
Using PERL with HAL to Retrieve Web Data

Abstract:  This document discusses the technique of using PERL to screen-scrape web
pages and make the data thus obtained available to HAL.  Includes a mini-primer on
PERL and details on how to obtain and use it.



The Goal
HAL already integrates limited access to
Internet data.  HAL can tell you the weather
forecast, sports scores, TV Listings, and
traffic conditions.
However, these items all come from
proprietary Internet sources, and are not
adjustable by HAL users.
Many users have been asking for a long
time to be able to pull other web data into a
form HAL can use.  This document details
how to do this, in a way that anyone can
use.

Speaking Text
HAL V.2.0 offers a new feature, one that
has been much in demand by HAL users.
A simple feature, but one that until now
was missing.  Simply the ability to invoke a
plain-text file and have the Text-to-Speech
engine in HAL read the file.
Until Version 2.0, the only way to have HAL
read text is to program that text as an
action item either for a rule or macro.
This opens the door to having
HAL speak all sorts of data.
Once we are able to do this,
we will discuss ways to make
that data available to other
functions.

Running a Program
HAL has long had the ability to invoke an
external program.  However, Version 2
brings the ability to not only run a program,
but to also include
command line
parameters.  This makes
it a little easier to invoke
specific programs, but
without this ability we
could still perform the
functions we need via
DOS Batch files.

What’s a Screen
Scraper?
Web pages are really just text, with some
graphics to make it pretty.  The text part is
formatted in a structure called HTML.
HTML essentially litters the text with tokens

like <P> and <B> and so on, things which
tell a browser how to display it.  You can
see what this looks like by going to a
simple text web page (e.g.
http://www.deco-group-partners.com) and
selecting View|Source from your browser’s
menu.
A program does not have to be a browser
to read web pages and make sense out of
them.  Any tool that can manipulate text in
a structured manner can do so.  A screen-
scraper is merely a program that reads an
HTML page, searches the text,
manipulating the data we want, and
ignoring the rest.

Tools to Operate
With the new capabilities in HAL it quickly
becomes obvious that we can have HAL
find and speak any data on the web.  We
just need a few more tools to bring it all
together.
The first tool we need is something to
manipulate the text and HTML tags on the

web pages we are
interested in.  Most
computer languages
these days have
extensive operators
for processing text.
Almost any language

can meet this requirement.
The second tool we need is a Screen-
Scraper.  Ideally, our screen scraper can
grab a web page, stuff it into an array or

other data
structure, and pass
it over to our
program to parse
out the data we are
interested in.
We can manipulate
bare HTML data
with any language,
but highly desirable

is a tool that can deal more directly with
HTML tags, saving us from unnecessarily
re-inventing the wheel.

What is PERL?
PERL is an acronym for Practical
Extraction and Report Language
Invented in 1986 by Larry Wahl, it is
primarily a language for processing
text.

Downloading PERL
PERL sources and documentation exist at
the CPAN, but for the Windows version, you
can download the package at
www.activestate.com.  Select Languages |
Downloads, then select ActivePerl |
download.  Select the MSI file for Windows.
ActivePerl-5.6.1.635-MSWin32-x86.msi
It’s currently an 8.6 MB download.  Save the
file in a safe spot then double-click to install.

http://www.activestate.com/


PERL to the Rescue
PERL is an invisible wonder.  It is so
pervasive on the web as to be unseen,
unnoticed, and unrecognized.  It is
available on almost any computer, and
within some reasonable limits, code written
in PERL is extremely portable from one
computer to another, across laptops and
mainframes, across Windows, UNIX and
MAC.  Most web servers on the Internet
make extensive use of PERL.
This is because, among other things, PERL
is free, open source software with no limits
placed on it’s use.  It’s also because PERL

programs that contain far more elegance
and complexity than they could build
themselves.

Mechanize PERL Module
Two CPAN modules are of interest to our
purpose.
Mechanize allows you to go to a URL and
explore the site, following links by name,
taking cookies, filling in forms and clicking
"submit" buttons.

TokeParser is an HTML aware text parser.
The initial examples in this document only
use Mechanize, but for more complex

tasks, TokeParser will
become extremely
valuable.
Mechanize takes a URL
Downloading Mechanize
Located on the CPAN site, Mechanize.PM is easily downloaded from
http://search.cpan.org/author/PETDANCE/WWW-Mechanize-0.33/lib/WWW/Mechanize.pm
It should be placed in C:\Perl\lib\WWW\ for access by your scripts.
is extremely powerful.  And finally it’s
because of something called CPAN, the
Comprehensive Perl Archive Network.
CPAN provides for a global, organized
access to all things PERL.
Beyond PERL itself, documentation and so
forth, CPAN also provides a central
archival and distribution point for PERL
modules.  PERL Modules are blocks of
PERL code that
are tested,
debugged and
encapsulated so
as to hide their
complexity.  They
are freely
available, and
easy to use.  They
allow novice
PERL users to
leverage the
talent and
expertise of more
experienced
programmers, and
to easily build

as a argument and returns the HTML text
of the web page in a variable named
{content}.
Once we have the contents of the web
page in a variable within our program,
extracting the data we want becomes a
matter of simple text manipulation.

Getting Started With PERL
The first thing you must do is
download and install PERL.
You can, of course, do this
from CPAN, but a company
named ActiveState has
created a Windows Installer
package for the less
technical users that
automates what would
otherwise be a tedious
process.  All you need do is
download the file .msi and
then  double-click on it.
The installation will create a
directory tree on your hard
drive that contains the
components of the program,

starting with the top level C:\Perl directory.
Note that immediately under C:\Perl is
C:\Perl\lib where libraries are stored.

Testing PERL
Once you’ve installed PERL on your
computer, you might wish to test it before
trying anything more complex.  To do so,
open a DOS CMD window and cd C:\Perl.
At the C:> prompt type the following:

C:\Perl>copy con helloworld.pl
print "Howdy, world!\n";
^Z

1 file(s) copied.

C:\Perl>perl helloworld.pl
Howdy, world!

C:\Perl>

If you get the shown response, Perl is
working

http://search.cpan.org/author/PETDANCE/WWW-Mechanize-0.33/lib/WWW/Mechanize.pm


Anatomy of a PERL Screen-Scraper
We are going to build a simple screen
scraper program.  The first step is to
declare the external libraries we are using.
The USE statement tells the PERL
interpreter to look in C:\Perl\lib\WWW\ for
the file Mechanize.pm and import it.
Next, we create a local instance of the
variables and data structures defined in
Mechanize.pm, using the my statement.

Once we
have the
data
structures
set up, the
next step is

to open the file we intend to write our data
out to. This is accomplished by the open
statement.  An item of note here is that if
the open fails for any reason (file in use,
disk full, whatever) the program will
terminate with a message.

In three lines of code, we now have our
screen-scraper initialized and our
destination file open.  Now we need only
provide a URL and the program will go
retrieve the HTML text.
The $agent-get function takes the URL as
an argument and returns the data in an
element named content.

Regular Expressions
Regular expressions ("regex's" for short)
are sets of symbols and syntactic elements
used to match patterns of text.
Regular expressions figure into all kinds of
text-manipulation tasks. Searching and
search-and-replace are among the more
common uses, but regular expressions can
also be used to test for certain conditions in
a text file or data stream.
The remaining lines of the program are
regex and print statements writing the

results of the regex to the output file.
Actually, we only use two regex
statements, Match (m) and Substitute (s).
The first looks at the content variable and
returns a string matching the match
statement.  First we look for a statement
beginnint ‘at:’ and containing a space, one
or two digits, a colon, two more digits,
another space, two letters, another space
and finally three letters.  This contains the
timestamp information.
We then look for the PST or PDT field and
replace that with the words Pacific Time
and Pacific Daylight Time.
Lastly, we grab the actual temperature
reading and pad a few words around it and
we’re done.

U
O
r
h
T
t

W
T

;

# Find the word AT: and grab the timestamp following it
# match the string    'at: nn:nn a|pm PS|DT-->'
$agent->{content} =~ m/at:\s\d{1,2}:\d\d\s\S\S\s\S\S\S/;
$t = $&;  # place matched data into a string

$t =~ s/://; # remove the colon
$t =~ s/PST/Pacific Time/; # expand abbreviation
$t =~ s/PDT/Pacific Daylight Time/; # expand abbreviation

print (EX $t); # ‘at 9:54 pacific time’

# Skip ahead past the '22'
$agent->{content} =~ m/22/;

# Find the end of the line and grab the temperature
$agent->{content} =~ m/-->\n\d\d</;
$t = $&;   # place matched data into a string

$t =~ s/\n//; # Remove the newline
$t =~ s/-->/ the temperature was /; # replace the arrow
chop($t);          # Chop off the back arrow.

print (EX $t);  print (EX " degrees, according to yahoo");
close(EX);
#!
# External libraries
use WWW::Mechanize;

# Create local instances
my $agent = WWW::Mechanize->new();
open(EX, "> Temperature.TXT ")
   || die "ERROR! Unknown problem opening TXT file."
sing Temperature with HAL

# Go grab the web page into content
$agent->get("http://weather.yahoo.com/forecast/USCA0195_f.html");
# Change URL to match desired zip code
nce the PERL program is complete, test
un it from the command line as we did the
elloworld program.  Then type out the file
emperature.TXT.  This should look like

his:

e can create several programs using
emperature.pl as a template, and retrieve

C:\Perl>perl temperature.pl

C:\Perl>type temperature.txt
at 9:54 pm Pacific Time the temperature was 53 degrees,
according to yahoo



all sorts of interesting weather data one
item at a time.  But making them available
to HAL still requires some macros in HAL
to operate them.
At it’s simplest, what is required is a macro
that will recognize a voice command, in this
case, “What is the outside temperature?”
and invoke the program.  This is where the
new HAL v. 2 feature of being able to
provide arguments to external programs

becomes helpful.  We tell HAL to run the
PERL interpreter located in
C:\perl\bin\ and pass the argument
C:\perl\temperature.pl to it.
Unfortunately, HAL makes no
provision to notify us when the
program is complete.  The time to
access the web is variable and
could be very short, or it could be
fairly long, and we have no way to know
when it is done.  This causes us a problem,
because we don’t know when to read the
file.  Fortunately, waiting 10 seconds and
then just blindly reading the file seems to
work most of the time.
Is it live or is it Memorex?
The only other remaining problem is
knowing whether the data is real or not.
That is, since the data stays around in a
text file long after it’s spoken, we could, for
example, fail to reach yahoo, and then read
yesterday’s file and not know it.  There is
an easy fix though.  Simply create a file
named noyahoo.txt.  In it place a line of text
something like “I’m sorry, but I can’t reach
yahoo right now”.
What we want to have happen is that
sometime after we read out the
temperature, we copy our noyahoo.txt file
onto temperature.txt, This way, if the

temperature program fails, HAL will tell us
he couldn't get the data.
Unfortunately, HAL does not allow us to
execute MSDOS commands.  So we have
to create a batch file which we can then
have HAL run as a program.  This is very
easy to do, and for those not familiar with
the process, see the example.  I should
point out that I use a special directory to
hold small utilities and batch files, called

C:\bin.  It’s a good
idea to keep these
sorts of things
together.  Then add
one more action to
our Macro (shown
in italics) to invoke
the batch file in five
minutes.

What did he say?
Why wait five minutes to change the file?
Actually, for the purposes we’ve discussed
herein, we could invoke the batch file
immediately.  However, that deprives us of
a valuable option, the option to ask for a
repeat. I find that when others are in the
house, invariably just as HAL begins to
speak, someone will try to interrupt.  Or the
dog will bark.  Or the phone ring.  Or the
doorbell.  Or SOMETHING!
In an earlier document1, I described the
process of enabling remember and repeat
important announcements on command.  I
won’t detail that process here, but rather
refer the reader to the earlier document.
Adding a flag, rule and a few more actions,
HAL can easily repeat the reading on
command.

                                               
1 http://www.deco-group-partners.com/HAL-Announcements.pdf

MACRO Weather Temperature Yahoo {681} “What is the outside temperature?”
   Run Program C:\perl\bin\perl.exe  {C:\perl\temperature.pl}
   TTS: “Let me ask my computer buddy over at yahoo weather”
   In 10 seconds Speak Text File C:\Program files\HAL\temperature.txt
  In five minutes Run Program C:\bin\notemperature.bat

HAL then responds:
at 9:54 pm Pacific Time the temperature was 53 degrees, according to yahoo

Creating a batch file to overwrite the temperature file
C:\>cd \bin
C:\BIN>copy con notemperature.bat
copy noyahoo.txt temperature.txt
^Z

1 file(s) copied.

C:\BIN>


	The Goal
	Speaking Text
	Running a Program
	What’s a Screen Scraper?
	Tools to Operate
	PERL to the Rescue
	Mechanize PERL Module
	Getting Started With PERL
	The first thing you must do is download and install PERL.  You can, of course, do this from CPAN, but a company named ActiveState has created a Windows Installer package for the less technical users that automates what would otherwise be a tedious proces
	The installation will create a directory tree on your hard drive that contains the components of the program, starting with the top level C:\Perl directory.  Note that immediately under C:\Perl is C:\Perl\lib where libraries are stored.�Anatomy of a PERL
	Regular Expressions
	Using Temperature with HAL
	Is it live or is it Memorex?
	What did he say?
	Why wait five minutes to change the file?  Actually, for the purposes we’ve discussed herein, we could invoke the batch file immediately.  However, that deprives us of a valuable option, the option to ask for a repeat. I find that when others are in the
	In an earlier document�, I described the process of enabling remember and repeat important announcements on command.  I won’t detail that process here, but rather refer the reader to the earlier document.  Adding a flag, rule and a few more actions, HAL

