
�
��
��
��
��
�	

�
�	
�

Vasile Surducan Interrupts on PIC micro- Lesson1

Interrupts on PIC micro

1. Lesson1 - introduction

If you are becoming a pic-microcontroller user and all new things are puzzling you, starting with
interrupts would be “the hell thing“ because you’ll have to manage with your own imagination all pic
resources, to got the final goal, a functional and stabile circuit board. Usually all advices you’ll heard from
older pic-micro users would be: “can’t you do it without interrupts ? “ or “ the interrupts are difficult for
beginners ! “. If you are reading now this issue, it’s supposed you have taken already a carefull look on
your favorite pic-micro data sheet . If not, you are encourage to do it, because everything you need to know
is there. I will try just to clarify some interrupt aspects for your eyes (and mine too…) in six practical
lessons. It’s also supposed, you are familiar with JAL language for PIC-microcontrollers, you have already
at least a blinking led running, resulted as your own program writing, compiling and PIC programming or
much better, you have already connected your PIC with your own PC and talking between those without
major breakdowns on your RS232 interface… If you don’t know nothing about all these, you may got some
information browsing here:
• http://www.voti.nl/jal/
• http://www.geocities.com/vsurducan/electro/PIC/pic.htm
• http://groups.yahoo.com/group/jallist/files/

Your first rightful ask would be: “Why we need interrupts?”. The answer it’s easy: because the
PIC microcontroller it’s stupid. “Should I choose then another microcontroller ? “ No, because all
microcontrollers are stupidus ! Only the user it’s clever. PIC microcontroller is doing (almost like your PC
) only one thing once. Don’t try to ask him to solve two different problems in the same time, will not be
possible. For this purpose you need a multi-PIC scheme. But PIC microcontrollers can stop it’s own
principal program execution (called main or main loop because here are chained all instructions which
will run almost all of your tasks) and run a small program branch (called interrupt service routine
because is launched by an interrupt event and usually it has a shorter length and is doing only a few
things, opposite to main which have a considerable length). Because for hobbists and beginners, only flash
midrange PIC-micro are user-friendly usable, having the greatest feature of being reprogramable [while are
running: PIC16F87xA, PIC16F87x, or not: PIC16F7x, PIC16F62x, PIC16F8x, PIC12FXXX], I will talk
only about interrupts on those. For these microcontrollers, the interrupt service routine will began always
from the same address called interrupt vector address (address 04). Fortunately (or not?) for the user,
can be only one Interrupt Service Routine, even the program running inside the ISR may be splitted in
many procedures.

Figure 0-1 The interrupt mechanism

�
��
��
��
��
�	

�
�	
�

Vasile Surducan Interrupts on PIC micro- Lesson1

In JAL, the interrupt service routine must be written inside a procedure’s body, the name of the procedure
it’s irrelevant because will not be called by another main procedures. The only reason why this procedure
is necessary is to keep the pragma interrupt instruction. When the compiler find this instruction will put
the assembled code written after this pragma at address 04. That’s the replacement for org 04h directive in
assembler to put the code (or the call instruction) at the interrupt vector address.

The problems are just begans. As you may know there are three extremely important registers (
between the other 54 different registers in PIC16F877 or just 28 different registers in PIC12F675) : w
register (the accumulator’s result storage register), status register (containing flags of mathematic
operations and bank switching bits) and the FSR register (containing 8 address bits for indirect addressing
). If you have downloaded at least the JAL04.50 compiler all things are clear if you have inspected the
assembler code resulted after a program compilation . If not, do it now after you’ll compile the following
jal lines:

include 16f84_4
include jpic

procedure whats_new_Stan is
 pragma interrupt
end procedure

The essential compilation result would be the next one, which have the necessary translation for used
registers names in the right colum:

ORG 0000
 goto __main
 ORG 0004 ; SAVING ESSENTIAL REGISTERS (PUSH)
 movwf H'0C' ; movwf temporary_w
 swapf H'03',w ; swapf status,w
 clrf H'03' ; clrf status
 movwf H'0D' ; movwf temporary_status
 movfw H'0A' ; movfw pclath
 movwf H'0E' ; movwf temporary_pclath
 clrf H'0A' ; clrf pclath
 movfw H'04' ; movfw FSR
 movwf H'0F' ; movwf temporary_FSR
 goto __interrupt
 ORG 000E
__interrupt: ; 000E ; interrupt user code
_7577__vector: ; 000E
p_7577_whats_new_stan: ; 000E
e_7577_whats_new_stan: ; 000E

; RESTORING THE ESSENTIAL REGISTERS (POP)
 movfw H'0F' ; movfw temporary_FSR
 movwf H'04' ; movwf FSR
 movfw H'0E' ; movfw temporary_pclath
 movwf H'0A' ; movwf pclath
 swapf H'0D',w ; swapf temporary_status, w
 movwf H'03' ; movwf status
 swapf H'0C',f ; swapf temporary_w, f
 swapf H'0C',w ; swapf temporary_w, w
 retfie ; retfie
__main: ; 0017

The first observation it’s the abuse of usage for swapf instruction. Jumping to the instruction set
description of any PIC microcontroller, swapf shows there are no status flags affected by this instruction.
The reason why it’s used here, is because is not modifying the status register while saving and restoring the

�
��
��
��
��
�	

�
�	
�

Vasile Surducan Interrupts on PIC micro- Lesson1

other essential registers. For PIC microcontrollers having less than 2Kbytes memory pages (like
PIC12F629/675, PIC16F84 or PIC16F62x) saving and restoring pclath it’s not necessary. That’s because
the Program Counter in PIC arhitecture has 13 bits wide, splitted in Program Counter Low and Program
Couter High. Only PCL its readable and writable. The PCH it’s writable only via PCLATH register. Any
call or goto instructions provide only 11 bits of address and allow branching within any 2K program
memory page. The upper two bits of the address are provided by PCLATH bites 4 and 3. Those two are
essential in PICs having 4K program memory (PIC16F873/874 PIC16F73/74) or 8K program memory (
PIC16F876/877 PIC16F76/77) because are addressing the desired program memory page. However the PC
is pushed onto the 8 level stack every time a call instruction is executed or an interrupt causes a branch, but
PCLATH is not affected by a push or a pop operation. Note, there is no physical push or pop instructions,
but a sequence of saving-restoring which is used any time an interrupt occure, as the last assembler code
shows. Another important thing is the retfie instruction at the end of the pop sequence which allways
enables all unmasked interrupts by seting the intcon_gie flag. So the interrupts are native enabled in PIC
micro arhitecture, only after the first interrupt has ocured and the ISR was readed. It’s obviously clear
you need to enable the interrupts for the first time somewhere inside the main; (the main program it
contains a definition sequence (includes, register definitions) and the main loop (forever loop… end loop
sequence)), else your interrupt routine will not work at all. The ISR can be placed anywhere in the main,
except in the main loop, and only after the registers used inside the ISR are defined.

Let’s see which are the most important registers dealing with interrupts in PICmicro midrange
arhitecture, first one is the INTCON register:

Figure 0-2 INTCON register

�
��
��
��
��
�	

�
�	
�

Vasile Surducan Interrupts on PIC micro- Lesson1

The intcon_gie flag must be enabled any time when we are reading an interrupt event and be disabled when
the interrupts are interfering with our program branch. One example is writing a long message on the 4
rows, 20 characters LCD when the button read interrupts are enabled. The effect will be a stop in LCD
writing when the reading button interrupt sequence its reached (as will see in Lesson2 Disabling interrupts.
When?). The writing will continue after one button it’s pushed. The cause of this malfunction is the time
length necessary for LCD writing which is longer than button reading refresh rate. Solution: disable
interrupts while the whole message are writted on the LCD or increase the refresh rate for buttons. Last
choice is not applicable, because the refresh rate is usually set between 10mS and 60mS and writing on a
lazy LCD can take much longer.

The intcon_peie flag may be used any time we are dealing with peripheral interrupts. The
interrupt logic diagram of any PIC microcontroller will show us who are the peripheral interrupts:

Figure 0-3 The interrupt logic in PIC16F62x microcontroller

The source of interrupts which can be masked by intcon_peie are dependent by microcontroller resources,
in PIC16F628 they are:
• TiMeR1 Interrupt,
• TiMeR2 Interrupt,
• CompareCapturePwm1 Interrupt,
• CoMparator Interrupt,
• Universal Synchronously Asynchronously Receiver Transmiter Transmit Interrupt (TXI),
• USART Receive Interrupt (RXI),
• EEprom write operation Interrupt

PIC16F877A have the same peripheral interrupts like PIC16F628 and a few more:
• Analogic Digital module Interrupt
• Compare Capture Pwm2 Interrupt
• Synchronous Serial Port Interrupt
• Parallel Slave Port read-writeInterrupt
• Bus CoLision Interrupt

PIC12F675 have the same peripheral interrupts as PIC16F628 except the USART interrupts because there
is no USART module in PIC12F675.

All those interrupt sources have two special bits: the Flag bit and the Enable bit. The enable bit allows the
interrupt to be set and the flag bit allows to read the effect of the interrupt. The flag bit must usually be
cleared in software. Except for the interrupts which can be found inside the intcon register, the peripheral
interrupts are defined by PIE registers (for Enabling the interrupts) and PIR registers (for reading the

�
��
��
��
��
�	

�
�	
�

Vasile Surducan Interrupts on PIC micro- Lesson1

interrupts effect via Flags). For the PIC16F877 there are two PIR and two PIE registers which are
described below:

Figure 0-4 PIR1 register in PIC16F877

�
��
��
��
��
�	

�
�	
�

Vasile Surducan Interrupts on PIC micro- Lesson1

Figure 0-5 PIE1 register in PIC16F877

All peripheral interrupts bits are quite clear described in those PIE-PIR registers. The user must set first the
enable bit coresponding to the interrupts which will be used and then to read the coresponding flag bit and
detetect the interrupt event inside the ISR. The only problem which the user may have, would be to choose
the right reading sequence without loosing any asynchronously event. This will not be easy for multiple
interrupts events (or chained interrupts events) which must be detected. A good rule is to disable the
specific interrupts, while inside the ISR that interrupt event is treated, else (especialy for fast events) the
program may loop in a false forever loop (because of an interrupt event which is taking place inside the
same interrupt branch while the last interrupt is treated)

Going back to intcon register, there were left also three interrupts sources:
• Tmr0 Interrupt
• INT RB0/INT external Interrupt
• RBI RB Port Change Interrupt
TMR0 interrupt is the most frequently used interrupt for small time events detection. TMR0 is an 8 bit wide
register having also a prescaler setable with 8 different rates from 1:2 to 1:256. The prescaler must be
understood as a divider register. The TMR0 register will be incremented one step, from the value which has
been previously written, every time when the prescaler has overflow. When TMR0 has overflow the
coresponding intcon_t0if flag will be set. Inspecting this flag, use the low to high transition of the flag in
conjunction with other time dependent events (ie: reading buttons, increment a real time clock register)
and reseting the flag, it’s an user defineable problem.

�
��
��
��
��
�	

�
�	
�

Vasile Surducan Interrupts on PIC micro- Lesson1

Figure 0-6 PIR2 register for PIC16F877

Figure 0-7 PIE2 register for PIC16F877

�
��
��
��
��
�	

�
�	
�

Vasile Surducan Interrupts on PIC micro- Lesson1

The RB0/INT Interrupt and RB Port Change Interrupt are the microcontroller’s open eyes to the
external world. Even I’ve heard rumors at piclist about the non realiable RB Port Change Interrupts, every
time I’ve used those interrupts I was satisfied. The purpose of interrupt on change are to check the changing
state of the port B4…B7 for fast or slow events. There aren’t good olnly for changing state detection so
don’t try to use them like using the RB0 interrupt because will not work. Don’t try also to detect fast events
using pure JAL and portB change interrupt because will probably don’t work also. But in pure assembler
under JAL will be fine.

The RB0 interrupt it’s perfect for mains zero cross detection (like will see in Lesson 3) or other
external commands (like wake up from sleep on various external events). Using an external logic, the
RB0/INT may be multiplexed to as many inputs we need, using the same scheme presented in figure 0.3 for
peripheral interrupts inside the PIC.

There are minor differences in naming the interrupt bits which belongs to the interrupt registers, in
various PIC microcontrollers. But the bits function are almost the same. For example the intcon register
from PIC12F675. You may notice only the GPIF and GPIE differences against RBIF and RBIE from the
other midrange PIC microcontrollers.

I’ve heard about many programs claiming they can transform the PIC into a multitasking tool
using the interrupts in a fancy way. I have doubts there is an universal solution for using interrupts.
However, a good starting point for understanding interrupts will be also:
AN585 – A Real-Time Operating systems for PIC micro Microcontrollers
AN576 – Tehniques to Disable Global Interrupts
AN566 – Using the PortB Interrupt on Change as an External Interrupt
All this application notes can be found in Embedeed Control Handbook, vol1 edited by Microchip, or on
http://www.microchip.com

