Chapter 5: thermochemistry

- thermodynamics study of energy and its transformations
- thermochemistry relationships between chemical reactions and energy changes

5.1 The Nature of Energy

- w = Fd
- heat energy transferred from hotter object to colder one
- energy capacity to do work

5.1.1 Kinetic and Potential Energy

- kinetic energy – energy of motion

$$K = \frac{1}{2}mv^2$$

- potential energy stored energy
 - electron has potential energy when near a proton
 - charged particles have potential energy through attractive and repulsive electrostatic forces
- chemical energy potential energy stored in arrangement of atoms
- thermal energy kinetic energy of molecules

5.1.2 Energy Units

- SI unit for energy = joule, J
- $1J = 1 \text{ kg} \text{*m}^2/\text{s}^2$
- 1cal = 4.184 J
- 1 Cal = 1000 cal = 1 kcal

5.1.3 Systems and Surroundings

- system specific amount of matter defined for study
- surroundings everything outside of system

5.2 The First Law of Thermodynamics

first law of thermodynamics – conservation of energy

5.2.1 Internal Energy

- total energy of system sum of all kinetic and potential energy
- internal energy total energy of a system
 - $\Delta E = E_{\text{final}} + E_{\text{inital}}$
 - $+\Delta E$ system gains energy from surroundings
 - $-\Delta E$ = system loses energy to surroundings

5.2.2 Relating ΔE to Heat and Work

- system can exchange energy in two ways : heat and work
- $\Delta E = q + w$
- both heat added and work done on system increases internal energy
- both heat lost and work done by system on surrounding lower internal energy

Sign Conversion for q:	Sign $\Delta E = q + w$
q>0; heat transferred from surroundings to system	q>0 and w>0; ΔE >0
q<0; heat transferred from system to surroundings	q>0 and w<0; sign depends on magnitudes of q and
Sign conversion for w:	W
w>0; work done by surroundings on system	q<0 and w>0; sign depends on magnitudes of q and
w<0; work done by system on surroundings	W
	q<0 and w<0; ΔE <0

5.2.3 Endothermic and Exothermic Processes

- endothermic absorption of heat by system
- exothermic evolution of heat

5.2.4 State Functions

- state function property of system determined by specifying its conditions
 - value of state function does not depend on particular history of sample only its present conditions
 - E is a state function ΔE depends only on initial and final states

5.3 Enthalpy

- enthalpy heat absorbed or released under constant pressure
 - state function
- change in enthalpy equals heat gained or lost by system when process occurs under constant pressure
- $\Delta H = H_{\text{final}} H_{\text{initial}} = q_p$
- + Δ H system gains heat, endothermic
- $-\Delta H$ system releases heat, exothermic

5.4 Enthalpies of Reaction

- $\Delta H = H(\text{products}) H(\text{reactants})$
- enthalpy of reaction energy change in a reaction
- thermochemical equations balanced equations that show enthalpy change
 - guidelines for using thermochemical equations and enthalpy diagrams
 - 1) enthalpy is an extensive property
 - magnitude of ΔH directly proportional to amount of reactant consumed in process
 - 2) enthalpy change for reaction equal in magnitude but opposite in sign to ΔH for reverse reaction
 - 3) enthalpy change for a reaction depends on state of reactants and products

5.5 Calorimetry

- calorimetry measurement of heat flow
- calorimeter measures heat flow

5.5.1 Heat Capacity and Specific Heat

- heat capacity amount of heat required to raise temperature by 1K or 1°C
- molar heat capacity heat capacity of 1mol of substance
- specific heat heat capacity of 1g of substance

- specific heat =
$$\frac{\text{quantity of heat transferreed}}{(\text{grams substance}) \times (\text{temp change})} = \frac{q}{m \times \Delta T}$$

5.5.2 Constant Pressure Calorimetry

- $q_{soln} = (specific heat of solution) \times (grams solution) \times \Delta T$
- dilute aqueous solutions have specific heats that are the same as water
- $q_{rxn} = -q_{soln}$
- temperature increase $(+\Delta T)$ reaction is exothermic $(-q_{rxn})$

5.5.3 Bomb Calorimeter (constant volume calorimeter)

- bomb calorimeter used to study combustion in reactions
- $q_{\rm rxn} = -C_{\rm calorimeter} \times \Delta T$
- C_{calorimeter} heat capacity of calorimeter
 - Because constant volume heat transferred corresponds to energy change rather than enthalpy change

5.6 Hess's Law

- Hess's Law if a reaction is carried out in a series of steps, ΔH for the reaction will be equal to the sum of the enthalpy changes for the individual steps
- Always get same value of ΔH for overall reaction, regardless of steps

5.7 Enthalpies of Formation

- enthalpy of formation enthalpy change from formation of a compound (ΔH_f)
- standard state 1atm and 298K (25°C)
- standard enthalpy enthalpy change when reactants and products in standard states (ΔH°)
- standard enthalpy of formation change in enthalpy for reaction that forms 1 mol of compound from elements, with all substances in standard states (ΔH_{f}°)
- standard enthalpy of formation of most stable form of any element is zero

5.7.1 Using Enthalpies of Formation to Calculate Enthalpies of Reaction

- $\Delta H_{rxn}^{\circ} = \sum n \Delta H_{f}^{\circ} (products) \times \sum m \Delta H_{f}^{\circ} (reactants)$
- n, m stoichiometric coefficients of reaction
- first term formation of reaction of products
- second term reverse formation reactions of reactants

5.8 Foods and Fuels

fuel value – energy releases when 1g of material is combusted

5.8.1 Foods

- body uses chemical energy from foods for:
 - maintaining body temperature, drive muscles, construct and repair tissues
- fats serve as body's energy reserve
 - 1) insoluble in water
 - 2) produce more energy per gram
 - average fuel value for fat 38kJ/g (9 kcal/g)
- average fuel value of proteins and carbohydrates 17kJ/g (4 kcal/g)

5.8.2 Fuels

- the greater then percentage of carbon and hydrogen in a fuel, the higher the fuel value
- fossil fuels coal, petroleum, natural gas
- natural gas gaseous hydrocarbons, mostly methane, small amounts of ethane, propane, and butane
- petroleum mostly hydrocarbons; rest composed of compounds containing sulfur, nitrogen, or oxygen
- coal hydrocarbons of high molecular weight, and compounds of sulfur, oxygen, and nitrogen
- coal gasification
 - coal + steam \rightarrow complex mixture \rightarrow mixture if CH₄, H₂, and CO (syngas)
 - syngas easier to transport, less air pollution

5.8.3 Other Energy Sources

nuclear and solar energy