $z
print add(1,2,3,4,5); # prints 15
print add(1..5); # also prints 15

Private Variables in
Functions

We have looked at the @_ variable and how a local copy gets created for each
subroutine invoked with parameters. You can create your own scalar, array,
and hash variables that work the same way. Do this with the my operator,
which takes a list of variable names and creates local versions of them. Here’s
another look at the add function, this time using my:

sub add {
 my ($sum); # make $sum a local variable
 $sum = 0; # intialize the sum
 foreach $_ (@_) {
 $sum += $_; # add each element
 }
 return $sum; # last expression evaluated: sum of all elements
}

When the first body statement is executed, any current value of the global
variable $sum is saved away, and a new variable named $sum is created.
When the subroutine exits, Perl dumps the local variable and restores the
previous (global) value. This works even if the $sum variable is currently a
local variable from another subroutine. Variables can have multiple nested
local versions, even though you can access only one at a time.

Here is an example of creating a list of all elements of an array greater than
100:

sub more_than_100 {
 my (@outcome); # temporary for holding the return values
 foreach $_ (@_) { # step through the arg list
 if ($_ > 100) { # is the number eligible
 push(@outcome,$_); # add it
 }
 }
 return @outcome; # return the final list
}

40 Create a Program Using Functions

What if we wanted all elements greater than 50 instead of greater than 100?
We would have to edit the program, changing the 100’s to 50’s. But what if
we wanted both? We can replace the 50 and 100 with a variable reference
instead. The program now will look like this:

sub more_than {
 my ($b,@values); # create a local variable
 ($b,@values) = @_; #split args into limit and values
 my(@outcome); # temporary for holding the return values
 foreach $_ (@values) { # step through the arg list
 if ($_ > $b) { # is the number eligible
 push(@outcome,$_); # add it
 }
 }
 return @outcome; # return the final list
}

@new = more_than(100,@list); # @new gets all @list > 100
@for = more_than(5,1,5,15,30); # @for gets (15,30)

Notice that we used two additional local variables to give names to
arguments. This is fairly common in Perl programming and it is easier to talk
about $b and @values than to talk about $_[0] and @_[1..$#].

The result of my is an assignable list, meaning that it can be used on the left
side of an array assignment operator. This list can be given initial values for
each of the newly created variables. This means that we can combine the first
two statements of this subroutine, replacing:

my($b,@values);
($b,@values) = @_; # split args into limit and values

With:

my($b,@values) = @_;

This a very common way of programming among Perl programmers. Local
nonargument variables can be given literal values in the same way. For
example:

my($sum) = 0; # initialize local variable

Note: Despite its appearances as a declaration, my is really an executable
operator.
Create a Program Using Functions 41

Semiprivate Variables:
the local Function

Perl provides another way to create private variables, using the local
function. It is important to understand the difference between my and local.
For example:

$value = “primary”;

tellme();
spoof();
tellme();

sub spoof {
 local ($value) = “temp”
 tellme();
}

sub tellme {
 print “Current value is $value\n”;
}

This will print out:

Current value is primary
Current value is temp
Current value is primary

If my had been used instead of local, the private reading of $value would
be available only with the spoof() subroutine. But with local, the private
value is not quite so private; it is also available within any subroutines called
from spoof(). As a general rule, local variables are visible to functions
called from within the block in which those variables are declared.

While my can be used only to declare simple scalar, array, or hash variables
with alphanumeric names, local has no such restrictions. Because $_ is
used so often in Perl programs, it is a good idea to place a local $_; at the
top of any function that uses $_ for its own purposes. This assures that the
previous value will be preserved and automatically restored when the
function exits.

In general, you should probably use my over local because it is faster and
safer.
42 Create a Program Using Functions

File-Level my()
Variables

The my() operator can also be used at the outermost level of your program,
outside of any subroutines or blocks. Although this is not really a “local”
variable, it can be rather useful. For example, when you place use strict;
at the beginning of your file, you will not be able to use variables (scalars,
arrays, and hashes) until you have first “declared” them. And you declare
them with my(), like this example:

use strict;
my $a; # starts as undef
my @b = qw(bono edge larry); # give intial value
...
push @b, qw(adam); # can’t forget adam
@c = sort @b; # Will Not Compile

At compile time, the last statement will be flagged as an error because it
referred to a variable (@c) that had not previously been declared with my.
Your program will not even start running unless every single variable being
used has been declared.

There are two main advantages of forcing variable declarations:

1. Your programs will run slightly faster because variables created with
my are accessed slightly faster than ordinary variables.

2. You will catch mistakes in typing much faster, because you will no
longer be able to accidentally reference a nonexisting variable named
$mircon when you wanted $micron.

Because of these advantages, many Perl programmers automatically begin
every new Perl program with use strict.
Create a Program Using Functions 43

Exercise 11: one23
1. Type this code into Text Editor:

#!/usr/local/bin/perl

sub card {
 my %card_map;
 @card_map{1..9} = qw(
 one two three four five six seven eight nine);

 my($num) = @_;
 if ($card_map{$num}) {
 return $card_map{$num};
 } else {
 return $num;
 }
}
driver routine
while (<>) {
 chomp;
 print “card of $_ is “, &card($_), “\n”;
}

2. Click FILE/SAVE

3. Select the perl Folder
4. Name the file: one23
5. Click OK
6. At the command line in the Terminal window type:

chmod a+x one23
7. Press ENTER

8. At the command line type: one23
9. Press ENTER to execute the one23 program
44 Create a Program Using Functions

APPENDIX 1 - REFERENCES

Schwartz, Randal L. Christiansen, Tom.
 (1997) 2nd Edition Learning Perl
 O’Reilly & Associates, Inc. California

Till, David.
 (1996) 2nd Edition Teach Yourself Perl 5 in 21 Days
 Sams Publishing Indiana

McMillan, Michael.
 (1998) Perl From the Ground Up
 Osborne/McGraw-Hill California

Corperate Products & Tools - Systems Programming
 (2001) Micron’s Perl Website
 http://perl.micron.com
46 Appendix 1 - References

APPENDIX 2 - ASCII CHARACTER SET

ASCII stands for American Standard Code for Information Interchange. Computers can only understand
numbers, so an ASCII code is the numerical representation of a character such as ’a’ or ’@’ or an action of
some sort. ASCII was established to achieve compatibility between various types of data processing
equipment.

ASCII, pronounced "ask-key", is the common code for microcomputer equipment. The standard ASCII
character set consists of 128 decimal numbers ranging from zero through 127 assigned to letters, numbers,
punctuation marks, and the most common special characters. The Extended ASCII Character Set also
consists of 128 decimal numbers and ranges from 128 through 255 representing additional special,
mathematical, graphic, and foreign characters. Here is an ASCII chart with the decimal number, the
hexidecimal number, and the ASCII representation:
Appendix 2 - ASCII Character Set 47

APPENDIX 3 - REQUESTING A UNIX ACCOUNT

Go to the following site:

http://unix.micron.com/general/genservices_index.html

and select Request Account. You can also reach this webpage by typing
UNIX into the address bar and clicking the General Services tab.

or

For immediate assistance, please contact the Support Center at (208) 368-3000.
48 Appendix 3 - Requesting a UNIX Account

WHAT’S NEXT

Alternative Training To obtain more information about alternative training or to check courseware
out, visit:

http://hercules.micron.com/is/support/trnres/J3/j3table.htm

SST For more information about SST, please visit our homepage at:

http://hercules.micron.com/is/depts/cs/sst/default.htm

UNIX Help To obtain help from the Micron Perl webpages, including using Perl on
different operating systems and Perl references, visit:

http://perl.micron.com/

Support Center For immediate assistance with any computer related issue, please contact the
Support Center at (208) 368-3000.
What’s next 49

	Target Audience
	Course Goal
	Prerequisite
	Course Hours
	Total Sessions
	Test-Out Available
	Objectives
	Other Information
	Perl History
	Early History
	Perl 5
	Today

	Using Exceed
	Installing Exceed
	How to Start a Xsession
	Exceed Main Screen
	Opening Terminal

	Discuss and Identify Basic Perl Concepts
	Perl Programs

	Create a Program using Scalar Data
	What is Scalar Data?
	Numbers
	Strings
	Scalar Operators
	Scalar Variables
	Scalar Operators and Functions
	<STDIN> as a Scalar Value
	Output with print
	The Undefined Value

	Create a Program using Arrays and List Data
	A List or Array
	Literal Representation
	Array Variables
	Array Operators and Functions
	Variable Interpolation of Arrays
	<STDIN> as an Array

	Create a Program Using Control Structures
	Statement Blocks
	The if/unless Statement
	The while/until Statement
	The for Statement
	The foreach Statement

	Create a Program Using Hashes
	What Is a Hash?
	Hash Variables
	Literal Representation of a Hash
	Hash Functions
	Hash Slices

	Understand Basic Input/Output
	Input from STDIN
	Input from the Diamond Operator
	Output to STDOUT

	Create a Program Using Functions
	Defining a User Function
	Invoking a User Function
	Return Values
	Arguments
	Private Variables in Functions
	Semiprivate Variables: the local Function
	File-Level my() Variables

	Appendix 1 - References
	Appendix 2 - ASCII Character Set
	Appendix 3 - Requesting a UNIX Account
	What’s next
	Alternative Training
	SST
	UNIX Help
	Support Center

