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Analysis of a Circular Waveguide Loaded with Thick
Annular Metal Discs for Wide-Band Gyro-TWTs

Vishal Kesari, P. K. Jain, and B. N. Basu

Abstract—The cold (beam-absent) analysis of an all-metal
structure consisting of a circular waveguide loaded with axially
periodic annular discs was developed in the fast-wave regime
for potential application in wide-band gyro-traveling-wave tubes
(TWTs) in the millimeter-wave frequency range. The analysis
includes the effect of higher order standing-wave modes in the
disc-occupied region, as well as higher order space harmonic
propagating modes in the disc-free region of the structure. The
analysis also takes into account the effect of the finite disc thick-
ness. The dispersion characteristics of the structure obtained by
the analysis have been validated against those reported elsewhere
using an alternative coupled-integral-equation technique and also
against those obtained using commercial simulation code HFSS.
The dependence of the eigenvalue and dispersion characteristics of
the structure on the disc parameters, namely, the disc hole radius,
periodicity, and thickness was studied. The optimum disc param-
eters corresponding to the widest frequency band over which the
dispersion curve can be straightened were suggested for widening
the bandwidth of coalescence between the waveguide-mode and
beam-mode dispersion characteristics for wide-band gyro-TWT
performance. The optimum disc parameters for wide device
bandwidths and high device gains were also predicted with the
help of the small-signal gain equation of a gyro-TWT.

Index Terms—Disc-loaded waveguide, gyrotron, millimeter-
wave amplifier, periodic electromagnetic structure, wide-band
gyro-traveling-wave tube (gyro-TWT).

1. INTRODUCTION

HE DEVELOPMENT of fast-wave gyro-amplifiers like

gyro-klystrons and gyro-traveling-wave tubes (gyro-
TWTs), which overcomes the high-power and high-frequency
limitations of conventional klystrons and TWTs in the family
of microwave tubes, opens up applications in high power,
millimeter-wave radars of high resolution, and communication
systems of high information density [1]. Clearly, the conven-
tional slow-wave devices like TWTSs, due to reduced sizes of
their interaction structures, cannot compete with the fast-wave
devices like gyro-TWTSs in the high-power and high-frequency
(millimeter-wave) regime. Consequently, this has aroused
considerable interest in the development of gyro-devices like
gyro-TWTs, despite the fact that in bremsstrahlung devices
like gyro-devices, it is required to generate an electron beam
of gyrating electrons using a magnetron injection gun for the
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small-orbit configuration and a cusp gun for the large-orbit
configuration, unlike in conventional O-type microwave tubes
like TWTs requiring a linear electron beam that can be formed
by a simple Pierce gun [1], [2].

A gyro-TWT has a wider bandwidth potential than a
gyro-klystron, since the former does not use interaction cavities
unlike the latter. In a gyro-TWT, one may taper the cross sec-
tion of the waveguide interaction structure and simultaneously
profile the magnetic field to broad-band the device; a method
that, however, reduces the device gain [3] and [4]. Alterna-
tively, one may load the waveguide wall by a dielectric lining to
straighten the dispersion characteristics over a wider frequency
range for wide-band coalescence between the beam-mode and
waveguide-mode dispersion characteristics and, consequently,
for wide device bandwidths [5]. The method, however, entails
the risk of dielectric charging and heating [5]. This calls for
an all metal loading of the waveguide for controlling the dis-
persion characteristics [4], [6]. One such structure is a circular
waveguide loaded with axially periodic metal discs.

The analysis of a disc-loaded circular waveguide was car-
ried out in the past both for linear accelerators in the slow-
wave regime, for instance, in [7] and [8], and for gyro-TWTs
in the fast-wave regime, for instance, in [6] and [9]. The sur-
face impedance model for the analysis of a disc-loaded cir-
cular waveguide, in which the interface between the disc-occu-
pied and disc-free regions is treated as a homogeneous reactive
surface, was used for closely spaced discs [10]. Dybdal ez al.
[11] applied the impedance boundary approach to study a cor-
rugated rectangular waveguide. Amari et al. [12], [13] analyzed
the structure using the coupled-integral-equation technique and
found the propagation constants of Floquet’s modes from the
classical eigenvalues of a characteristic matrix. Esteban and Re-
bollar [14] used the modal expansion technique considering the
disc-loaded waveguide of finite disc thickness to be constituted
by consecutive smooth-wall waveguides, such that every alter-
nate waveguide has the wall radius equal to either the overall
waveguide radius or the disc hole radius, and, hence, studied
the hybrid modes and the complex solution of propagation con-
stants for smaller disc hole radii. Scattering matrix formalism
for a rectangular corrugated waveguide due to Wagner et al. [15]
could take into account the precise shape of the corrugation

Choe and Uhm [9] analyzed a disc-loaded circular waveguide
in the fast-wave regime for application in gyro-TWTs, including
the effects of the space harmonics generated due to the axial
periodicity of the structure. They considered the lowest order
standing-wave mode in the disc-occupied region and the funda-
mental propagating-wave mode in the disc-free region. Kesari
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Fig. 1. Schematic of a circular waveguide loaded with thick metal discs of
uniform periodicity showing the disc parameters and the two structure regions
(I and 1II).

et al. [6] extended the analysis of Choe and Uhm [9] to con-
sider higher order modes in both the disc-free and disc-occu-
pied regions. However, for the sake of simplicity, infinitesimally
thin discs were assumed in the analyzes of both Choe and Uhm
[9] and Kesari et al. [6]. In this paper, the fast-wave analysis
of a disc-loaded circular waveguide is generalized considering
the effect of higher order modes, in both the disc-occupied and
disc-free regions, and that of finite disc thickness (Section II).
Moreover, how the effect of the disc parameters on the control
of the dispersion characteristics of the structure predicted by the
present analysis would influence the gain-frequency response
of a gyro-TWT has also been studied with the help of a simple
small-signal gain equation of the device (Section III).

II. ANALYSIS

The structure analyzed in the fast-wave regime consists of
a circular waveguide loaded with thick annular, axially peri-
odic metal discs (Fig. 1). The method of analysis closely fol-
lows the one previously given for infinitesimally thin discs re-
ported in Kesari et al. [6]. The method is, however, improved
in this paper by including the effect of the finite thickness of
discs. Moreover, in the present analysis, the propagation con-
stant obtained by the cold (beam-absent) analysis (Section II-A)
is fed into the small-signal gain equation of a gyro-TWT, the
latter interpretable from the beam-present dispersion relation of
a gyro-TWT (Section II-B), [2], [4], [5].

The structure is divided into the disc-free region 0 < r <
rp,0 < z < o0, labeled as region I, and the disc-occupied re-
gionrp < r < rw,0 < z < (L —T), labeled as region II,
where 7p is the disc hole radius, ry the waveguide wall ra-
dius, L the disc periodicity, and 7' the disc thickness (Fig. 1).
The analysis is carried out for TE modes (£, = 0) keeping
in mind the potential application of the structure in a gyro-TWT
which operates at or near the grazing intersection or coalescence
between the beam-mode and waveguide-mode dispersion char-
acteristics where the growth rate of TE modes is much more
significant than that of TM modes [16]. Further, considering
nonazimuthally varying modes (9/06 = 0), the relevant field
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expressions for regions I and II may be written, in the cylin-
drical system of coordinates (r, 6, z) as [6]

+oo
Hi= Y AL (i exp i (wt - 6L2) M

n=—oo

+oo
1
Ey = jwug Z W—IALJ('] {'y,llr} exp j (wt — ﬂ}zz) )

n=—oo

and
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el Tm

“

where (see (5) at the bottom of the page.) The superscripts I and
IT refer to the disc-free region I and the disc-occupied region
II, respectively (Fig. 1). The subscript n represents the space-
harmonic number referring to region I supporting space har-
monics generated due to the axial periodicity of the structure,
and the subscript m represents the modal harmonic number re-
ferring to region II supporting standing waves caused by reflec-
tion at the metal discs [6], [9]. AL and ALl are the field constants.
Jo and Yy are the zeroth order Bessel functions of the first and
second kinds, respectively, the primes with the Bessel functions
indicating the derivatives with respect to respective arguments.
AL (=[k? = (B1)2]1/2) and 72T (=[k? — (BI1)2]*/2) are the radial
propagation constants, k being the free-space propagation con-
stant. 31 (=8 +27n/L) (n = 0,41,42, ... 400) is the axial
phase propagation constant referring to region I that obeys Flo-
quet’s theorem [8] as applied to the present structure that coin-
cides with itself as it is translated through an axial distance equal
to the periodicity of the structure L (Fig. 1). 8 = mn /(L —T)
(m=1,2,3,...,00)is the axial phase propagation constant re-
ferring to region I, which is the groove region of the axial length
L — T supporting integral multiple of half wavelengths [6].

A. Cold (Beam-Absent) Dispersion Relation

The cold (beam-absent) dispersion relation of the disc-loaded
circular waveguide may be obtained with the help of the field
expressions (1)—(4) and the following boundary conditions:

atr = rp:
Hi=H' 0<2<(L-T) (6)
1_ JEY 0<z2<(L-T)
Ee_{o, (L-T)<z<L. @

The boundary condition (6) states that the axial (tangential)
components of magnetic field intensity is continuous at the in-
terface between the regions Iand IT (0 < z < (L — T)). The
boundary condition (7) states that 1) the azimuthal (tangential)

Zy {%IVIIT} = (Yo' {V}YILTW} Jo {%IVIIT} - Jé {V}YILTW} Yo {%IVET}) /Yo' {%Irlﬂ"w} } (5)
Zh {8y = (Y9 {virw b 6 e} = Jo {virw } YO {7iir}) JYs {vrw } |
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components of electric field intensity is continuous at the inter-
face between the regions I and II (0 < z < (L — T')) and that
2) the azimuthal (tangential) component of electric field inten-
sity is zero at the inner edge of thickness 71" of the metal disc
(L-T) < z<L).

One may express the field constants (m = 1,2,3,...), in
terms of a series involving AL (—co < m < c0). For this pur-
pose, one may substitute the field expressions (1) and (3) into
the boundary condition (6), multiply it by sin(3L z), then inte-
grate between z = 0 and L — 7', and make use of the orthogonal
properties of trigonometric functions. Thus, one obtains

A=Y AP ®)
where
p 20 {vrn} B (1= (=1)" exp(—jfL)]

" L% {7%rp} (B4)? — (L)

Similarly, one may obtain another series expression, similar
to (8), for Al (m = 1,2,3,...), but now with the help of the
field expressions (2) and (4) [instead of (1) and (3)] and the
boundary condition (7) [instead of (6)], and by changing the
integration limits to z = 0 and L (instead of z = 0 and L — T),
as follows:

Al =" ALQum ©)

where
_ 2m Jo{rrn}
" L9k Zy i)

B — (B cos(BuL) + 5By sin(BnL)) exp(—jBiL)
X .
(BE)* = (BL)°
The following relation results by equating the right hand sides

of (8) and (9):

Qnm

i A;(an - Qnm) =0.

n=—0oo

(10)

Choosing to take the same number ¢, say, of the values
of the standing wave modal number (m) as that of
space harmonic number (n) (typically, corresponding to
q="7n=0,£1,£2,£3, and m = 1,2,3,4,5,6,7), one can
form ¢ number of simultaneous equations in the field constants
AL (typically, seven equations in AL, AL AL, Al.) with
the help of (10). The condition for nontrivial solution that the
determinant formed by the coefficients of these constants in
these equations is zero yields the following dispersion relation
of the structure:

det| My Jo {varp} Zs {vmrp}
— Zo{vmro} Jo{mrp}| =0

(—o<n<oo,1<m<oo) (11)
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where
Mnm =
B [1 = (=1)™ exp(=jB5L)]
VLB — (BY cos(BILL) + j L sin(BILL)) exp(—jB5L)]

B. Small-Signal Gain Equation

One may interpret the dispersion relation (beam-present) of a
gyro-TWT to write, in a form similar to that obtained by Pierce
[17] for the gain in decibels of a conventional TWT, the fol-
lowing expression for (G, the gain in decibels, of a gyro-TWT

(2], [4], [5]:

G = A+ BCN (12)
where
A= =20logyq |(1 = 62/61)(1 — 63/61)]
B = 407 (log €)1 = 54.621 (13)

C = (KIy/4Vp)'/3
N = i/ 2

In (13), 61, 62, and 83, occurring in the expressions for A, known
as the launching loss [2], [4], [5] are the roots of the cubic equa-
tion §(8 + jb)? = j, where b (=(w — Biv. — sw./7)/Bv.C)
is a measure of the deviation from the resonance of the
Doppler-shifted frequency from the harmonic of the relativistic
electron cyclotron frequency. w, is the nonrelativistic electron
cyclotron angular frequency. s is the beam-harmonic mode
number. v, (=[(v% — 1)/(1 + 2)]'/?/7) is the axial velocity
of electrons, where ag (=v;/v.) is the beam pitch factor and
y(=[1—(v2+v?)/c?]~1/?) is the relativistic mass factor, which
may be found in terms of the beam voltage V|, by equating the
relativistic kinetic energy (=(y — 1)m.oc?) with the potential
energy (=|e|Vp) of the beam as v = 1 + |e|Vg/moc?, where
e is the electronic charge, m.q is the rest mass of the electron
and c is the velocity of light in free space. x1 occurring in the
expression for B in (13) is the real part, supposedly positive,
of 61, corresponding to a growing wave. Furthermore, in (13),
while IV represents the interaction length [ of the gyro-TWT,
Ip, in the expression for C, represents the beam current and the
parameter K, which is analogous to the interaction impedance
of a conventional TWT, is given by

K =
(1o/€0)'/* (vr/c)? (%Iﬂ"W)z (1+0f) 2 {roru} 2 {vwre}
I3 {vdrw} (v./c) (,[3(1)7"‘4/)4

(14)

where rg and 7, are the hollow-beam radius and the Larmor
radius, respectively [2], [4], [5].

III. RESULTS AND DISCUSSION

The dispersion relation (11) of the disc-loaded cylindrical
waveguide, obtained by the present analysis (Section II), has
been used in this section to study the effect of the disc pa-
rameters on the dispersion characteristics of the disc-loaded
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Fig. 2. Convergence of the eigenvalue (yirw ) atn = 0,£1,£2, 43, m =
1,2,3,4,5,6,7 for a wide range of the values of the disc periodicity-
to-thickness ratio L/T, taking typically the disc hole radius relative to the
waveguide radius 7 /ryw = 0.6, for the mode TEy; .

structure, as well as on the gain-frequency response of the
disc-loaded gyro-TWT. The dispersion relation (11) that is
valid for discs of finite dimension includes all the space har-
monics (n = 0,+1,42,...,+00) in region I, and all the
standing-wave modal harmonics (m = 1,2,3,...,400) in
region II. The dispersion relation is solved using numerical
methods in the software MATLAB. The results, with respect
to the eigenvalue (yiryy) that would give the cutoff frequency
near which a gyro-TWT is operated [5], studied for pro-
gressively higher order harmonics, are found to converge at
n=0,£1,+2,43,m = 1,2,3,4,5,6,7, for a wide range of
the values of L/T, typically for the TEp; mode (Fig. 2). This
suggests that, for the numerical appreciation of the analysis, it
would be reasonable enough to truncate the infinite-order deter-
minant of the dispersion relation (11) at 7 X 7. Hence, one may
study, with the help of (11), the effect of the disc parameters on
the shape of the dispersion characteristics that has relevance to
attaining wide-band coalescence between the beam-mode and
waveguide-mode dispersion characteristics and, consequently,
to wide-band gain-frequency response of the gyro-TWT, the
latter obtainable from the simple small-signal gain equation
(12) through (13) and (14). We have ignored the launching loss
in calculation, that is, the first term of (12), as it would not have
an appreciable influence on predicting the optimum parameters
for wide-band gain-frequency response of the device.

For the special case rp = 7y, one would have Zo{vlrp} =
Zo{vErw} # 0and Zh{vErp} = Z{{yErw} = 0, as can be
seen from (5). This, since M,,, is independent of rp or ry,
would make the first term of the element of (11) equal to zero,
making one read (11) as det | Zo{vLry Y J§{vErw }| = 0. This,
since for this special case one has Zo {7 ry-} # 0 as mentioned
above, would essentially lead to J){yLrw} = 0, which may
be identified as the dispersion relation of a circular waveguide
excited in the TE(, mode of wall radius = ry. Similarly, for
the special case L = T, as can again be seen from (5), one
would have Zo{v2rp} # 0 and Z{{yIrp} = 0, and since
the function M,,, takes on finite values for this special case,
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following a similar reasoning, one now obtains J){vilrp} =
0, which may be now identified as the dispersion relation of
a circular waveguide excited in the TE(, mode of wall radius
=7Tp.

Furthermore, as a special case of " — 0, that is, for infinites-
imally thin discs, the dispersion relation (11) that includes the
effect of the finite disc thickness passes on to that obtained ear-
lier by ignoring disc thickness [6]. Also, if the effects of higher
order modes were ignored and if one had considered only n = 0
and m = 1, over and above the condition 7" — 0, the disper-
sion relation (11) would become v Zo{vilrp}/Zi{vrp} —
v5Jo{vérp}/Je{vérp} = 0, which is identical with that ob-
tained by Choe and Uhm [9].

The dispersion characteristics of a disc-loaded circular wave-
guide, typically for the TE(; and TE(, modes, obtained by the
present analysis, that is, by the dispersion relation (11), very
closely agree with those obtained by another theoretical ap-
proach based on the coupled-integral-equation technique due to
Amari et al. [12], [Fig. 3(a)]. Also, the dispersion characteris-
tics, generated by (11), typically for the TEp; mode, have been
validated against the commercial simulation code HFSS, within
0.5% over the entire passband of the dispersion characteristics,
for typical disc parameters [Fig. 3(b)].

The dispersion relation (11) for a disc-loaded circular wave-
guide obtained by the present analysis, considering the effects
of the finite disc thickness and higher order harmonics, has been
used here to study the effect of the disc parameters, namely, disc
hole radius, disc periodicity and disc thickness on the eigen-
value (y{ry) (Fig. 4) and on the normalized w — 3 dispersion
characteristics of the structure [Figs. 5(a), 6(a), 7(a)]. A feed-
back of this study on the dispersion relation (11) has also been
interpreted for the gain—frequency response of the disc-loaded
gyro-TWT with the help of (12), [Figs. 5(b), 6(b), 7(b)].

The eigenvalue of the disc-loaded circular waveguide remains
constant with the disc hole radius up to a value of the latter, be-
yond which the eigenvalue decreases tending to the value cor-
responding to the cutoff frequency of the smooth-wall circular
waveguide, for all values of the disc periodicity [Fig. 4(a)] and
disc thickness [Fig. 4(b)]. Also, for a given disc hole radius, the
eigenvalue decreases [Fig. 4(a)] with the increase of the disc pe-
riodicity, whereas it increases [Fig. 4(b)] with the increase of the
disc thickness. Further, the range of the disc hole radius for the
constancy of the eigenvalue increases with the decrease of the
disc periodicity [Fig. 4(a)]. However, such range is independent
of the disc thickness [Fig. 4(b)].

The effects of the disc hole radius on the dispersion charac-
teristics of the structure considering the effects of the disc thick-
ness (T'/rw # 0) and ignoring them (7'/ry, — 0) are apparent
[Fig. 5(a)]. The dispersion characteristics for the special case of
the parameter rp /ry = 1.0 pass on to those for a smooth-wall
circular waveguide, and for the special case of the parameter
T/rw — 0, to those reported for infinitesimally thin discs [6],
[Fig. 5(a)].

With the decrease of either of the parameters, namely the
disc hole radius and the disc periodicity, the lower and upper
edge frequencies of the passband of the dispersion characteris-
tics both increase though to unequal extents such that the pass-
band decreases or increases according as the disc hole radius
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Fig. 3. Validation of the dispersion characteristics of a disc-loaded circular
waveguide obtained by the present analysis against those obtained (a) by the
coupled-integral-equation technique due to Amari et al. [12], for typical disc
parameters rp/rw = 0.4,L/ryw = 1.0,and T/L = 0.5, for the TEq;
and TE,> modes and (b) by HFSS, for typical disc parameters rp/ryw =
0.6,L/rw = 1.0,and T/L = 0.3, for the TEy: mode.

or the disc periodicity decreases, the midband frequency of the
passband, however, shifting to a higher value for the decrease of
both the parameters [Figs. 5(a), 6(a)]. It is noted that, although
both the upper and lower edge frequencies of the passband de-
pend on the disc hole radius for discs of finite thickness, it is
the lower edge, and not the upper edge frequency, of the pass-
band that depends on the disc hole radius for infinitesimally thin
discs [Fig. 5(a)]. Furthermore, there exists an optimum value of
the disc hole radius corresponding to the maximum frequency
range of the straight line portion of the dispersion characteris-
tics. No such optimum value however exists for the disc period-
icity. With the decrease of the latter, the frequency range of the
straight line portion of the dispersion characteristics increases
and shifts away from the lower cutoff frequency [Fig. 5(a)].
Similarly, with the decrease of the disc thickness, the lower
and upper edge frequencies of the passband in the dispersion
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Fig. 4. Eigenvalue-versus-disc hole radius taking (a) disc periodicity and
(b) disc thickness as parameters, typically for the TE;; mode. The broken
curve (b) refers to infinitesimally thin discs [6].

characteristics both decrease such that the passband first de-
creases and then increases passing through a minimum; and the
midband frequency of the passband, as well as the frequency
corresponding to the beginning of the straight line portion of
the dispersion characteristics, shifts to a lower value [Fig. 7(a)].
As the disc thickness is increased, the eigenvalue increases
[Fig. 4(b)] and, consequently, the frequency corresponding to
the maximum device gain shifts to a higher value [Fig. 7(b)].
The dispersion characteristics taking the disc thickness as the
parameter have been grouped for relatively thin and relatively
thick discs [Fig. 7(a)]. The dispersion characteristics for the
special case of infinitesimally thin discs (7'/rw — 0) pass on
to those reported ignoring the effect of finite disc thickness [6].
Similarly, the dispersion characteristics for the special case of
disc thickness tending to disc periodicity (L/rw — T /rw or
T/L — 1) passes on to those for a smooth-wall circular wave-
guide of wall radius equal to the disc hole radius [Fig. 7(a)].
The shape of the dispersion characteristics depends on the disc
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Fig. 5. (a) Dispersion characteristics of the disc-loaded circular waveguide
typically for the TEq; mode, taking disc hole radius as the parameter for thick
(T/rw = 0.1) (solid line) and infinitesimally thin (T'/rw = 0) (broken line)
discs [6], for a typical disc periodicity L/ry = 0.4, and (b) the corresponding
gain-frequency response for thick (T'//rw = 0.1) discs. For the parameter
D / rw = 1.0, the broken line with crosses in dispersion characteristics (a) and
the solid line with crosses in gain—frequency response (b) refer to a smooth-wall
circular waveguide. Beam and magnetic field parameters are: I = 9.0 A,
Vo = 130kV, ag = 0.75, 7y = 0.48rp, and By/ B, = 0.99.

thickness but not as much as it does on the disc hole radius or
disc periodicity [Figs. 5(a), 6(a), 7(a)].

Since the axial phase propagation constant (3} ) obtained from
the cold (beam-absent) analysis of the disc-loaded waveguide
has been fed back in the small-signal gain equation (12) of the
gyro-TWT, it is expected that the behavior of the dispersion
characteristics of the structure [Figs. 5(a), 6(a), 7(a)] would be
reflected in the gain-frequency response of the device [Figs. 5(b),
6(b), 7(b)]. For instance, the existence of the optimum value of
the disc hole radius for the maximum frequency range of the
straight line portion of the dispersion characteristics, which in
turn would correspond to the maximum bandwidth of coales-
cence between the beam-mode and waveguide-mode dispersion
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Fig. 6. (a) Dispersion characteristics of the disc-loaded circular waveguide

typically for the TEqy mode, taking disc periodicity as the parameter for thick
(T/rw = 0.1) (solid line) and infinitesimally thin (I'/ry = 0) (broken line)
discs [6], for a typical disc hole radius 7 /ryw = 0.5, and (b) the corresponding
gain—frequency response for thick (7'/rw = 0.1) discs. Beam and magnetic
field parameters are as in Fig. 5.

characteristics of a gyro-TWT, or the increase of such frequency
range with the decrease of the disc periodicity [Figs. 5(a), 6(a)]
is immediately reflected in the bandwidth of the gyro-TWT
[Figs. 5(b), 6(b)]. Thus, one obtains an optimum value of the disc
hole radius corresponding to the maximum device bandwidth
[Fig. 5(b)] and an increase in the device bandwidth, though at the
cost of the device gain, with a decrease of the disc periodicity
[Fig. 6(b)]. An optimum value of the disc hole radius is also
obtained for the maximum device gain. The midband frequency
of amplification is found to be sensitive to the value of the disc
hole radius, increasing with the decrease of the latter [Fig. 5(b)].
[The disc hole radius that makes the gain shoot up to a very
high value [Fig. 5(b)] corresponds to the operating frequency
approaching the cutoff frequency where the phase propagation
constant [36 — 0 [Fig. 5(a)], which makes K and hence G very
high, as can be appreciated by examining (12) through (14)].
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Fig. 7. (a) Dispersion characteristics of the disc-loaded circular waveguide

typically for the TE;; mode, taking disc thickness as the parameter for
thick (solid line) and infinitesimally thin (7'/rw = 0) (broken line) discs
[6], for typical disc parameters L/ry = 1.0 and vp/rw = 0.5, and
(b) the corresponding gain—frequency response for thick discs. Dispersion
characteristics for the case of disc thickness equal to disc periodicity
(L/rw = T/rw = 1.0) (solid line with crosses) refer to a smooth-wall
rp. Beam and magnetic field

circular waveguide of wall radius 7y,
parameters are as in Fig. 5.

Since the shape of the dispersion characteristics is relatively
less dependant on the disc thickness [Fig. 7(a)], the device band-
width depends less on the disc thickness than on the other disc
parameters, namely, the disc hole radius and the disc period-
icity. With the increase of the disc thickness, though the device
bandwidth has slight tendency to decrease, the device gain in-
creases [Fig. 7(b)]. Thus, one should go for thin and well sepa-
rated discs for larger device gain, and thick and close by discs
for wider device bandwidths [Figs. 6(b), 7(b)]. Furthermore, out
of the three parameters, namely, the disc hole radius, disc peri-
odicity, and disc thickness, the disc periodicity is the most ef-
fective parameter in controlling the device bandwidth whereas
the disc hole radius is the most effective parameter in controlling
the device gain of a disc-loaded gyro-TWT. Also, the maximum
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Fig. 8. Optimization of the disc parameters for the maximum device gain

or device bandwidth without causing a change in the midband frequency, for
instance, around 35 GHz in the atmospheric window. Beam and magnetic field
parameters are as in Fig. 5.

device bandwidth is achieved by controlling the disc parameters
though at the cost of the device gain, and vice versa.

The control of the disc parameters over the device gain
or bandwidth is in general accompanied by a change in the
center frequency of the amplification band. This may call for
optimizing the disc parameters for the maximum device gain
or bandwidth without causing any change in the midband
frequency of the amplification band; for instance, typically
around 35 GHz (atmospheric window) (Fig. 8). Thus, choosing
to keep the disc thickness and disc periodicity unchanged, one
may optimize the waveguide radius and disc hole radius for the
purpose of either widening the device bandwidth or enhancing
the device gain, the optimum parameters (waveguide radius
and disc hole radius) obviously coming out to be different for
the two purposes (Fig. 8). For either of these purposes, the wall
radius of a disc-loaded circular waveguide would be greater
than that of a smooth-wall circular waveguide (Fig. 8).

IV. CONCLUSION

The analysis of a disc-loaded circular waveguide developed
in this paper is carried out in the fast-wave regime and thus is
helpful in designing wide-band gyro-TWTs. The analysis of the
structure is generalized considering 1) higher order modal har-
monics in the disc-occupied region, supporting standing waves,
and higher order space harmonics, arising from the axial peri-
odicity of discs, in the disc-free region, and 2) the effects of fi-
nite disc thickness. The optimum disc parameters (hole radius,
periodicity, and thickness) predicted for maximum coalescence
bandwidth between the beam-mode and waveguide-mode dis-
persion characteristics, corresponding to the widest frequency
band over which the dispersion curve of the structure could be
straightened, agree with the optimum disc parameters predicted
for maximum device bandwidth.

The optimization of the disc periodicity is found to be more
effective than that of the other disc parameters, namely, the disc
hole radius and disc thickness in maximizing the device band-
width. On the other hand, the disc hole radius proves to be the
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most effective optimizing parameter in maximizing the device
gain. However, care needs to be taken in selecting the disc param-
eters for the desired gain and bandwidth, since any change in the
disc parameters is, in general, accompanied by a change in the
center frequency of the pass band of the structure and, hence,
also in the center frequency of amplification band of the device.

It is believed that, although the large-signal analysis would
have given a more accurate estimate of the gain of the device,
the results of the present cold analysis of the disc-loaded circular
waveguide considering the effect of the finite disc thickness and
the feedback thereof into the small-signal gain—frequency re-
sponse could be helpful in optimizing the design of a gyro-TWT
for its wide-band performance.
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