Chapter 15: Chemical Equilibrium

- chemical equilibrium - condition where the concentration of products and reactants do not change with time

15.1 The concept of Equilibrium

- at equilibrium $\mathrm{k}_{\mathrm{f}}[\mathrm{A}]=\mathrm{k}_{\mathrm{r}}[\mathrm{B}]$
$-\quad \frac{[B]}{[A]}=\frac{k_{f}}{k_{r}}=$ constan t

15.2 The Equilibrium Constant

- equilibrium condition can be reached from either forward or reverse direction
- Cato Maximillian Galdberg (1836-1902), and Peter Wauge (1833-1900)
- Law of mass action - relationship between concentrations of reactions and products at equilibrium
- If $\mathrm{aA}+\mathrm{bB} \leftrightarrow \mathrm{pP}+\mathrm{qQ}$:
- $\mathrm{k}_{\mathrm{c}}=\frac{[\mathrm{P}]^{\mathrm{p}}[\mathrm{Q}]^{\mathrm{q}}}{[\mathrm{A}]^{\mathrm{a}}[\mathrm{B}]^{\mathrm{b}}}$ (equilibrium expression)
- equilibrium expression depends only on stoichiometry of reaction and not mechanisms
- equilibrium constant:
- does not depend on initial concentrations
- does not matter if other substances present as long as they do not react with reactants or products
- varies with temperatures
- no units

15.2.1 Expressing Equilibrium Constants in Terms of Pressure, $\mathbf{k}_{\mathbf{p}}$

$$
-\mathrm{k}_{\mathrm{p}}=\frac{\left(\mathrm{P}_{\mathrm{P}}\right)^{\mathrm{p}}\left(\mathrm{P}_{\mathrm{Q}}\right)^{\mathrm{q}}}{\left(\mathrm{P}_{\mathrm{A}}\right)^{\mathrm{a}}\left(\mathrm{P}_{\mathrm{B}}\right)^{\mathrm{b}}}
$$

15.2.2 The Magnitude of Equilibrium Constants

- $\mathrm{k} \gg 1$; equilibrium lies to the right; products favored
- $\quad \mathrm{k} \ll 1$; equilibrium lies to the left; reactants favored

15.2.3 The Direction of the Chemical Equation and K

- equilibrium expression written in one direction is the reciprocal of the one in the other direction

15.3 Heterogeneous Equilibria

- homogeneous equilibria - substances in the same phase
- heterogeneous equilibria - substances in different phases
- concentration of pure liquid or solid
$-\quad \frac{\text { Density }}{\mathrm{M}}=\frac{\mathrm{mol}}{\mathrm{cm}^{3}}$
- density of pure liquid or solid is constant at any temperature
- if pure solid or liquid is involved in a reaction, its concentration is excluded from equilibrium expression
- pure solids must be present for equilibrium to be reached even through they are excluded from equilibrium expression

15.4 Calculating Equilibrium Constants

- determining unknown equilibrium concentrations
- 1) tabulate known initial and equilibrium concentrations
- 2) calculate change in concentration that occurs as system reaches equilibrium
- 3) use stoichiometry to determine change in concentration of unknown species
- 4) from initial concentrations and changes in concentrations, calculate equilibrium concentrations

15.4.1 Relating k_{c} and k_{p}

- $\quad \mathrm{PV}=\mathrm{nRT} ; \mathrm{P}=(\mathrm{n} / \mathrm{V}) \mathrm{RT}=\mathrm{MRT}$
- $\quad \mathrm{P}_{\mathrm{A}}=[\mathrm{A}](\mathrm{RT})$
- $\quad \mathrm{K}_{\mathrm{p}}=\mathrm{k}_{\mathrm{c}}(\mathrm{RT})^{\Delta \mathrm{n}}$
- $\Delta \mathrm{n}=$ change in moles from reactants to products

15.5 Applications of Equilibrium Constants

- equilibrium constant:
- 1) product direction reaction mixture will proceed
- 2) calculate concentrations of reactants and products once equilibrium is reached

15.5.1 Predicting the Direction of Reaction

- reaction quotient
- at equilibrium $\mathrm{Q}=\mathrm{k}$
- $\quad Q>k$; reaction moves right to left
- $\quad Q<k$; reaction moves left to right

15.5.2 Calculating of Equilibrium Concentrations

15.6 Le Châtelier's Principle

- if system at equilibrium is disturbed by change in temperature, pressure or concentration then system will shift equilibrium position

15.6.1 Change in Reactant or Product Concentration

- addition of substance will result in consummation of part of added substance
- if substance removed, reaction will move to produce more of the substance

15.6.2 Effects of Volume and Pressure Changes

- reducing volume, reaction shifts to reduce number of gas molecules
- increase volume, reaction shifts to produce more gas molecules
- increase pressure, decrease volume reduces total number of moles
- pressure volume changes do not affect k as long as temperature is constant
- changes concentrations of gaseous substances

15.6.3 Effect on Temperature Change

- endothermic: reactants + heat \leftrightarrow products
- exothermic: reactants \leftrightarrow products + heat
- increase temperature, equilibrium shifts in direction that absorbs heat
- endothermic: increase T, increase k
- exothermic: increase T, decrease k
- cooling shifts equilibrium to produce heat

15.6.4 The Effect of Catalysts

- catalysts increase rate at which equilibrium is obtained
- does not change composition of equilibrium mixture

