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Abstract
A rigorous electromagnetic analysis of a circular waveguide loaded with axially
periodic annular discs was developed in the fast-wave regime, considering finite
axial disc thickness and taking into account the effect of higher order space
harmonics in the disc-free region and higher order modal harmonics in the
disc-occupied region of the structure. The quality of the disc-loaded circular
waveguide was evaluated with respect to its azimuthal interaction impedance
that has relevance to the gain of a gyrotron millimeterwave amplifier
(gyro-traveling-wave tube) in which such a loaded waveguide finds application
as a wideband interaction structure. The results of electromagnetic analysis of
the structure with respect to both the dispersion and azimuthal interaction
impedance characteristics were validated against the commercially available
code: high frequency structure simulator (HFSS). The analysis predicts that the
value of the interaction impedance at a given frequency decreases with the
increase of the disc hole radius and disc periodicity. The change of the axial

disc thickness does not significanly change the value of the interaction
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impedance though it shifts the frequency range over which appreciable
interaction impedance is obtained. Out of the three disc parameters, namely the
disc hole radius, thickness and periodicity, the lattermost is most effective in
controlling the value of the azimuthal interaction impedance. However, the
passband of frequencies and the center frequency of the passband both decrease
with the increase of the disc periodicity. Moreover, the disc periodicity that
provides large azimuthal interaction impedance would in general be different
from that giving the desired dispersion shape for wideband interaction in a
gyro-TWT, suggesting a trade-off in the value of the disc periodicity to be

chosen.

Keywords:  Periodically loaded waveguides, fast-wave  analysis,

gyro-traveling-wave tubes, wideband millimeter-wave amplifiers.

1. Introduction

Placing axially periodic annular metal discs as obstacles in a circular waveguide
is a known technique to slow down RF waves. Such a discloaded waveguide
(Fig. 1) finds applications in, for instance, a linear accelerator [1, 2] or a
relativistic backward-wave oscillator [3, 4]. Also, controllable dispersion of
such a disc-loaded circular waveguide in the fast-wave regime shows the
potential of the structure in widening the bandwidth of coalescence between the
beam-mode and waveguide-mode dispersion characteristics of a gyrotron
millimeter-wave amplifier, namely gyro-traveling-wave tube (TWT), leading to

wideband amplification of the device [4-9].

In previously reported electromagnetic analyses of a disc-loaded circular
waveguide [5, 6], the dispersion relation of the structure was obtained making a
simplifying assumption that the discs are infinitesimally thin. Hence, the
analysis was used to predict the optimum disc parameters for the shape of the

dispersion characteristics [5, 6] that would lead to a wideband coalescence
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bandwidth [7-9]. Moreover, in the previous analyses no consideration was made
to the estimate of the interaction impedance of the structure that measures the
available RF electric field for interaction with the gyrating beam of electrons in
the device. The interaction impedance provides a means to judge the quality of
the structure with respect to its interaction with the gyrating beam of electrons,
however from the cold (beam-absent) analysis of the structure doing away with
the actual beam-wave interaction analysis [7-10]. Obviously, it is desired that
any attempt to shape the dispersion characteristics for the desired coalescence
bandwidth should not cause deterioration in the value of the interaction

impedance of the structure.

In this paper, a circular waveguide loaded with axially periodic discs is
analyzed for its interaction impedance taking care to include the effect of finite
thickness of discs. Unlike in a conventional TWT [7, 10, 11] in which the
interaction impedance is defined in terms of the axial electric field, the relevant
parameter, in the context of a gyro-TWT, is the azimuthal interaction
impedance [8, 12], which is defined in terms of the azimuthal electric field at a
specified point in the structure cross-section and power transmitted through the
structure (Section 2). For this purpose, one has to know a priori the phase
propagation constant which in turn can be found from the dispersion relation,
the deduction of which is also outlined here considering the effect of the finite
disc thickness of the discs hitherto ignored in the previous analyses [S, 6]. The
method of analysis consists in substituting the field expressions for standing
waves in the disc-occupied region and those for propagating waves in the
disc-free region of the structure into the relevant boundary conditions. It results
into a set of equations of field constants, the non-trivial solution of which yields
the dispersion relation of the structure (Section 2). Further, the integration of the
complex Poynting vector over the cross section of the discfree region that
supports propagating waves gives the power transmitted through the structure [7,
11]. The latter is used to obtain an expression for the azimuthal interaction

impedance of the structure (Section 2) that shows its dependence on the discs
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parameters (Section 3) and hence its significance in optimizing the structure
parameters for wideband performance of a gyro-TWT without sacrifice of the
value of the azimuthal interaction impedance and hence that of the device gain
(Section 4).

2. Analysis

The structure consists of thick annular metal discs, each of thickness T and hole
radius r;,, periodically inserted at an axial interval of L in a circular waveguide
of wall radius r,, (Fig. 1). The structure is analyzed in the fast-wave regime for
the transverse electric (TE) mode (£, =0) as relevant to a gyro-TWT that
operates at or near the grazing intersection between the beamrmode and
waveguide-mode dispersion characteristics where the growth rate of TM modes
significantly decreases [13]. The characteristic relations for the dispersion and
azimuthal interaction impedance of the structure are obtained in this section,
taking propagating waves in the discfree region O<sr<r,, O<z<L,
labeled as region I, and standing waves in the disc-occupied region r, <r <ry,,
0<z<(L-T),labeled as region II.

Fig.1  Schematic of a circular waveguide loaded with thick annular discs.

The field intensity components in these two regions considering azimuthal
symmetry (9/00 = 0) are [5, 6]:
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BY = ms /L [14]. In general, the space harmonic number 7 and the modal
number m takeonvalues n=0,+1, 2, ..+ and m=1, 2, 3,4,...o.

The electromagnetic boundary conditions, as relevant to the present analysis,
arising from the tangential component of electric field intensity being zero at the
conducting interface and the tangential components of electric and magnetic field
intensities being continuous at the interface between regions I and II, may be

written as follows:
E] =0 [r=r,;0sz<x»] o)

H! =HI [r=r;0<z<(L-T)] (©6)

and

E] [r=ry;0<z<(L-T)]

E,
6
0 [r=r;L-T)<z<L].

™
The boundary conditions (5)-(7) may be read with the help of the field
expressions (1)-(3). However, for this purpose, in these expressions one has to
(i) take B:, =0 to prevent fields from blowing up to infinity in view of the
nature that the Bessel function of the second kind becomes infinity at r =0,
and (ii) express B;’ in terms of A:,I with the help of the boundary condition
(5)- Substituting the field expressions so read into the boundary condition (6);
multiplying it by sin(87z) and then integrating it between z =0 and
L -T, and finally making use of the orthogonal properties of trigonometric

functions, one may express the field constants A,{,' in terms of a series
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structure in [14]. Thus, for the m'™ order standing-wave mode, one may write
from (12):

0

+
y/4 n
Am' = Am' anm'an' ’

n=—0w

which simplifies to

1- ERM,P,,M, -0,

n=-o

which further may be read with the help of (9) and (11) to obtain the dispersion

relation of the structure as follows:

i"o{y,{’b} Ya =1Z0{7:{'rp} 'J’,{,"L2
T v Y (B~ (Ba)' T 4 Zifymrn} 1= (=D cos(B L))(B)’

(13)
It is of interest to note that, as a special case, for the lowest order standing-wave
mode (m'=1) and for infinitesimally thin discs (7 — 0 ), the dispersion
relation (13) passes on to that of Kesari et al. [6]. Over and above, if only the
fundamental space harmonic mode were considered (n =0, m=1,T—0 )
the dispersion relation (13) would pass on to the special case of the dispersion
relation of Choe and Uhm [5].

The dispersion relation (13) may be used to obtain the dispersion

characteristics of the structure. Moreover, the propagation constant obtainable
from (13) may be used to estimate the azimuthal interaction impedance K, of
the structure for the fundamental space harmonic mode (n =0) [8, 12]:

K, f{ry=E;, {r}/2B’P, (14)

where Ejo{r} is the azimuthal electric field intensity referring to the

fundamental space harmonic mode (n=0), and P, is the power transmitted

through the structure, contributed by all the space harmonic components
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(n=0,%£1,%2, ..+ ) One may obtain an expression for P, by
integrating the average complex Poynting vector over the cross-sectional area of
the disc-free region I (0 = r < r)), it being assumed that there is no power flow

in the disc-occupied region II that presumably supports standing waves (Fig. 1).

For this purpose, one has to take E/ =0 and Hj =0 from (4), E} from

(2),and H! from (3), and make use of Lommel’s integral. This yields

2 4o

2ﬁ_,"len'z(Jéz{Viro}+Joz{n"‘p}) (15)

"-_wyn

14
R=—”k"70§

where 1), is the free-space intrinsic impedance.
Substituting E;,o{r} from (2) and P, from (15) into (14), one obtains the

following expression for the azimuthal interaction impedance for the

fundamental space harmonic component:
12p02, 1
kno Ay Jo {ror}

2 12 5 N 2( ., 2
By s S BIAL Uy i+ T )y

n=-0

Ko ofr} = (16)

Putting in (16) Al =A"R, and A! = AR, , which follow from the

relation A! = A['R,,, the latter obtainable from (10) however retaining only

the lowest order standing-wave mode m =1 of practical interest [5, 6, 14], the
expression for the azimuthal interaction impedance for the fundamental space

harmonic component simplifies to
kn, R012J(;2{yér}
2 12 5 , 2
By S BRI Yy + 1 )

n=—00

Kﬁ,o{r} = a7)
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3. Results and Discussion
The dispersion relation (13) may be solved for normalized frequency kr,,

th

taking (i) a typical m'™ order standing-wave mode, say m' =1 and (ii) a

typical space-harmonic-mode normalized phase propagation constant, say the

zero™ order, /3({. However, for this purpose, ﬁ,{ is to be expressed by

Floquet’s theorem in terms of B¢ as B! =B, +2nmx/L [5, 6, 14], as

discussed following the field expressions (1)(3). It has been found good
enough to take the summation in the right hand side of (13) from n=-5 to
n = +5 for converging results (Fig. 2). The azimuthal interaction impedance

may be found using the relation (17) involving R, and R, , which in turn are

nl?

given by (11). The expression (17) also involves [j’: and y: , the latter
defined in terms of B following (1)-(3), B! being expressible in terms of
ﬁ({ as mentioned above. Typically, for the TEy mode, the first solution of the

dispersion relation (13) is taken. The value of f,r, fora given kr, obtained

solving the dispersion relation is fed into the expression (17) for the evaluation

of the azimuthal interaction impedance of the structure (Figs. 2-4).

It is also worth comparing the azimuthal interaction impedance K, ,,

which gives a fair estimate of the quality of the structure in providing azimuthal
RF electric field for interaction with gyrating electrons in a gyro-TWT in

small-orbit configuration with a more realistic impedance parameter would be a

quantity K,

0

that has been obtained in the literature by interpreting the

dispersion relation of a gyro-TWT for its gain equation as follows, in terms of
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K, of a circular waveguide when periodically loaded with discs decreases with
frequency from a very high positive value at the lower frequency edge of the
passband of the structure, via zero value, to a very high negative value at the

higher frequency edge of the passband (Fig. 2).
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the group velocity of RF waves, the latter being the slope of w - 3 dispersion
characteristics. A high negative value of the azimuthal interaction impedance
Ko, at the upper frequency edge of the passband is attributed to a negative value,
close to zero, of the slope of the w— B dispersion characteristics and hence
negative group velocity of RF waves just beyond upper frequency edge of the
passband (Fig. 2).

One may justify an estimate of K4 in evaluating the quality of the structure
by comparing Ky in the frequency range over which one obtains Kyyr/Kgo =1.

As a special case of 1, /r,, =1, which refers to a smooth-wall waveguide, the

results of comparison of Kg o with Ky, agree with Sangster [10] (Fig. 3).

4 .
Lftyy=0.4
i, =110 [10] 07 T fipy=0.1
3 -
o
¥°
X
1 -
0
3

Fig.3 Comparison of the azimuthal interaction impedance Ky, with the
impedance parameter K,y for the disc-loaded (r, /ry, =0.7) and
disc-free (smooth-wall: r, /r, =1.0) [10] (solid line with crosses)
circular waveguides, excited in the TEy mode. The beam parameters
for the calculation of K., are V, =70kV, I, =9.7A, a, =15,
ry/r, =048 r, /r, =0.12 [10].
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The azimuthal interaction impedance Ky versus frequency characteristics
of a disc-loaded circular waveguide obtained by the present analysis, as a
special case of 1, =y, pass on to those for a smooth-wall waveguide given,
for instance, in Sangster [10] and Singh et al. [8] (Fig. 4a). The value of the
interaction impedance increases with the introduction of discs in the waveguide
except at higher frequencies, where it decreases rapidly to a value lower than
that for a disc-free (smooth-wall) waveguide (Fig. 4). The passband of
frequencies of the disc-loaded waveguide is found to be sensitive to the axial
periodicity of discs (Fig. 4b). Therefore, within the range of a given passband,
one cannot demonstrate the effect of the variation of disc periodicity on K.
However, one can demonstrate the effect of the disc hole radius on Ky versus
frequency characteristics within a given passband (Fig. 4a). The value of the
azimuthal interaction impedance K4, decreases with the increase of the disc
hole radius. Therefore, while adjusting the disc hole radius for dispersion
control, due consideration should be made to see that the value of Ky ¢ does not
deteriorate. For the special case of T — (0, the azimuthal interaction
impedance characteristics pass on to that for a circular waveguide loaded with
infinitesimally thin discs, for which the analysis was reported earlier, though
only for dispersion characteristics [6]. Interestingly, the variation of the disc
thickness does not appreciably change the value of Ky for a given passband; it
merely shifts the frequency range over which appreciable interaction impedance
is obtained (Fig. 4c). Furthermore, as the disc periodicity is increased, the
passband of frequencies corresponding to the significant azimuthal interaction
impedance shrinks and the center frequency of the passband shifts towards
lower frequencies. Also, the disc periodicity that yields a large value of
azimuthal interaction impedance (Fig. 4b), in general, would be different from
that provides the desired shape of dispersion characteristics for wideband
interaction in a gyro-TWT [6], which suggests a suitable trade-off in the value

of the disc periodicity to be chosen.



A Disc-Loaded Circular Waveguide 1107




1108 Kesari, Jain, and Basu

107 T T T T T
r rD/vW=U.5
L;/r,W =10
10tk |
Th,=0.00 0.05 0.10
'k 4
o
£
o
N
10° !
10"k |
10'2 1 1 Il 1 1
475 4.80 485 490 495 5.00 5.05
kr
w
(©)

Fig. 4 Azimuthal interaction impedance versus frequency characteristics of a
disc-loaded circular waveguide excited in the TEy mode, taking (a)
normalized disc hole radius r, /7y, , (b) normalized disc periodicity
L /ry , and (c) normalized disc thickness T /r,, as parameters. Solid
line with crosses in (a) refers to a smooth-wall circular waveguide
(rp /1y =1.0) [8, 10] and solid line with circles in (c) refers to the
loading of the circular waveguide by infinitesmally thin discs
(T/r, —=0).

4. Conclusion

The analysis of a disc-loaded circular waveguide in the fast-wave regime clearly
shows strong dependence of the azimuthal interaction impedance of the
structure on the disc parameters. Therefore, while optimizing the disc
parameters, in particular the disc periodicity, for the desired shape of the
dispersion characteristics for wideband gyro-TWT performance, due
consideration should be made to ensure that the value of the interaction

impedance does not deteriorate causing a low device gain. It is hoped that the
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present analysis, which is capable of taking into account higher order standing
wave modes in the disc occupied region and higher order space harmonic modes
in the disc free region and which, for practical relevance, considers the effect of
finite disc thickness, should be useful in designing wideband gyro-TWT at large

interaction impedance value.
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