Vasile Surducan Interrupts on PIC micro- Lesson1

Interrupts on PIC micro

1. Lesson1 - introduction

If you are becoming a pic-microcontroller user and all new things are puzzling you, starting with
interrupts would be “the hell thing” because you’ll have to manage with your own imagination all pic
resources, to got the final goal, a functional and stabile circuit board. Usually all advices you’ll hear m
older pic-micro users would be: “can’t you do it without interrupts ? “ or “ the interrupts are difficu
beginners ! “. If you are reading now this issue, it’s supposed you have taken already a carefull look o
your favorite pic-micro data sheet . If not, you are encourage to do it, because everything you need to know ‘

is there. I will try just to clarify some interrupt aspects for your eyes (and mine too...) i ctical
lessons. It’s also supposed, you are familiar with JAL language for PIC-microcontrollers, yo ady
at least a blinking led running, resulted as your own program writing, compiling and P, or g or

much better, you have already connected your PIC with your own PC and talking betwe se without
major breakdowns on your RS232 interface... If you don’t know nothing about alLthese, got some
information browsing here:

e http://www.voti.nl/jal/

e http://www.geocities.com/vsurducan/electro/PIC/pic.htm
e http://groups.yahoo.com/group/jallist/files/

Your first rightful ask would be: “Why we need inte nswer it’s easy: because the
PIC microcontroller it’s stupid. “Should I choose th‘an ocontroller ? “ No, because all
microcontrollers are stupidus ! Only the user it’s clever. P iCro, oller is doing (almost like your PC
) only one thing once. Don’t try to ask him to solve t t problems in the same time, will not be
possible. For this purpose you need a multi-PIC sc . But’PIC microcontrollers can stop it’s own
principal program execution (called main ause here are chained all instructions which
ram branch (called interrupt service routine
it has a shorter length and is doing only a few
gth). Because for hobbists and beginners, only flash

=

things, opposite to main which have
midrange PIC-micro are user-friend
running: PIC16F87xA, PIC16F87x,
only about interrupts on those,
from the same address called
can be only one Interru
many procedures.

rocontrollers, the interrupt service routine will began always
rrupt vector address (address 04). Fortunately (or not?) for the user,
Routine, even the program running inside the ISR may be splitted in

interrupt
event

f‘_'-'_'_'_'_

isr main

main loop

interrupt service routine
saving and restoring
essential registers

1l

Figure 0-1 The interrupt mechanism

Vasile Surducan Interrupts on PIC micro- Lesson1

In JAL, the interrupt service routine must be written inside a procedure’s body, the name of the procedure
it’s irrelevant because will not be called by another main procedures. The only reason why this procedure
is necessary is to keep the pragma interrupt instruction. When the compiler find this instruction will put
the assembled code written after this pragma at address 04. That’s the replacement for org 04h directive in
assembler to put the code (or the call instruction) at the interrupt vector address.

The problems are just begans. As you may know there are three extremely important registers (
between the other 54 different registers in PIC16F877 or just 28 different registers in PIC12F675) : w
register (the accumulator’s result storage register), status register (containing flags of mathematic
operations and bank switching bits) and the FSR register (containing 8 address bits for indirect addressing
). If you have downloaded at least the JAL04.50 compiler all things are clear if you have inspected the
assembler code resulted after a program compilation . If not, do it now after you’ll compile the follow1

jal lines: ’

include 16£f84 4
include jpic

procedure whats_new_Stan is
pragma interrupt
end procedure

The essential compilation result would be the next one, which h ces translation for used
registers names in the right colum:

ORG 0000
goto __main ‘
ORG 0004 ; SAVING N REGISTERS (PUSH)
movwf H'0C! ; MOVW em ry w
swapf H'03',w tatus,w
clrf H'03! us
movwf H'0OD' emporary status
moviw H'O0A!' clath

movwf H'OE'
clrf H'oA!
moviw H'04'
movwt H'OF'
goto __interrup

temporary pclath
1rf pclath

oviw FSR

; movwf temporary FSR

ORG 000E
___interrupt: ; ; ilnterrupt user code
_7577__vecto
p_7577 what A : 4 000E
e 7577 what w_stan: ; O0O0OE

; RESTORING THE ESSENTIAL REGISTERS (POP)
vail '@QF"' ; movfw temporary FSR
f 4! ; movwf FSR

'0E! ; movfw temporary pclath
H'oA! ; movwf pclath
H'OD',w ; swapf temporary status, w
vwf H'03' ; movwf status

swapf H'oC', £ ; swapf temporary w, £
swapf H'0C',w ; swapf temporary w, w
retfie ; retfie
main: ; 0017

The first observation it’s the abuse of usage for swapf instruction. Jumping to the instruction set
description of any PIC microcontroller, swapf shows there are no status flags affected by this instruction.
The reason why it’s used here, is because is not modifying the status register while saving and restoring the

Vasile Surducan Interrupts on PIC micro- Lesson1

other essential registers. For PIC microcontrollers having less than 2Kbytes memory pages (like
PIC12F629/675, PIC16F84 or PIC16F62x) saving and restoring pclath it’s not necessary. That’s because
the Program Counter in PIC arhitecture has 13 bits wide, splitted in Program Counter Low and Program
Couter High. Only PCL its readable and writable. The PCH it’s writable only via PCLATH register. Any
call or goto instructions provide only 11 bits of address and allow branching within any 2K program
memory page. The upper two bits of the address are provided by PCLATH bites 4 and 3. Those two are
essential in PICs having 4K program memory (PIC16F873/874 PIC16F73/74) or 8K program memory (
PIC16F876/877 PIC16F76/77) because are addressing the desired program memory page. However the PC
is pushed onto the 8 level stack every time a call instruction is executed or an interrupt causes a branchs but
PCLATH is not affected by a push or a pop operation. Note, there is no physical push or pop instruc ,
but a sequence of saving-restoring which is used any time an interrupt occure, as the last assembler co

shows. Another important thing is the retfie instruction at the end of the pop sequence which allways
enables all unmasked interrupts by seting the intcon_gie flag. So the interrupts are native en
micro arhitecture, only after the first interrupt has ocured and the ISR was readed. It’s o
you need to enable the interrupts for the first time somewhere inside the main; (the
contains a definition sequence (includes, register definitions) and the main loop (for
sequence)), else your interrupt routine will not work at all. The ISR can be placed a
except in the main loop, and only after the registers used inside the ISR are defi

Let’s see which are the most important registers dealing with int ts 1 micro midrange
arhitecture, first one is the INTCON register: A
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-x
GIE PEIE TOIE INTE RBIE TOIF INTF RBIF
bit 7 bit 0
bit 7 GIE: Global Interrupt Enable bit

1 = Enables all unmasked interrupts
0 = Disables all interrupts
bit 6 PEIE: Peripheral Interrupt Enable bit
1 = Enables all unmasked peripheral interrupts
0 = Disables all peripheral interrupts
bit 5 TOIE: TMRO Overflow Interrupt Enable bit
1 = Enables the TMRO interrupt
0 = Disables the TMRO interrupt
bit 4 INTE: RBO/INT External Interrupt Enable bit
1 = Enables the RBO/INT external interrupt
0 = Disables the RBO/INT external interrupt
bit 3 RBIE: RB Port Change Interrupt Enable bit

1 = Enables the RB port change interrupt
0 = Disables the RB port change interrupt

bit 2 TOIF: TMRO Overflow Interrupt Flag bit
1 = TMRO register has overflowed (must be cleared in software)
0 = TMRO register did not overflow
‘ bit 1 INTF: RBO/INT External Interrupt Flag bit
1 = The RBO/INT external interrupt occurred (must be cleared in software)

0 = The RBO/INT external interrupt did not occur
bit 0 RBIF: RB Port Change Interrupt Flag bit

1 = At least one of the RB7:RB4 pins changed state; a mismatch condition will continue to set
the bit. Reading PORTB will end the mismatch condition and allow the bit to be cleared
(must be cleared in software).

0 = None of the RB7:RB4 pins have changed state

Figure 0-2 INTCON register

Vasile Surducan Interrupts on PIC micro- Lesson1

The intcon_gie flag must be enabled any time when we are reading an interrupt event and be disabled when
the interrupts are interfering with our program branch. One example is writing a long message on the 4
rows, 20 characters LCD when the button read interrupts are enabled. The effect will be a stop in LCD
writing when the reading button interrupt sequence its reached (as will see in Lesson2 Disabling interrupts.
When?). The writing will continue after one button it’s pushed. The cause of this malfunction is the time
length necessary for LCD writing which is longer than button reading refresh rate. Solution: disable
interrupts while the whole message are writted on the LCD or increase the refresh rate for buttons. Last
choice is not applicable, because the refresh rate is usually set between 10mS and 60mS and writing on a
lazy LCD can take much longer.

The intcon_peie flag may be used any time we are dealing with peripheral interrupts.\The
interrupt logic diagram of any PIC microcontroller will show us who are the peripheral interrupts:

Wake-up (If in SLEEP mode)

TOIF
TMR1IF TOIE
TMRA1IE . N
TMR2IF INTF !
™ R2|E:| } INTE
Interrupt to CPU

CCP1IF RBIF
CCP1IE RBIE

CMIF =

CMIE PEIE 4/

TXIF

TXIE

RCIF GIE

RCIE :I)

EEIF

EEIE

Figure 0-3 The interrupt logi N(SF‘&X microcontroller

The source of interrupts which can b ed
in PIC16F628 they are:
TiMeR1 Interrupt,
TiMeR2 Interrupt,
CompareCapturePwml I
CoMparator Interrupt,
Universal Synchro
USART Receiv

EEprom writ

intcon peie are dependent by microcontroller resources,

PIC16F877 \'(S

o a

same peripheral interrupts like PIC16F628 and a few more:
odule Interrupt

re Pwm?2 Interrupt

Serial Port Interrupt

lave Port read-writeInterrupt

F675 have the same peripheral interrupts as PIC16F628 except the USART interrupts because there
is no USART module in PIC12F675.

All those interrupt sources have two special bits: the Flag bit and the Enable bit. The enable bit allows the
interrupt to be set and the flag bit allows to read the effect of the interrupt. The flag bit must usually be
cleared in software. Except for the interrupts which can be found inside the intcon register, the peripheral
interrupts are defined by PIE registers (for Enabling the interrupts) and PIR registers (for reading the

Vasile Surducan

Interrupts on PIC micro- Lesson1

interrupts effect via Flags). For the PIC16F877 there are two PIR and two PIE registers which are

described below:

bit 7
bit 6
bit 5
bit 4

bit 3

bit 2

bit 1

‘bito

RW-0 RW-0 R-0 R-0 RW-0 RW-0 RW-0 RW-0
psPF | ADIF | RCIF TXIF | SSPIF | cCP1IF | TMR2IF | TMR1IF
bit 7 bit 0

PSPIF(): Parallel Slave Port Read/Write Interrupt Flag bit
1 = A read or a write operation has taken place (must be cleared in software)
0 = No read or write has occurred

ADIF: A/D Converter Interrupt Flag bit

1 = An A/D conversion completed

0 = The A/D conversion is not complete

RCIF: USART Receive Interrupt Flag bit

1 = The USART receive buffer is full

0 = The USART receive buffer is empty

TXIF: USART Transmit Interrupt Flag bit

1 = The USART transmit buffer is empty

0 = The USART transmit buffer is full

SSPIF: Synchronous Serial Port (SSP) Interrupt Flag
1 = The SSP interrupt condition has occurred, and must be cleared in software before returning
from the Interrupt Service Routine. The conditions that will set this bit are:
+ SPI
- A transmission/reception has taken place.

« I°’C Slave
- A transmission/reception has taken place.
« I°C Master

- Atransmission/reception has taken place.

- The initiated START condition was completed by the SSP module.

- The initiated STOP condition was completed by the SSP module.

- The initiated Restart condition was completed by the SSP module.

- The initiated Acknowledge condition was completed by the SSP module.

- A START condition occurred while the SSP module was idle (Multi-Master system).

- A STOP condition occurred while the SSP module was idle (Multi-Master system).
0 = No SSP interrupt condition has occurred.

CCP1IF: CCP1 Interrupt Flag bit

Capture mode:

1 = A TMR1 register capture occurred (must be cleared in software)

0 = No TMR1 register capture occurred

Compare mode:

1 = A TMR1 register compare match occurred (must be cleared in software)
0 = No TMR1 register compare match occurred

PWM mode:

Unused in this mode

TMR2IF: TMR2 to PR2 Match Interrupt Flag bit
1 = TMR2 to PR2 match occurred (must be cleared in software)
0 = No TMR2 to PR2 match occurred

TMR1IF: TMR1 Overflow Interrupt Flag bit
1 = TMR1 register overflowed (must be cleared in software)
0 = TMR1 register did not overflow

Note 1: PSPIF is reserved on PIC16F873/876 devices; always maintain this bit clear.

Figure 0-4 PIR1 register in PIC16F877

‘ Vasile Surducan Interrupts on PIC micro- Lesson1 |

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
pspPIE() ADIE RCIE TXIE SSPIE CCP1IE | TMRZIE | TMR1IE |
bit 7 bit 0
bit 7 PSPIE": Parallel Slave Port Read/Write Interrupt Enable bit

1 = Enables the PSP read/write interrupt
0 = Disables the PSP read/write interrupt

bit 6 ADIE: A/D Converter Interrupt Enable bit
1 = Enables the A/D converter interrupt \
0 = Disables the A/D converter interrupt

bit 5 RCIE: USART Receive Interrupt Enable bit

1 = Enables the USART receive interrupt
0 = Disables the USART receive interrupt
bit 4 TXIE: USART Transmit Interrupt Enable bit

1 = Enables the USART transmit interrupt
0 = Disables the USART transmit interrupt

bit 3 SSPIE: Synchronous Serial Port Interrupt Enable bit

1 = Enables the SSP interrupt
0 = Disables the SSP interrupt

bit 2 CCP1IE: CCP1 Interrupt Enable bit
1 = Enables the CCP1 interrupt
0 = Disables the CCP1 interrupt
bit 1 TMR2IE: TMR2 to PR2 Match Interrupt Enable bit
1 = Enables the TMR2 to PR2 match interrupt
0 = Disables the TMR2 to PR2 match interrupt
bit 0 TMR1IE: TMR 1 Overflow Interrupt Enable bit

1 = Enables the TMR1 overflow interrupt
0 = Disables the TMR1 overflow interrupt

Note 1: PSPIE is reserved on PIC16F873/876 devices; always maintain this bit clear.

~—

igure 0-5 PIE1 register in PIC16F877

All peripheral interru e clear described in those PIE-PIR registers. The user must set first the
enable bit corespondi

ained interrupts events) which must be detected. A good rule is to disable the
hile inside the ISR that interrupt event is treated, else (especialy for fast events) the

Going back to intcon register, there were left also three interrupts sources:

Interrupt

T RBO/INT external Interrupt

¢ RBI RB Port Change Interrupt

TMRO interrupt is the most frequently used interrupt for small time events detection. TMRO is an 8 bit wide
register having also a prescaler setable with 8 different rates from 1:2 to 1:256. The prescaler must be
understood as a divider register. The TMRO register will be incremented one step, from the value which has
been previously written, every time when the prescaler has overflow. When TMRO has overflow the
coresponding intcon_t0if flag will be set. Inspecting this flag, use the low to high transition of the flag in
conjunction with other time dependent events (ie: reading buttons, increment a real time clock register)
and reseting the flag, it’s an user defineable problem.

Vasile Surducan Interrupts on PIC micro- Lesson1 |

bit 7
bit 6
bit 5
bit 4

bit 3

bit 2-1
bit 0

bit 7
bit 6
bit 5
bit 4

bit 3

:bit 2-1

bit O

u-0 R/W-0 u-0 R/W-0 R/W-0 u-0 u-0 R/W-0
— Reserved e EEIF BCLIF — — CCP2IF
bit 7 bit 0

Unimplemented: Read as '0'

Reserved: Always maintain this bit clear

Unimplemented: Read as '0'

EEIF: EEPROM Write Operation Interrupt Flag bit

1 = The write operation completed (must be cleared in software))
0 = The write operation is not complete or has not been started ‘
BCLIF: Bus Collision Interrupt Flag bit

1 = A bus collision has occurred in the SSP, when configured for I2C Master mode

0 = No bus collision has occurred

Unimplemented: Read as '0'

CCP2IF: CCP2 Interrupt Flag bit

Capture mode:

1 = ATMR1 register capture occurred (must be cleared in software)

0 = No TMR1 register capture occurred

Compare mode:

1 = A TMR1 register compare match occurred (must be cleared in software)
0 = No TMR1 register compare match occurred

PWM mode:
Unused
Figure 04@ PIC16F877
-—
U-0 RIW-0 U-0 R/W-0 R/W-0 U-0 U-0 RMW-0
— |Reserved| — | EEE | BOLE — — | ccP2ie
bit 7 bit 0

Unimplemented: Read as '0'

Reserved: Always maintain this bit clear
Unimplemented: Read as '0'

EEIE: EEPROM Write Operation Interrupt Enable

1 = Enable EE Write Interrupt
0 = Disable EE Write Interrupt

BCLIE: Bus Collision Interrupt Enable

1 = Enable Bus Collision Interrupt
0 = Disable Bus Collision Interrupt

Unimplemented: Read as '0'
CCP2IE: CCP2 Interrupt Enable bit

1 = Enables the CCP2 interrupt
0 = Disables the CCP2 interrupt

Figure 0-7 PIE2 register for PIC16F877

Vasile Surducan Interrupts on PIC micro- Lesson1

The RBO/INT Interrupt and RB Port Change Interrupt are the microcontroller’s open eyes to the
external world. Even I’ve heard rumors at piclist about the non realiable RB Port Change Interrupts, every
time I’ve used those interrupts I was satisfied. The purpose of interrupt on change are to check the changing
state of the port B4...B7 for fast or slow events. There aren’t good olnly for changing state detection so
don’t try to use them like using the RBO interrupt because will not work. Don’t try also to detect fast events
using pure JAL and portB change interrupt because will probably don’t work also. But in pure assembler
under JAL will be fine.

The RBO interrupt it’s perfect for mains zero cross detection (like will see in Lesson 3) or other
external commands (like wake up from sleep on various external events). Using an external logigs the
RBO/INT may be multiplexed to as many inputs we need, using the same scheme presented in figure 0°3 for
peripheral interrupts inside the PIC.

There are minor differences in naming the interrupt bits which belongs to the interrupt registers, in
various PIC microcontrollers. But the bits function are almost the same. For example the i register
from PIC12F675. You may notice only the GPIF and GPIE differences against RBIF and
other midrange PIC microcontrollers.

I’ve heard about many programs claiming they can transform the PIC int
using the interrupts in a fancy way. I have doubts there is an universal solution
However, a good starting point for understanding interrupts will be also:

ANS585 — A Real-Time Operating systems for PIC micro Microcontrollers

AN576 — Tehniques to Disable Global Interrupts

AN566 — Using the PortB Interrupt on Change as an External Inte
All this application notes can be found in Embedeed Control Hand

http://www.microchip.com E

interrupts.

VO ited by Microchip, or on

0‘6

