Chapter 3: Stoichiometry: Calculations With Chemical Formulas and Equations

- atoms are neither created nor destroyed during any chemical reaction
- stoichiometry - quantitative nature of chemical formulas and chemical reactions

3.1 Chemical Equations

- chemical equations - the way chemical reactions are represented
- reactants - starting substances
- products - substances produced from a reaction
- balanced equation - equation with equal atoms on both sides of the equation
- subscripts should never be changed in balancing an equation
- coefficients changes only the amount and not identity of the substance

3.2 Patterns of Chemical Reactivity

3.2.1 Using the Periodic Table

- periodic table can be used to determine reactivity of substances
- all alkali metals react with water to form their hydroxide compounds and hydrogen

3.2.2 Combustion in Air

- rapid reaction that produces a flame
- most combustion reactions in air involve oxygen
- hydrocarbons and related compounds produce CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ during combustion

3.2.3 Combination and Decomposition Reactions

- combination reactions two or more substances react to form one product
- decomposition reaction one substance produces two or more substances

3.3 Atomic and Molecular Weights

3.3.1 The Atomic Mass Scale

- atomic mass unit (amu) - unit in measuring mass of atoms
- $\quad 1 \mathrm{amu}=1.66054 * 10^{-24} \mathrm{~g}$ and $1 \mathrm{amu}=6.02214 * 10^{24} \mathrm{amu}$

3.3.2 Average Atomic Masses

- atomic weight - average atomic mass

3.3.3 Formula and Molecular Weights

- formula weight - sum of the atomic weights of each atom in its chemical formula
- molecular weight - same as formula weight

3.3.4 Percentage composition from Formulas

- $\quad(($ atoms of element $)(\mathrm{AW}) /(\mathrm{FW}$ of compound $) * 100$

3.3.5 The Mole

- avogadro's number - $6.02 * 10^{23}$ atoms
- molar mass - numerically equal to its formula weight
- grams <use molar mass> moles <use avogadro's number> molecules

3.5 Empirical Formulas from Analyses

- empirical formula gives relative number of atoms in each element
- mass \% elements >>> assume 100 g sample >>> grams of each element \ggg use atomic weights
>>> moles of each element >>> calculate mole ratio >>> empirical formula
- "percent to mass, mass to mol, divide by small, multiply "til whole/"

3.5.1 Molecular Formula from Empirical Formula

- the subscripts in the molecular formula of a substance are always a whole-number multiple of the corresponding subscripts in its empirical formula

3.5.2 Combustion Analysis

3.6 Quantitative Information from Balanced Equations

- the coefficients in a balanced chemical equation can be interpreted both as the relative numbers of molecules involved in the reaction and as the relative numbers of moles
- stoichiometrically equivalent quantities
- grams reactant \gg moles reactant \gg moles product \gg grams product
- grams of substance $A \gg$ use molar mass of $A \gg$ moles of substance $A \gg$ use coefficients of A and B from balanced equation \gg moles of substance $\mathbf{B} \gg$ use molar mass of $B \gg$ grams of substance B

3.7 Limiting Reactants

- limiting reactant - limits the amount of product formed

3.7.1 Theoretical Yields

- theoretical yield - the amount of product that is calculated to form
- actual yield - the amount of product actually formed

$$
\text { percent yield }=\frac{\text { actual yield }}{\text { theoretical yield }} \times 100
$$

