Chapter 16: Acid-Base Equilibria

16.1 Acids and Bases: A Brief Review

- acids have sour taste and turn litmus paper red
- bases have a bitter taste and feel slippery
- Svante Arrhenius (1859-1927)
- Acids associated with H^{+}ions
- Bases associated with OH^{-}ions
- Solution is acidic if there is more H^{+}than OH^{-}
- Solution is basic if there is more OH^{-}than H^{+}

16.2 The Dissociation of water

- autoionization of water - dissociation of $\mathrm{H}_{2} \mathrm{O}$ molecules to H^{+}and OH^{-}ions
- at room temperature only 1 out of 10^{9} molecules are ionized
- exclude water from equilibrium expressions involving aqueous solutions
- ion-product constant

$$
\mathrm{k}_{\mathrm{w}}=\mathrm{k}\left[\mathrm{H}_{2} \mathrm{O}\right]=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14}\left(\text { at } 25^{\circ} \mathrm{C}\right)
$$

- solution is neutral when $\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]$
- solution is acidic when $\left[\mathrm{H}^{+}\right]>\left[\mathrm{OH}^{-}\right]$
- solution is basic when $\left[\mathrm{H}^{+}\right]<\left[\mathrm{OH}^{-}\right]$

16.3.1 The Proton in Water

- $\quad \mathrm{H}^{+}$ion is a proton with no valence electrons
- $\quad \mathrm{H}^{+}$ion react with $\mathrm{H}_{2} \mathrm{O}$ molecule to form $\mathrm{H}_{3} \mathrm{O}^{+}$, hydronium ion
- $\mathrm{H}_{3} \mathrm{O}^{+}$ion can bond with other $\mathrm{H}_{2} \mathrm{O}$ molecules to form hydrated hydrogen ions
- H^{+}and $\mathrm{H}_{3} \mathrm{O}^{+}$used interchangeably

16.3 The pH Scale

- concentration of $\left[\mathrm{H}^{+}\right]$expressed in terms of pH
- $\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$
- acidic solutions
- $\left[\mathrm{H}^{+}\right]>1.0 \times 10^{-7}$
- $\quad\left[\mathrm{OH}^{-}\right]<1.0 \times 10^{-7}$
- $\quad \mathrm{pH}<7.00$
- neutral solutions
- $\quad\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-7}$
- $\mathrm{pH}=7$
- basic solutions
- $\left[\mathrm{H}^{+}\right]<1.0 \times 10^{-7}$
- $\quad\left[\mathrm{OH}^{-}\right]>1.0 \times 10^{-7}$
- $\quad \mathrm{pH}>7$

16.3.1 Other ' p " Series

- $\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]$
- $\mathrm{pH}+\mathrm{pOH}=-\log \mathrm{K}_{\mathrm{w}}=14.00$

16.3.2 Measuring $\mathbf{p H}$

- pH meter
- has a pair of electrodes connected to a meter that measures in millivolts
- voltage generated when electrodes placed in solution, and is measured by meter
- red litmus paper for pH of 5 or lower
- blue litmus paper for pH of 8 or higher

16.4 BrOnsted-Lowry Acids and Bases

- Arrhenius definition of acids and bases
- Acids when dissolved in water increase H^{+}concentration
- Bases when dissolved in water increase OH^{-}concentration

16.4.1 Proton Transfer Reactions

- $\quad \mathrm{Br} \theta$ nsted-Lowry definition of acids an bases
- Acid is a proton donor
- Base is a proton acceptor
- Can be applied to non-aqueous solutions
- $\quad \mathrm{Br}$ Onsted-Lowry acid must be able to lose a H^{+}ion
- BrӨnsted-Lowry base must have a non bonding pair of electrons to bind to H^{+}ion
- Amphoteric - substance that can act as an acid or base

16.4.2 Conjugate Acid-Base Pairs

- conjugate acid - product formed by adding a proton to base
- conjugate base - product formed by removal of a proton from acid

16.4.3 Related Strengths of Acids an Bases

- the stronger the acid, the weaker the conjugate base
- the stronger the base, the weaker the conjugate acid
- equilibrium favors transfer of proton from stronger acid to stronger base

16.5 Strong Acids and Bases

- strong acids and bases are strong electrolytes

16.5.1 Strong Acids

- strongest monoprotic acids
- $\mathrm{HCl}, \mathrm{HBr}, \mathrm{HI}, \mathrm{HNO}_{3}, \mathrm{HclO}_{3}, \mathrm{HclO}_{4}$, and diprotic $\mathrm{H}_{2} \mathrm{SO}_{4}$
- For strong monoprotic acid concentration of $\left[\mathrm{H}^{+}\right]$equals the original concentration of the acid

16.5.2 Strong Bases

- most common strong bases are ionic hydroxides of alkali metals and the heavier alkalineearth metals
- complete dissociation

16.6 Weak Acids

- $\mathrm{HA}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \leftrightarrow \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{A}_{(\mathrm{aq})}^{-}$
$-\mathrm{HA}_{(\mathrm{aq})} \leftarrow \rightarrow \mathrm{H}_{(\text {aq) }}^{+}+\mathrm{A}_{\text {(aq) }}^{-}$
$-\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+} \backslash \mathrm{A}^{-}\right]}{[\mathrm{HA}]}$
- $\quad \mathrm{K}_{\mathrm{a}}=$ acid - dissociation constant
- The lager the K_{a} the stronger the acid
- $\quad \mathrm{K}_{\mathrm{a}}$ usually less than 10^{-3}

16.6.1 Calculating $\mathbf{p H}$ for Solutions of Weak Acids

- 1) write ionization equilibrium
- 2) write equilibrium expression
- 3) I.C.E. Table
- 4) substitute equilibrium concentrations into equilibrium expression
- percent inonization $=\frac{[\text { initial }]}{[\text { final }]} \times 100 \%$
- in weak acids $\left[\mathrm{H}^{+}\right]$is small fraction of concentration of acid
- percent ionization depends on temperature, identity of acid and concentration
- as percent ionization decreases, concentration increases

16.6.2 Polyprotic Acids

- more than one ionizable H atom
- easier to remove first proton than second
- acid dissociation constants are $\mathrm{K}_{\mathrm{a} 1}, \mathrm{~K}_{\mathrm{a} 2}$, etc...
- $\quad \mathrm{K}_{\mathrm{a}}$ values usually differ by 10^{3}

16.7 Weak Bases

- base-dissociation constant, K_{b}
- equilibrium at which base reacts with $\mathrm{H}_{2} \mathrm{O}$ to form a conjugate acid and OH^{-}
- contain 1 or more lone pair of electrons

16.7.1 Types of Weak Bases

- weak bases have NH_{3} and anions of weak acids

16.8 Relationship Between K_{a} and K_{b}

- when two reactions are added together than equilibrium constant of third reaction is equal to the product of the equilibrium constants of the added reactions
- reaction $1+$ reaction $2=$ reaction 3
- $\quad \mathrm{K}_{1} \times \mathrm{K}_{2}=\mathrm{K}_{3}$
- $\quad \mathrm{K}_{\mathrm{a}} \times \mathrm{K}_{\mathrm{b}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=\mathrm{K}_{\mathrm{w}}$
- Acid-dissociation constant times base-dissociation constant equals the ion-product constant for water
- $\quad \mathrm{K}_{\mathrm{a}} \times \mathrm{K}_{\mathrm{b}}=\mathrm{K}_{\mathrm{w}}=1.0 \times 10^{-14}$
- $\mathrm{pK}_{\mathrm{a}} \times \mathrm{pK}_{\mathrm{b}}=\mathrm{pK}_{\mathrm{w}}=14 ;\left(\mathrm{pK}_{\mathrm{a}}=-\log \mathrm{K}_{\mathrm{a}}\right.$ and $\left.\mathrm{pK}_{\mathrm{b}}=-\log \mathrm{K}_{\mathrm{b}}\right)$

16.9 Acid-Base Properties of Salt Solutions

- hydrolysis - ions reacting with water to produce H^{+}and OH^{-}ions
- anions from weak acids react with water to produce OH^{-}ions which is basic
- anions of strong acids are not basic and do not influence pH
- anions that have ionizable protons are amphoteric
- behavior depends on K_{a} and K_{b}
- all cations except those of alkali metals and heavier alkaline earth $\left(\mathrm{Ca}^{2+}, \mathrm{Sr}^{2+}\right.$ and $\left.\mathrm{Ba}^{2+}\right)$ are weak acids in water
- alkali metal and alkaline earth cations do not hydrolyze
- do not affect pH
- strengths of acids and bases from salts
- 1) salts derived from strong acid and base
- no hydrolysis and solution has pH of 7
- 2) salts derived from strong base and weak acid
- strong conjugate base
- anion hydrolyzes and produces OH^{-}ions
- cation does not hydrolyze
- pH greater than 7
- 3) salts derived from weak base and strong acids
- cation is strong conjugate acid
- cation hydrolyzes to produce H^{+}
- anion does not hydrolyze
- solution has pH below 7
- 4) salts derived from weak acid and base
- both cation and anion hydrolyze
- $\quad \mathrm{pH}$ depends on extent on hydrolysis of each ion]

16.10 Acid-Base Behavior and Chemical Structure

16.10.1 Factors that Affect Acid Strength

- strength of acid depends on:
- 1) polarity of H-X bond
- 2) strength of H-X bond
- 3) stability of conjugate base, X^{-}
- molecule will transfer proton if $\mathrm{H}-\mathrm{X}$ bond is polarized
- in ionic hydrides H^{-}acts as proton acceptor because of negative charge
- nonpolar bonds produce neither acidic or basic solutions
- strong bonds less easily dissociated that weak bonds
- the greater the stability of conjugate base, the stronger the acid]

16.10.2 Binary Hydrides

metal hydrides are basic or have no acid-base properties in water

- nonmetal hydrides can be between having no acid-base properties to being acidic
- in each group of nonmetallic elements, acidity increases with increasing atomic number
- bond strengths decrease as central atom gets larger and overlap of orbitals get smaller

16.10.3 Oxyacids

- Y-O-H bond
- Oxyacids - have OH bonded to central atom
- Base if bonded to a metal because pair of electrons shared between Y-O is completely transferred to O
- Ionic compound with OH^{-}is formed
- When bonded to nonmetal the bond is covalent and compounds are acidic or neutral
- As electronegativity of Y increases, acidity also increases
- O-H bond becomes more polar
- Conjugate base usually an anion and stability increases as electronegativity of Y increases
- Relating acid strengths of oxyacids to electronegativity of Y and to number of groups attached to Y
- 1) same number of oxygen atoms, acid strength increases as electronegativity of central atom increases
- 2) same central atom Y, acid strength increases with increasing number of bonded oxygen atoms to central atom
- acidity increases as oxidation number of central atom increases

16.10.4 Carboxylic Acids

- carboxyl group - COOH
- acidic behavior of carboxylic acids
- addition oxygen atom in carboxyl group draws density from O-H bond which increases the polarity
- conjugate base ion have resonance forms
- acidity increases as number of electronegative atoms in acid increases

16.11 Lewis Acids and Bases

- Lewis acid - electron pair acceptor
- Lewis base - electron pair donor
- Any Br -nsted-Lowry is a Lewis base
- Lewis acids have molecules that have incomplete octets

16.11.1 Hydrolysis of Metal Ions

- hydration - attraction of metal ions to water molecules
- metal ion acts as Lewis acid
- water molecule acts as Lewis base
- electron density drawn from oxygen atom to water molecule
- O-H bond becomes more polarized
- For hydrolysis reactions K_{a} increases with increasing charge and decreasing radius of ion

