Chapter 3: Stoichiometry: Calculations With Chemical Formulas and Equations

- atoms are neither created nor destroyed during any chemical reaction
- stoichiometry quantitative nature of chemical formulas and chemical reactions

3.1 Chemical Equations

- chemical equations the way chemical reactions are represented
- **reactants** starting substances
- **products** substances produced from a reaction
- **balanced equation** equation with equal atoms on both sides of the equation
- subscripts should never be changed in balancing an equation
- coefficients changes only the amount and not identity of the substance

3.2 Patterns of Chemical Reactivity

3.2.1 Using the Periodic Table

- periodic table can be used to determine reactivity of substances
- all alkali metals react with water to form their hydroxide compounds and hydrogen

3.2.2 Combustion in Air

- rapid reaction that produces a flame
- most combustion reactions in air involve oxygen
- hydrocarbons and related compounds produce CO₂ and H₂O during combustion

3.2.3 Combination and Decomposition Reactions

- combination reactions two or more substances react to form one product
- decomposition reaction one substance produces two or more substances

3.3 Atomic and Molecular Weights

3.3.1 The Atomic Mass Scale

- atomic mass unit (amu) unit in measuring mass of atoms
- 1 amu = 1.66054×10^{-24} g and 1 amu = 6.02214×10^{24} amu

3.3.2 Average Atomic Masses

- **atomic weight** – average atomic mass

3.3.3 Formula and Molecular Weights

- formula weight sum of the atomic weights of each atom in its chemical formula
- molecular weight same as formula weight

3.3.4 Percentage composition from Formulas

- ((atoms of element)(AW)/(FW of compound) * 100

3.3.5 The Mole

- **avogadro's number** 6.02×10^{23} atoms
- molar mass numerically equal to its formula weight

- grams <use molar mass> moles <use avogadro's number> molecules

3.5 Empirical Formulas from Analyses

- empirical formula gives relative number of atoms in each element
- mass % elements >>> assume 100g sample >>> grams of each element >>> use atomic weights
- >>> moles of each element >>> calculate mole ratio >>> empirical formula
- "percent to mass, mass to mol, divide by small, multiply 'til whole/"

3.5.1 Molecular Formula from Empirical Formula

- the subscripts in the molecular formula of a substance are always a whole-number multiple of the corresponding subscripts in its empirical formula

3.5.2 Combustion Analysis

3.6 Quantitative Information from Balanced Equations

- the coefficients in a balanced chemical equation can be interpreted both as the relative numbers of molecules involved in the reaction and as the relative numbers of moles
- stoichiometrically equivalent quantities
- grams reactant >> moles reactant >> moles product >> grams product
- grams of substance A >> use molar mass of A >> moles of substance A >> use coefficients of A and B from balanced equation >> moles of substance B >> use molar mass of B >> grams of substance B

3.7 Limiting Reactants

- **limiting reactant** – limits the amount of product formed

3.7.1 Theoretical Yields

- theoretical yield the amount of product that is calculated to form
- actual yield the amount of product actually formed

percent yield = $\frac{\text{actual yield}}{\text{theoretical yield}}$ X 100