Note #6: One-Factor Copula Model

Wenhua Wang Apr.28, 2006

Model description

Both Gaussian copula and double t copula are one-factor copula models. The difference is the distribution assumptions ^[2].

Suppose that we are interested in modeling the joint defaults of n different obligors. We define x_i $(1 \le i \le n)$:

$$x_{i} = a_{i}M + \sqrt{1 - a_{i}^{2}Z_{i}}$$
(1)

where M and the Z_i 's have independent probability distributions with mean zero and standard deviation one. The variable x_i can be thought of as a default indicator variable for the ith obligor, i.e. the lower the value of x_i , the earlier a default is likely to occur. *M* is the same for all x_i while Z_i is an idiosyncratic component affecting only x_i .

Suppose that t_i is the time to default and Q_i is the cumulative probability distribution of t_i of the ith obligor. The copula model maps x_i to t_i on a "percentile to percentile" basis:

$$x = F_i^{-1} [Q_i(t)]$$
 (2)

or

$$t = Q_t^{-1} [F_i(x)]$$

where

 F_i is the cumulative probability distribution for x_i .

 Q_i is the cumulative probability distribution of t_i

 F_i^{-1} is the inverse function of F_i

 Q_i^{-1} is the inverse function of Q_i

The essence of the copula model is that we do not define the correlation structure between the variables of interest directly; instead we map the variables of interest into other more manageable variables and define a correlation structure between the latter.

From (1) and (2), we have:

$$Q_{i}(t \mid M) = \Pr ob(t_{i} < t \mid M) = H_{i} \left\{ \frac{F_{i}^{-1}[Q_{i}(t)] - a_{i}M}{\sqrt{1 - a_{i}^{2}}} \right\}$$
(3)

In the Gaussian copula model, both *M* and the Z_i have standard normal distributions. In this case x_i also has a standard normal distribution, so that $H_i = F_i = N$ for all *i* where *N* is the cumulative normal distribution function.

In the double t-distribution copula model, both *M* and the Z_i have tdistributions. Because a standard t-distribution with *f* degrees of freedom has a mean of zero and a variance of f/(f-2), so the random variable used for *M* in equation (1) is scaled by $\sqrt{(n_M - 2)/n_M}$ so that it has unit variance and the random variable used for the Z_i is scaled by $\sqrt{(n_Z - 2)/n_Z}$ for the same reason.

$$Q_{i}(t \mid M) = \Pr ob(t_{i} < t \mid M) = H_{i} \left\{ \left(\frac{n_{z}}{n_{z} - 2} \right)^{1/2} \frac{F_{i}^{-1}[Q_{i}(t)] - \mathbf{r} \left(\frac{n_{M} - 2}{n_{M}} \right)^{1/2} M}{\sqrt{1 - \mathbf{r}^{2}}} \right\}$$
(4)

Equation (3) and (4) defines the cumulative probabilities of default by time t conditional on M. The variable M defines the default environment for the whole life of the model. Once M has been determined the cumulative probability of default Q_i is a known function of time. A one-factor copula model can be thought of as a model where there are many possible paths for the Q_i and the realization of M defines which will be taken for each *i*.

The definition for the hazard rate at time *t* conditional on *M* for company *i* is:

$$\boldsymbol{I}_{i}(\boldsymbol{t} \mid \boldsymbol{M}) = \frac{dQ_{i}(\boldsymbol{t} \mid \boldsymbol{M})/dt}{1 - Q_{i}(\boldsymbol{t} \mid \boldsymbol{M})}\Big|_{t=t}$$
(5)

The equation (5) was referred as **a hazard rate path** by Hull^[4].

The hazard rate at time t conditional on *M* can be calculated if the unconditional hazard rate is given, i.e. we can approximate Q(t) by:

$$Q(t) = hr * t \tag{6}$$

where hr is the unconditional hazard rate per year.

Hence (5) can be calculated based on (3)/(4) and (6)

The cumulative t-distribution function is given by an incomplete beta function,

$$\int_{-\infty}^{t} f(u) \, du = \begin{cases} 1 - \frac{1}{2} I_x(\nu/2, 1/2) & \text{if } t > 0, \\ \\ \frac{1}{2} I_x(\nu/2, 1/2) & \text{otherwise,} \end{cases}$$
(7)

with

$$x = \frac{1}{1 + t^2/\nu}.$$

The parameter ? is called the number of degrees of freedom. The incomplete beta function is defined as

$$\mathbf{B}_{x}(a,b) = \int_{0}^{x} t^{a-1} \, (1-t)^{b-1} \, \mathrm{d}t \tag{8}$$

Algorithms

There are two critical problems are critical to the success of the project:

- The algorithm to calculate the inverse normal cumulative distribution function. The direct solution is to solve the equations numerically. This works but it slow. Fortunately, a good algorithm was found^[5].
- A good algorithm to calculate inverse T-distribution cumulative function was not found, so numerical solution was used.

Source Code

Packatge opt.copula:

OneFactorCopula.java

GaussianCopula.java

DoubleTCopula.java

Package opt.test:

CopulaTester.java (run it by java opt.test.CopulaTester)

Package opt.util:

Bisection.java FunctionI.java

Functions.java

IncompleteBeta.java

NDistribution.java

TDistribution.java

Test Results

Command:

java opt.test.CopulaTester > copula.csv

Input:

copula correlation rho (i.e. ai^2)=0.15 Unconditional hazard rate: 1% per year

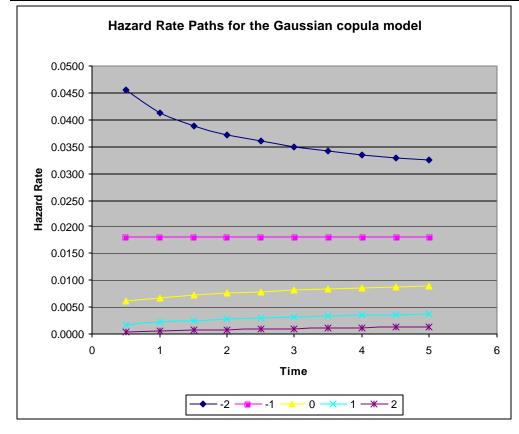
Output:

The program prints the results in CSV format to standard output. We can redirect it to a file e.g. copula.csv

The following is reformatted with Excel.

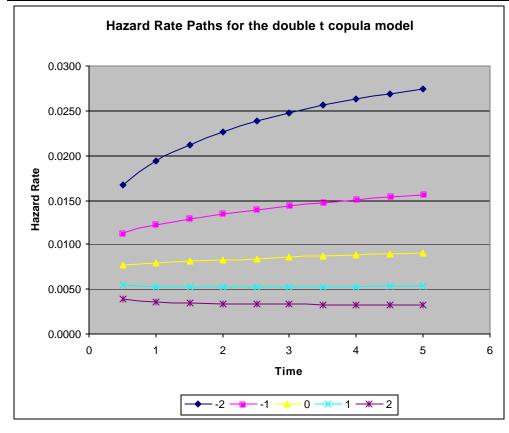
Gaussian copula model:

M/T	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5
-2	0.0455	0.0413	0.0389	0.0372	0.0360	0.0350	0.0342	0.0335	0.0330	0.0325
-1	0.0180	0.0181	0.0181	0.0181	0.0181	0.0181	0.0181	0.0181	0.0181	0.0181
0	0.0061	0.0068	0.0072	0.0076	0.0079	0.0081	0.0083	0.0085	0.0087	0.0089
1	0.0017	0.0021	0.0024	0.0027	0.0029	0.0031	0.0033	0.0034	0.0036	0.0037
2	0.0004	0.0006	0.0007	0.0008	0.0009	0.0010	0.0011	0.0012	0.0013	0.0013



Double t copula model:

M/T	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5
-2	0.0167	0.0194	0.0212	0.0227	0.0238	0.0248	0.0256	0.0263	0.0269	0.0275
-1	0.0112	0.0122	0.0129	0.0135	0.0140	0.0144	0.0147	0.0151	0.0154	0.0157
0	0.0077	0.0079	0.0081	0.0083	0.0084	0.0085	0.0087	0.0088	0.0089	0.0090
1	0.0054	0.0053	0.0052	0.0052	0.0052	0.0052	0.0052	0.0053	0.0053	0.0053
2	0.0039	0.0036	0.0035	0.0034	0.0033	0.0033	0.0033	0.0033	0.0033	0.0032



Conclusions

The Gaussian copula model shows that the future hazard rate decreases with the passage of time (except for a short initial period). This is not realistic.

Double t copula model is better than Gaussian. It shows that the hazard rate increases with the passage of time.

The testing results agree that of Hull and White^[4].

References

[1] John Hull, Options, Futures, and Other Derivatives, 5/6th edition

[2] John Hull and Alan White, Valuation of a CDO and an nth to Default CDS without Monte Carlo Simulation, 2004

[3] David X. Li, On Default Correlation: A Copula Function Approach, 2000

[4] John Hull and Alan White, The Perfect Copula, 2005

[5] An algorithm for computing the inverse normal cumulative distribution function,

http://home.online.no/~pjacklam/notes/invnorm/

[6] <u>http://en.wikipedia.org/wiki/Student's_t-distribution</u>

[7] Halley's Rational Formula for square roots http://www.mathpath.org/Algor/squareroot/algor.square.root.halley.ht

<u>m</u>

[8] Peter John Acklam, A small paper on Halley's method, http://home.online.no/~pjacklam/notes/halley/halley.pdf