Chapter 8: Basic Concepts of Chemical Bonding

- ionic bond electrostatic forces between ions of opposite charges
 - transfers electrons
 - metals and nonmetals
- covalent bond sharing of electrons
 - nonmetallic elements
- metallic bonding bonding between metal atoms

8.1 Lewis Symbols and the Octet Rule

- valence electrons involved in chemical bonding
- electron-dot symbol shows valence electrons of atoms at bonds with other atoms
- octet rule atoms tend to lose or gain electrons until they have eight valence electrons

8.2 Ionic Bonding

- metal of low ionization energy and nonmetal with high affinity
- exothermic
 - transfer of electrons

8.2.1 Energetics of Ionic Bond Formation

- ionic compounds stable because of attraction between opposite charges of ions
- lattice energy energy required to separate one mole of a solid ionic compound into its gaseous ions
- ionic compounds are hard, brittle, high melting points
- potential energy of two interacting charged particles:

-
$$E = k \frac{Q_1 Q_2}{d}$$
 (Q₁ and Q₂ = charges of particles, d = distance between centers, k =

constant = $8.99 \times 10^9 \text{ J-m/C}^2$

- attractive interaction increases as magnitudes of charges increase as distance between centers decreases
- lattice energy increases as charges on ions increase and as radii decrease
- magnitude of lattice energy depends on ionic charges

8.2.2 Electron Configuration of Ions of the Representative Elements

- never find ionic compounds that contain Na²⁺ and others like it
- increase in lattice energy not enough to compensate for second ionization energy
- addition of electrons to a higher shell is energetically unfavorable

8.2.3 Transition-Metal Ions

- in forming ions, transition metals lose valence-shell s electrons first, then as many d electrons as are required to reach the charge of the ion

8.2.4 Polyatomic Ions

- a polytomic ion acts as one charged specie in forming ionic compounds

8.3 Sizes of Ions

- size of ion depends on nuclear charge, number of electrons, outer-shell orbitals
- cations are smaller than parent atoms
- anions larger than parent atom
- ion of same charge, size increases down a group
- as principal quantum number increases, size of ion and parent atom increases

- isoelectronic series ions having the same number of electrons
 - increase in nuclear charge, decrease in atomic radius

8.4 Covalent Bonding

- lewis structures: shared electrons shown as lines and unshared as dots

8.4.1 Multiple Bonds

- distance between bonded atoms decreases with increasing shared electron pairs

8.5 Bond Polarity and Electronegativity

- bond polarity describes sharing of electrons
- nonpolar covalent bond electrons shared equally between atoms
- polar covalent bond one atoms has greater attraction toward for bonding electrons
 if large ionic bond occurs

8.5.2 Electronegativity

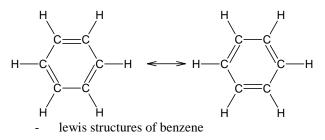
- electronegativity ability of an atom in a molecule to attract electrons to itself
- Linus Pauling first person to develop electronegativity scale
- Electronegativity increases across period
- Decreases down group

8.5.3 Electronegativity and Bond Polarity

- use difference of electronegativity to determine polarity
- greater difference of electronegativity more polar the bond

8.6 Drawing Lewis Structures

- 1) sum the valence electrons from all atoms
- 2) write symbols for atoms and connect with single bond
- 3) complet octets of atoms bonded to central atom
- place leftover electrons on central atom even if more than an octet
- if not enough for octet use double bond or triple bond


8.6.1 Formal Charge

- formal charge charge an atom in a molecule would have if all atoms had same electronegativity
- calculate formal charge:
- 1) all of unshared electrons assigned to original atom
- 2) half bonding electrons assigned to each atom in bond
 - formal charge of atom equal number of valence electrons in isolated atom, minus number of electrons assigned to atom in Lewis structure

8.7 Resonance Structures

alternate Lewis structures of same molecule

8.7.1 Resonance in Benzene

8.8 Exceptions of the Octet Rule

- 1) molecules with odd number of electrons
- 2) molecules in which an atom has less than an octet
- 3) molecules in which an atom has more than on octet 8.8.1 Odd Number of Electrons
- ClO₂, NO, NO₂
- Octet cannot be achieved

8.8.2 Less than an Octet

- compounds of boron and beryllium

8.8.3 More than an Octet

- larger cental atom, the larger the number of atoms that can surround it
 - expanded valence shells occur when central atom bonded to smallest most electronegative atoms

8.9 Strengths of Covalent Bonds

- bond enthalpy enthalpy change for breaking a particular bond in a mole of gaseous substance
- bond enthalpy always positive

8.9.1 Bond Enthalpies and the Enthalpies of Reactions

- $\Delta H_{rxn} = \sum$ (bond enthalpies of bonds broken) \sum bond enthalpies of bonds formed
- bond enthalpies derived for gaseous molecules and are averaged values

8.9.2 Bond enthalpy and Bond Length

- bond length distance between the nuclei of bonded atoms
- as number bonds increases, the bond grows shorter

8.10 Oxidation Numbers

- 1) oxidation number of element in elemental from is zero
- 2) oxidation number of monoatomic ion is same as charge
- 3) in binary compounds element with greater electronegativity assigned a negative oxidation umber equal to charge in simple ionic compound of element
- 4) sum of the oxidation numbers equal zero for electrically neutral compound and equals overall charge for ionic species

8.10.1 Oxidation Numbers and Nomenclature

- naming binary compounds: one for ionic compounds and other for molecular compounds
- less electronegative element is given first, then more electronegative atom with -ide ending
- compounds of metals in higher oxidation states molecular rather than ionic

Ionic	Molecular
MgH ₂ magnesium hydride	H ₂ S dihydrogen sulfide
FeF ₂ iron(II) fluoride	OF ₂ oxygen difluoride
Mn ₂ O ₃ manganese(III) oxide	Cl ₂ O ₃ dichlorine trioxide