Chapter 6: Electronic Structure of Atoms

- electronic structure - the arrangement of electrons in an atom

6.1 The Wave Nature of Light

- electronic radiation - radiant energy, carries energy through space
- all electromagnetic radiation move through a vacuum at $3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$
- wavelength - the distance between successive peaks in a wave
- electromagnetic radiation - 1) electric component

> 2) magnetic components

- wave characteristics due to periodic oscillations of the two components
- wavelength and frequency are related
- $\quad v \lambda=c(v=$ wavelength, $\lambda=$ frequency $)$
- frequency expressed in cycles per second (hertz, Hz)

Unit	Symbol	Length(m)	Type of Radiation
Angstrom	\AA	10^{-10}	X ray
Nanometer	nm	10^{-9}	Ultraviolet, visible
Micrometer	$\mu \mathrm{m}$	10^{-6}	Infrared
Millimeter	mm	10^{-3}	Infrared
Centimeter	mm	10^{-2}	Microwave
Meter	M	1	TV, radio

6.2 Quantized Energy and Photons

- German physicist, Max Planck - energy can be released by atoms only in "chunks" of some minimum size
- Quantum - smallest quantity of energy that can be emitted or absorbed as electromagnetic radiation
- $\quad \mathrm{E}=\mathrm{hv}\left(\mathrm{h}=\right.$ planck's constant $\left.=6.63 \times 10^{-34} \mathrm{~J}-\mathrm{s}\right)$

6.2.1 The Photoelectric Effect

- photoelectric effect - when photons strike a metal surface, electrons are emitted

6.3 Bohr's Model of the Hydrogen Atom

6.3.1 Line Spectra

- monochromatic - radiation with a single wavelength
- spectrum - created when radiation is divided up into its wavelengths
- continuous wavelength - rainbow of colors containing light of all wavelengths
- line spectrum - spectrum containing radiation of specific wavelengths
- Johann Balmer:

$$
\begin{array}{lll}
- & v=C\left(1 / 2^{2}-1 / n^{2}\right) & \mathrm{n}=3,4,5,6 \\
- & \mathrm{C}=3.29 \times 10^{15} \mathrm{~s}^{-1} &
\end{array}
$$

6.3.2 Bohr's Model

- electrons could circle the nucleus only orbits of specific radii
- $E_{n}=\left(-R_{H}\right)\left(1 / n^{2}\right) \quad n=1,2,3,4 \ldots$
- $\quad \mathrm{R}_{\mathrm{H}}=$ Rydberg constant $=2.18 \times 10^{-18} \mathrm{~J}$
- $\quad \mathrm{n}=$ principle quantum number
- gound state - lowest energy level
- excited state - electrons in a higher energy level
- $\quad \mathrm{E}_{\infty}=\left(-2.18 \times 10^{-18} \mathrm{~J}\right)\left(1 / \infty^{2}\right)=0$
- Electrons can jump to a higher energy state by absorbing energy
- $\triangle E=E_{f}-E_{I}=h \nu$
- $\quad n_{i}$ and n_{f} are the principle quantum numbers of the initial and final states of the atom
- $\quad v$ is positive when $n_{i}<n_{f}$ (energy is absorbed)
- $\quad v$ is negative when $n_{i}>n_{f}$ (electron jumps from higher to lower state)
- frequency of electromagnetic radiation must be a positive number
- "-" sign indicates that light is emitted

6.4 The Wave Behavior of Matter

- De Broglie: wavelength of the electron or any particle depends on its mass, m and velocity, v
- $\quad \lambda=\mathrm{h} / \mathrm{mv}$
- $\quad \mathrm{mv}=$ momentum
- matter waves - describe the waves characteristics of material particles

6.4.1 The Uncertainty Principle

- it is impossible to know simultaneously both the exact momentum of the electron and its exact location in space

6.5 Quantum Mechanics and Atomic Orbitals

- wave functions - ψ (has no physical meaning)
- probability density - ψ^{2}, probability that the electron will be found at the location proposed
- electron density - regions where there is a high probability of finding the electron

6.5.1 Orbitals and Quantum Numbers

- 1) principal quantum number, n, can have integral values of $1,2,3,4 \ldots$ n increases orbital becomes larger
- 2) azimuthal quantum number, 1 , can have integral values from 0 to $n-1$
defines the shape of the orbital
- 3) magnetic quantum number, m_{1}, can have integral values between 1 and -1 , and 0
- describes orientation of orbital
- electron shell - collection of orbitals with the same value of n
- subshell - orbitals that have the same n and 1 values
- 1) shell with principal quantum number n will consist of exactly n subshells
- 2) each subshell consists of a specific number of orbitals
- 3) the total number of orbitals in a shell is $\mathrm{n}^{2}, \mathrm{n}=$ principle quantum number of shell

6.6 Representation of Orbitals

6.6.1 The s Orbitals

- spherically symmetric
- nodes - intermediate regions where ψ^{2} goes to zero
- number of nodes increases as n increases

6.6.2 The p Orbitals

- two lobes
- orbitals of a given subshell have same size and shape but differ in spacial orientation

6.6.3 The d and f Orbitals

- 5 d orbitals, 4 of which are "4 leaf clover" shaped
- one has two lobes and a "doughnut" shape in the middle
- 7 f orbitals

6.7 Orbitals in Many-Electron Atoms
 6.7.1 Effective Nuclear Charge

- effective nuclear charge - net positive charge attracting the electron
- $\quad Z_{\text {eff }}=Z-S\left(Z_{\text {eff }}=\right.$ effective nuclear charge, $Z=$ number of protons, $S=$ average number of electrons
- Screening effect - inner electrons shield outer electrons from full charge of nucleus

6.7.2 Energies of Orbitals

- In a many-electron atom, for a given value of $n, Z_{\text {eff }}$ decreases with increasing value of 1
- in a many-electron atom, for a given value of n, the energy of an orbital increases with increasing value of 1
- degenerate - orbitals with the same energy

6.7.3 Electron Spin and the Pauli Exclusion Principle

- George Uhlenbeck and Samuel Boudsmit - proposed the electron spin
- Electron spin quantum number, m_{s} - can only have values of +0.5 and -0.5
- Pauli exclusion principle - no two electrons in an atom can have the same set of four quantum numbers n, l, m_{1}, and m_{s}
- An orbital can hold a maximum of two electrons, and they must have opposite spins

6.8 Electron Configuration

- electron configuration - the way electrons are distributed in orbitals
- orbital diagram - a box with each electron represented by a half arrow (arrow pointing=electron with positive spin, arrow pointing down=electron with negative spin)

6.8.1 Periods 1,2 , and 3

- Hund's rule - for degenerate orbitals, the lowest energy is attained when the number of electrons with the same spin is maximized
- Valence electrons - outer shell electrons
- Core electrons - electrons in the inner shells

6.8.2 Period 4 and Beyond

- transition elements or transition metals $-4^{\text {th }}$ row of the periodic table
- lanthanide elements - elements 58-71 (rare-earth)
- actinide elements - last row of periodic table

6.9 Electron Configurations and the Periodic Table

- the periodic table is your best guide to the order in which orbitals are filled
- chromium is $[\mathrm{Ar}] 4 \mathrm{~s}^{1} 3 \mathrm{~d}^{5}$ rather than $[\mathrm{Ar}] 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{4}$
- copper $[\mathrm{Ar}] 4 \mathrm{~s}^{1} 3 \mathrm{~d}^{10}$ rather than $[\mathrm{Ar}] 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{9}$

