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Back-propagation artificial neural networks (ANNs) were trained with parameters derived from different
molecular structure representation methods, including topological indices, molecular connectivity, and novel
physicochemical descriptors to model the structure-activity relationship of a large series of capsaicin
analogues. The ANN QSAR model produced a high level of correlation between the experimental and
predicted data. After optimization, using cross-validation and selective pruning techniques, the ANNs
predicted the EC50 values of 101 capsaicin analogues, correctly classifying 34 of 41 inactive compounds
and 58 of 60 active compounds. These results demonstrate the capability of ANNs for predicting the
biological activity of drugs, when trained on an optimal set of input parameters derived from a combination
of different molecular structure representations.

INTRODUCTION

Capsaicin is the active ingredient of chilis. It has a wide
range of biological effects on the cardiovascular, nervous,
and respiratory systems, and some of its actions suggest that
it, or an analogue, may be useful as an analgesic.1-4 The
potential clinical use of its analgesic and peripheral antiin-
flammatory effects has attracted much attention and prompted
investigations into the relationship between the structure of
capsaicin analogues and their agonist activities.
The molecular structure of the capsaicin molecule, shown

in Figure 1, is that of an amide (region B), a hydrophilic
ring on one end (region A), and a lipophilic carbon chain
on the other (region C). Analogues of capsaicin have the
same basic structure but contain variations in one or more
of the three regions.
Previous structure-activity relationship studies of cap-

saicin analogues1-3 have shown that each region makes an
implicit contribution to activity. The following moieties were
identified as being common to these regions: (i) a 3-meth-
oxy-4-hydroxybenzyl ring in region A; (ii) a dipolar amide
or thiourea in region B; (iii) a lipophilic octanyl orp-
chlorophenethyl group in region C.
A recent QSAR study4 analyzed a large set of capsaicin

analogues. Using the MULTICASE methodology4 as a
predictive tool, they identified structural features responsible
for activity, which they quantitatively weighted to derive a
QSAR equation using multilinear regression (MLR) analysis.
The QSAR equation predicted the log EC50 of 70 compounds
(n ) 70), resulting in a training correlationR ) 0.72 and
standard deviation SD) 0.77, correctly classifying 51 of
52 active compounds and 3 of 18 inactive compounds.
In the present study, ANNs were used to explore the

possibility of predicting the activity of capsaicin analogues
from their structural makeup. As ANNs have successfully
been used in the fields of chemistry, QSAR studies of
biological systems, and the field of drug design,5-8 the main
objective of this study was to develop a scheme for encoding
relevant information from molecular structure into a format
which is suitable for use in an ANN and to develop a QSAR

model of the capsaicin analogues with predictive capabilities,
which so far has been unattainable.
Data representation is an important aspect of any study

involving ANNs as ANNs employ learning procedures to
discern patterns in data that are encoded numerically and
presented in the form of training examples. By extracting
the relevant features from examples, the ANN develops an
internal representation of the system, which allows predic-
tions to be made. In order to present the ANN with as much
useful information as possible from structure, we investigated
a variety of structural parametization methods. These were
molecular connectivity,9 topological indices and charged
indices,10,11 connection table theory,8 and a simple atomic
decomposition of molecules into atom type.7 These were
used in conjunction with novel physicochemical descrip-
tors12,13 and some simple atomic descriptors developed in
this study.

MATERIALS AND METHOD

Experimental Data. A data set of 103 capsaicin ana-
logues was used in the ANN training set, Table 1. Of these
compounds 101 were obtained from a recent publication.4

These compounds have retained their original numbering for
ease of back-referencing. Two “dummy” compounds (991
and 992) were developed to supplement the data for training
purposes. These are referred to in the Results and Discus-
sion.
Not all compounds available were used in the study. Of

the original 123 compounds 20 were discarded owing to
difficulties in encoding their structures. We are currently
investigating new structural parametization methods to
represent these compounds for further analysis. Two other
compounds (102 and 104) were discarded due to activity
anomalies.X Abstract published inAdVance ACS Abstracts,October 15, 1997.

Figure 1. Structure of capsaicin.
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Table 1. Experimental Activities and Structures of Capsaicin Analoguesa

B

R2

R3

R4

R5

(CH2)7CH3

compd no. R2 R3 R4 R5 B EC50 (µM) classification

1 H H H H CH2NHCO >100 +
2 H OCH3 OH H CH2NHCO 0.55 +
3 H OCH3 OCH3 H CH2NHCO 6.41 +
4 H OCH3 H H CH2NHCO >100 +
5 H H OCH3 H CH2NHCO >100 +
6 OCH3 H H H CH2NHCO >100 +
7 H OH H H CH2NHCO >100 +
9 H OH OH H CH2NHCO 0.63 +
10 H OCH3 H OH CH2NHCO >100 +
11 OCH3 H OH OCH3 CH2NHCO >100 +
12 OCH3 H OH H CH2NHCO >100 +
13 H OCH3 OCH3 OCH3 CH2NHCO >100 +
14 OH OH OH H CH2NHCO 7.64 +
15 H OCH3 SH H CH2NHCO >100 +
16 H OCH3 NO2 H CH2NHCO 7.91 -
24 H OCH3 H H CH2CONH >100 +
25 H OCH3 OH H CH2CONH 0.30 +
26 H H OH H CH2CONH 6.50 +
28 H OH OH H CH2CONH 0.41 +
29 H CH3 OCH3 H CH2CONH >100 +
30 H CH3 OH H CH2CONH >100 +
31 H CH2 OH H CH2CONH 1.04 +
32 H NH2 OH H CH2CONH >100 -
33 H NHCOCH3 OH H CH2CONH >100 +
34 H OC2H5 OH H CH2CONH 4.34 +
35 H OH OCH3 H CH2CONH 1.82 +
37 H OCH3 OH OCH3 CH2CONH >100 -
39 OCH3 OCH3 OH H CH2CONH >100 -

B

OCH3

HO

(CH2)7CH3

compd no. B EC50 (µM) classification compd no. B EC50 (µM) classification

40 NHCO 4.48 + 53 CHdCHCONH (Z) 17.90 +
41 (CH2)2NHCO 18.30 - 54 CH2NHCONH 0.36 +
42 CH2N(CH3)CO >100 + 55 CH2NHCSNH 0.06 +
43 CH2OCO 14.20 + 56 NHCSNH 2.57 +
44 CH2NHCS 0.28 + 57 CH2N(CH3)CSNH >100 +
45 CH2NHSO2 1.32 + 58 CH2NHCSN(CH3) 0.53 +
46 CONH >100 + 59 CH2NHCSNHCO >100 +
47 (CH2)2CONH 2.32 + 60 CH2NHC(dNCN)NH 3.28 +
48 CH2CONH 6.29 + 61 CH2NHC(dCH-NO2)NH >100 +
49 CH(OH)CONH 1.16 + 62 CHdCHCO (E) >100 +
50 CH2COO 0.67 + 63 CH2CH2CO 2.13 +
51 CH2COS 1.17 + 64 CH2COCH2 3.78 +
52 CHdCHCONH (E) >100 + 65 CH2CH2CH2 >100 -

NHCO

H3CO

HO

R

compd no. R EC50 (µM) classification compd no. R EC50 (µM) classification

67 (CH2)6CH(CH3)2 0.19 + 70 CH2O(CH2)2O(CH2)2OCH3 >100 +
68 (CH2)10CO2H >100 + 71 (CH2)16CH3 >100 -

991b (CH2)9CO2H >100 + 72 (CH2)7CHdCH(CH7)CH3 (E) 0.36 +
992b (CH2)11CO2H >100 + 73 (CH2)7CHdCH(CH7)CH3 (Z) 0.17 +
69 CH2O(CH2)2OCH3 >100 + 74 CH2Br >100 +

75 CH2Cl >100 +
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The agonist activity available was the ability of the
compound to stimulate the entry of Ca2+ into rat dorsal root

ganglia, measured as the concentration (µM) of compound
needed to produce 50% (EC50) of the maximal Ca2+ influx.4

Table 1 (continued)

NHCOCH

H3CO

HO

XCH

compd no. X EC50 (µM) classification compd no. X EC50 (µM) classification

76 4-H (E) 11.8 + 82 4-N(CH3) (E) 4.39 +
77 4-Cl (E) 1.24 + 83 4-I (E) 0.35 +
78 4-Cl (Z) 50.1 + 84 4-NHCHO (E) >100 +
79 4-NO2 (E) 4.58 + 85 2,4-Cl (E) 0.62 +
80 4-CN (E) 26.5 + 86 3-Cl (E) 2.58 +
81 4-Ph (E) 0.24 +

NHCOCH2CH2

H3CO

HO

X

compd no. X EC50 (µM) classification compd no. X EC50 (µM) classification

87 H 45.26 + 89 4-NO2 21.00 +
88 4-Cl 3.09 + 90 4-OH >100 +

Y

H3CO

HO

Cl

compd no. Y EC50 (µM) classification compd no. Y EC50 (µM) classification

91 NHCOCH2 7.77 + 93 CONHCH2CH2 0.66 +
92 NHCOCtC 4.10 +

NH

H3CO

HO

NH R

S

compd no. R EC50 (µM) classification compd no. R EC50 (µM) classification

94 H >100 + 101 (CH2)11CH3 0.16 +
95 (CH2)3CH3 9.48 + 102 (CH2)15CH3 >100 NAc

96 (CH2)4CH3 1.96 + 103 (CH2)17CH3 8.1 +
97 (CH2)5CH3 0.18 + 104 (CH2)7CHdCH(CH7)CH3 (Z) >100 NAc

98 (CH2)6CH3 0.29 + 106 CH(Ph)2 0.27 +
99 (CH2)8CH3 0.1 + 107 C(Ph)3 >100 -
100 (CH2)9CH3 0.11 +

NHCOCH

H3CO

XCH

compd no. X EC50 (µM) classification compd no. X EC50 (µM) classification

113 4-NHYCHO (E) >100 + 116 4-N(CH3) (E) >100 +
114 4-NO2 (E) >100 + 117 4-Cl (E) >100 +
115 4-H (E) >100 + 118 4-I (E) >100 -

NH

R

HO

NH

S
Cl

compd no. R EC50 (µM) classification compd no. R EC50 (µM) classification

119 OCH3 0.06 + 120 OH 0.10 +

aClassification is denoted by the following: “+” for a correct prediction; “-” for an incorrect prediction.bDummy compounds.cNA ) not
used in data set.
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These values ranged from 0.06µM to “>100µM” implying
a difference of 5 orders of magnitude between the EC50 of
active and inactive compounds. log EC50 values were used.
Modeling Methods. Initial examination of the molecular

structures of the compounds in the data set indicated that no
one method of data representation could be used to model
the whole molecule. To overcome this problem, the whole
molecule was segmented into three regions for ease of
analysis.
The structural models of the three regions used in this

study contain substructures similar to regions A-C described
in a previous paper.4 The three regions, termed regions A*-
C*, are illustrated in Figure 2 and are as follows:
Region A* (similar to region A) is a single benzene ring,

the base structure onto which a varying range of substituent
groups such as hydroxy (-OH), methoxy (-OCH3), etc.,
are attached to positions R2, R3, R4, and R5.
Region B* (similar to region B, connecting region A to

C) is a branched chain fragment with a linear length of up
to five atoms. These substructures contain atoms important
for both structural integrity and bonding interaction.2

Region C* (a composite of regions B and C), the “tail-
end” of the compound, is a molecule made up of both
aliphatic and aromatic components of varying configurations.
It has been suggested that the substructures within this region
are responsible for lipophilicity.3

The QSAR models for the regions just described are as
follows:
Region A*. The configuration of this region lent itself

to conventional QSAR analysis using novel physicochemical
descriptors. Five substituent principle properties12 ω1-ω5

which globally encode molecular bulk, electronic charac-
teristics, and hydrogen bonding capabilities, respectively,
were used, together with eight disjoint principle properties13

(DPP)s1, s2, e1, e2, l1, l2, h1, andh2 which encode the two
principle components of steric, electronic, lipophilic, and
hydrogen bonding descriptor sets. The values of these
substituent descriptors were assigned to each position R2-
R5 around the benzene ring. Including the value logP (of
the whole compound), a set of 53 input variables was
generated for the ANN training set.
The substructures of 28 compounds (1-39) were selected

from the complete data set for use in the training set for
region A* using the following selection criterion and assump-
tion: regions B and C must be kept constant, allowing
variability in region A, and the amide and reverse amide
moieties confer similar potencies1 (cf. 2 vs 25). Figure 3

illustrates how region A* was parametrized into a format
for processing by the ANN.
Region B*. It has been well-established that the spatial

atomic arrangement of this region is important for activity.1-4

In order to extract as much information from this region
while encoding its structural integrity, a combination of two
data representation methods was employed.
The first method consists of information derived from a

modified connection table representation8 of the molecule
that includes the tabulation of hydrogen donor/acceptor
capabilities of atoms. Figure 4(i) shows the substructure of
compound 2 and the connection table numbering system.
The complete connection table, shown in Figure 4(ii), is

an array of six parameters (A, c1, c2, b, ha, hd) by eight atoms,
the maximum number of atoms in this region (compound
61). The first row of the table is generated as follows: the
first atom, carbon, has an atomic numberA ) 6, has
connection numberc1 ) 2, is connected to atom 1,c2 ) 1,
has a single bond,b ) 1, is not a hydrogen acceptor,ha )
0, and is not a hydrogen donor,hd ) 0. This procedure was
repeated for all the (non-hydrogen) atoms in the region in a
row by row fashion and was finished with two connection
numbers (denoted by an asterisk) to encode the position of
the last atom. For substructures with fewer than eight atoms,
zeros were substituted in the rows of the respective non-
existent atoms to fill the table.
The second method employed a simple count of atom

types7 with the inclusion of isomerism. Figure 4(iii) shows
the tabulation of isomerism, whereE/Z implies nonisomeric
(or racemic) andE andZ implies their respective isomerism.
Simple logic switches (1 and 0) were used to denote the
isomerism of the molecule. The table shown in Figure 4(iv)
encodes information relating to the frequency of atom types.
The procedure for generating this table is started with a logic
switch to denote the starting atom, either C or N, and
continued with a count of atom types, where, for example,
H indicates the number of hydrogen atoms and C3 indicates
the number of carbon atoms with three connections.
Including the value of logP, these two data representation

methods generated 68 input variables for the ANN training
set and were applied to the substructures of 28 compounds
(2, 25, 40-65) which were selected from the complete data
set on the basis that regions A and C remain constant with
variability in region B. Figure 4 illustrates the parametization
of region B*.
Region C*. Klopman and Li4 used the computed logP

values of the compounds as an indicator for predicting
activity/inactivity. Although using this value alone had
limited success, it highlighted the fact that lipophilicity is
an important factor for compound activity. The variability
in log P values is largely dependent on the tail-end of the
compound.
With this fact in mind and with the knowledge that there

must exist other unknown, and, thus, unavailable, physico-
chemical properties to represent this tail-end region, we
explored the use topological indices as a way of generating
information that, by chance, would correlate with these
unknown physicochemical properties. The topological de-
scriptors used in this study were connectivity indices9,10and
their linear combinations, charge indices11 and their linear
combinations, and a Wiener array14 which is an extension
of the Wiener number principle. A computer program was
developed for the purpose of generating these variables from

Figure 2. Substructures of compound 2 as defined by regions A*-
C*.
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connectivity data. A simple count of atom types7 andE/Z
isomerism, as described above, were also encoded into the
training set input data.
Including the value of logP, a set of 108 input variables

was generated by these data representation methods and was
applied to the substructures of 44 compounds (2, 25, 55, 66-
92, 94-101, 103, 106, 107, and 119) selected on the criterion
that regions A and B remain constant with variability only
in region C and the assumption that the amide and thiourea
moieties confer similar potencies (cf. 2 vs 55 and 88 vs 119).

These input variables were entered into the input layer of
the ANN for processing for region C*.
Neural Network Model. The studies were carried out

using Bioactivnet,15 a three layer back-propagation ANN
program running in Microsoft Windows 95 on a 586/120
MHz personal computer in conjunction with Microsoft Excel
5.0.
All ANNs were constructed with variable numbers of

neurons in the input layer representing the input parameters,
two neurons in the hidden layer and a single neuron in the
output layer corresponding to log EC50, the measured activity.
All inputs were scaled to a range of 0.0-1.0 on the basis of
the minimum and maximum values of the input source range.
Inverse scaling was used for the outputs. Sigmoidal transfer
functions were used in all layers.
In order to encode a distinct difference between the values

of active and inactive compounds (>100 µM) for training
purposes in the ANN, the log EC50 value of the inactive
compounds was set at 3 (1000µM).
The ANNs were trained for a range of learning cycles

varying between 7000 and 20 000, depending on the region
being investigated and the number of parameters being used.
In order to avoid overtraining, the number of learning cycles
was set to a value to give the highest cross-validated
correlation value with the lowest number of cycles.
The ability of the ANNs to predict results accurately was

tested using the (N - 1), cross-validation technique,5 where
for each given set of input parameters usingN compounds,
N ANNs were trained each usingN - 1 compounds. At
the end of the training run, each trained ANN was then used
to predict the activity of the missing compound.
ANNs predict more accurately when they have been

optimized,5,16 with the accuracy being gauged byRCV (see

Figure 3. Parametization of region A*. (i) Substructure of compound 2 showing positions R2-R5. (ii) Substituent principle properties and
DPP of substituents. (iii) Three layer ANN model of region A*.

Figure 4. Variables used for the parametization of region B*. (i)
Substructure of compound. (ii) Connection table representation of
substructure:A) atomic number;c1 ) connection number of atom;
c2 ) connection number of previous atom;b ) bond type;ha )
hydrogen acceptor;hd ) hydrogen donor. (iii) Isomeric descriptors.
(iv) Atom type descriptors.
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below). The optimum set of input parameters for use by
the ANN was determined by the method of selective
pruning,5 where, at the end of each ANN run, known as a
pruning run, the inputs not significantly contributing to the
prediction of the result were systematically eliminated to
improve generalization. These input parameters were gener-
ally characterized by high cross-correlation values and/or by
low internal weight values assigned by the ANN.
At the end of each pruning run, the average training set

correlation (RT) and standard error (SET) and the cross-
validation correlation (RCV) and standard error (SECV)
between the predicted and known data sets were calculated.
Once the calculated value ofRCV for the run reached a
maximum, the set of input parameters, hence the ANNmodel
for the region being analyzed, was defined as optimized.
Three separate ANNs were initially constructed to analyze

regions A*, B*, and C*, respectively. Upon optimization
of each ANN, their respective sets of input parameters were
amalgamated to produce a single ANN model to represent
the whole compound. This was then used to analyze the
complete data set of 103 compounds.

RESULTS AND DISCUSSION

Table 2 lists the overall results of this study, showing the
experimental log EC50 values, the predicted log EC50, and
their difference. The predicted log EC50 values are based
on cross-validation data. Any compound with a log EC50

value greater than 2 (>100µM) was classified as inactive.

Table 1 shows which compounds were classified correctly,
where a plus sign (+) implies a correct classification.
Table 3a summarizes the overall results, including the

correlations and standard errors of regions A*-C*. The
ANN model representing the whole compound was trained
on 34 input variables representing 103 compounds (F ) 2.6).
It accurately classified 36 of 43 inactive compounds (includ-
ing dummy compounds 991 and 992) and 58 of 60 active

Table 2. log EC50 Results of This Studya

compd no. actual predicted diff compd. no. actual predicted diff compd no. actual predicted diff

1 3.000 3.000 0.000 47 0.365 0.061 0.305 82 0.642 0.946-0.304
2 -0.260 0.391 -0.650 48 0.799 1.466 -0.667 83 -0.456 -0.952 0.496
3 0.807 1.618 -0.811 49 0.064 0.792 -0.728 84 3.000 2.092 0.908
4 3.000 3.000 0.000 50 -0.174 -0.442 0.268 85 -0.208 -0.606 0.398
5 3.000 2.615 0.385 51 0.068 -1.152 1.220 86 0.412 1.147 -0.735
6 3.000 3.000 0.000 52 3.000 2.672 0.328 87 1.656 0.933 0.723
7 3.000 3.000 0.000 53 1.253 1.504 -0.251 88 0.490 1.265 -0.775
9 -0.201 0.366 -0.566 54 -0.444 -0.353 -0.091 89 1.322 0.902 0.420
10 3.000 3.000 0.000 55 -1.222 -0.819 -0.403 90 3.000 3.000 0.000
11 3.000 3.000 0.000 56 0.410 -0.174 0.584 91 0.890 0.667 0.223
12 3.000 3.000 0.000 57 3.000 2.876 0.124 92 0.613 0.510 0.103
13 3.000 3.000 0.000 58 -0.276 -0.287 0.011 93 -0.180 0.159 -0.340
14 0.883 1.708 -0.825 59 3.000 2.641 0.359 94 3.000 2.529 0.471
15 3.000 2.884 0.116 60 0.516 0.088 0.428 95 0.977-0.323 1.299
16 0.898 2.459 -1.561 61 3.000 2.647 0.353 96 0.292 0.288 0.005
24 3.000 2.730 0.270 62 3.000 3.000 0.000 97 -0.745 -0.803 0.058
25 -0.523 -0.248 -0.275 63 0.328 1.243 -0.914 98 -0.538 -0.698 0.160
26 0.813 1.874 -1.061 64 0.577 0.524 0.053 99 -1.000 -0.810 -0.190
28 -0.387 -0.247 -0.140 65 3.000 1.905 1.095 100 -0.959 -0.875 -0.084
29 3.000 3.000 0.000 66 -0.523 -1.150 0.628 101 -0.796 -0.498 -0.298
30 3.000 2.729 0.271 67 -0.721 -0.044 -0.678 103 0.908 0.293 0.616
31 0.017 -0.992 1.009 68 3.000 2.548 0.452 106 -0.569 -0.397 -0.172
32 3.000 1.818 1.182 69 3.000 3.000 0.000 107 3.000 0.146 2.854
33 3.000 3.000 0.000 70 3.000 3.000 0.000 113 3.000 3.000 0.000
34 0.637 1.549 -0.911 71 3.000 0.427 2.573 114 3.000 3.000 0.000
35 0.260 0.615 -0.355 72 -0.444 0.776 -1.219 115 3.000 3.000 0.000
37 3.000 1.539 1.461 73 -0.770 0.271 -1.041 116 3.000 3.000 0.000
39 3.000 0.849 2.151 74 3.000 2.303 0.697 117 3.000 3.000 0.000
40 0.651 1.034 -0.383 75 3.000 3.000 0.000 118 3.000 0.520 2.480
41 1.262 2.642 -1.380 76 1.072 0.412 0.659 119 -1.222 -0.835 -0.387
42 3.000 2.130 0.870 77 0.093 0.664 -0.570 120 -1.000 -0.840 -0.160
43 1.152 0.720 0.432 78 1.700 0.200 1.500 991 3.000 2.035 0.965
44 -0.553 -0.029 -0.524 79 0.661 1.195 -0.535 992 3.000 2.479 0.521
45 0.121 0.505 -0.385 80 1.423 1.625 -0.201
46 3.000 2.403 0.597 81 -0.620 1.366 -1.986

a Actual) the experimental log EC50 values; predicted) the log EC50 value predicted by the ANN using cross-validation techniques; diff) the
difference between the Actual and Predicted values.

Table 3.
(a) Overall Results of the Studya

RT SET RCV SECV accuracy, % RCV* SECV*

region A* 0.984 0.254 0.899 0.617 89 0.970 0.351
region B* 0.990 0.194 0.930 0.519 96 0.945 0.474
region C* 0.954 0.457 0.827 0.856 93 0.894 0.647
whole

compound
0.961 0.420 0.854 0.796 91 0.926 0.571

(b) Comparison of the Results from This Study and Those of Ref 4b

n RT SET RCV SECV active inactive accuracy, %

this
study

103 0.961 0.420 0.854 0.796 58/60 36/43 91

other
study4

70 0.720 0.770 51/52 3/18 77

a RT ) mean correlation and SET ) standard error between known
and predicted activity during training;RCV ) mean correlation and SECV
) standard error between known and predicted based on (N- 1) cross-
validation studies. An asterisk indicates the mean correlation and
standard error of compounds when incorrectly classified compounds
(outliers) were removed.b n ) number of compounds. Active 58/60
implies that 58 out of 60 active compounds were classified correctly.
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compounds with a training set correlation ofRT ) 0.961
and cross-validation correlation ofRCV ) 0.854 between
experimental and predicted data. These results are a
considerable improvement when compared to the work of
previous authors.4 Table 3b shows a comparison of the
results from this study and the work of other authors.4

The compounds used in the ANN training sets for
determining the optimum set of input parameters for regions
A*-C* did not include eight compounds (93, 113-118, and
120). These compounds were introduced to the whole
compound ANN without any previous training, forcing the
ANN to predict their activity based on previous experience.
The ANN accurately classified seven of them.
The ANN model for region A* initially consisted of 53

input variables for representation of 28 compounds. The
information content of these inputs was sufficient for the
ANN to learn and to form correlations, resulting in a training
set correlation ofRT ) 0.992 and cross-validation correlation
of RCV ) 0.786. After six pruning runs, the ANN was
optimized and the input variables were reduced to nine,
yielding an improvement in generalization and hence predic-
tion of activity. Although this improvement led to an
increase inRCV ) 0.899, the ANN still had difficulty in
correctly classifying three compounds (inactive, 32, 39;
active, 26).
All parameters in the optimum input for region A* were

considered to be independent by cross-correlation; see Table
4. The highest squared cross-correlation value between any
two parameters was betweenR2ω1 andR2l1 (0.40). However,
removal of either of them caused a significant reduction in
both training and cross-validation correlations, suggesting
that both had important contributions to make.
Of the remaining nine inputs, the ANN indicated a strong

dependence (i.e., a high weight value) onω1, the substituent
principle property that encodes molecular bulk, andl1, the
DPP descriptor representing lipophilicity, most notably at
positionsR2, R3, andR4. At positionR5, the ANN favoured
l2 andh2. It is interesting to note that the ANN showed a
dependence on logP. This would mean that the subtle
differences in logP values caused by the different structural
configurations of region A* correlates with activity, on the
condition that region B contains an amide or reverse amide
moiety and region C contains an octanyl group.
The ANN model for region B* initially consisted of 68

input variables, representing 28 compounds, resulting in
correlation valuesRT ) 0.996 andRCV ) 0.593 . After 9
successive pruning runs, the ANN was optimized and the
number of inputs was reduced to 12, yielding correlation
values RT ) 0.990 andRCV ) 0.930. The ANN had
difficulty classifying one compound (active, 41).

All parameters in the optimum input for region B* were
considered to be independent by cross-correlation: see Table
5. The highest squared cross-correlation was between P2b
andEB (0.46) and P2b and C4 (0.35). However, removal of
any one of them or any combination of them was detrimental
to the overall performance of the ANN, so they were kept.
Of the remaining 12 inputs, the ANN showed a strong

dependence on variablesb, ha, and hd, the descriptors
encoding bond type and hydrogen acceptor and donor
capabilities, at the second, third, fourth, fifth, and seventh
atoms in region B*. These results would indicate that the
first atom in region B* and any atom past the fifth has little,
if no, contribution to activity, and of the remaining atoms in
between, their spatial distance from region A* and their
molecular composition including features such asdO, dS
(hydrogen acceptors), and-NH- (hydrogen donor) are
significantly required for activity, supporting the ideas
proposed by Walpole et al.1-3 and Klopman and Li4 relating
the atomic makeup of region B and activity.
The ANN model for region C* was initially comprised of

108 inputs, resulting in correlation valuesRT ) 0.991 and
RCV ) 0.633 . After 18 successive pruning runs, the ANN
was optimized and the number of inputs was reduced to 13,
yielding correlation valuesRT ) 0.954 andRCV ) 0.827.
The ANN had difficulty classifying three compounds (inac-
tive, 71, 84, and 107).
All parameters in the optimum input for region C* were

considered to be independent by cross-correlation, see Table
6. The highest squared cross-correlation was between and
∆3J and ∆5J (0.39) andf4øPC and O2 (0.36). However,
removal of any one of them or any combination of them
was detrimental to the overall performance of the ANN, so
they were kept.
The reason why the ANN had difficulty predicting certain

compounds lies partly in the way that ANNs learn. ANNs,
like any other type of artificial intelligence system that learns
by the way of examples, requires a minimum amount of
training data similar enough in content to learn from and,
thus, to predict from. If the data are unique, it will not
contribute any value to the training set and its ability of
prediction. This “uniqueness” was found in most of the
compounds that the ANN could not accurately predict.
One possible method for testing and overcoming this

problem of uniqueness of data was to create dummy data.
By way of example, the original ANN model for region C*
could not correctly identify compound 68 as inactive. The
ANN model was then modified to include two dummy
compounds (991 and 992) with similar activities, EC50 >
100µM (inactive). The ANN as a result classified all three
compounds correctly as inactive.
In this case, creating compounds 991 and 992, (CH2)9-

CO2H and (CH2)11CO2H, respectively, analogous to com-
pound 68, and assuming their EC50 values to be>100µM
(inactive) could be justified, as both Walpole et al.1-3 and
Klopman and Li4 clearly expressed that any hydrophilic
moieties, such as a carboxylic group, in region C destroy
activity.
The ANN had more difficulty predicting inactive com-

pounds than active compounds. The most probable reason
for this lies mainly in the fact that the inactive compounds
had a cut-off value for EC50 (>100) rather than a determined
value. Because of this, the ANN was trained on partially
false values and, as a consequence, formed partially false

Table 4. Squared Cross-Correlation Table (R2 > 0.10) of the
Optimal Parameter Set for Region A*a

R2ω1 R2l1 R3ω1 R3ω4 R4ω1 R4l1 R5l2 R5h2 logP

R2ω1 1.00
R2l1 0.40 1.00
R3ω1 - - 1.00
R3ω4 - - - 1.00
R4ω1 - - - - 1.00
R4l1 - - - - - 1.00
R5l2 - - - - - - 1.00
R5h2 - - - - - - - 1.00
logP - - - - 0.10 0.20 - - 1.00

aR2ω1 implies the descriptorω1 at position R2.
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internal representations of the compounds to make predic-
tions from. This not only affected the correct classification
of the inactive compounds but also had an impact on the
predicted EC50 values of the active compounds that it
classified correctly.
Fortunately, ANNs have the robustness for handling noisy

data, and in most cases, the ANN could “see” through this
partially false value to correctly classify most of the inactive
compounds. For two inactive compounds (32 and 65) that
were incorrectly classified as active, intuition would say
otherwise when looking at their predicted EC50 values (80
and 66µM, respectively).

CONCLUSION
The results have shown that ANNs15 can be used to predict

the activity of drugs from calculable information derived
from structure and available physicochemical descriptors. A
data set of 101 of capsaicin analogues was analyzed and an
ANN QSAR model was developed that accurately classified
the activity of 91% of the compounds with a high degree of
precision. Included in the data set were eight compounds
that had not been used for training the ANN. Seven of these
compounds were classified correctly.
The process of developing the ANN QSAR model for the

whole compound demonstrated the utility of applying
combinations of different data representation methods to
substructures of molecules that would otherwise be too
difficult to analyze as a whole. By separation of the
capsaicin analogues into analyzable segments, regions A*-
C* and application of an optimal combination of each data
representation method to each region, a single ANN QSAR
model for the complete molecule was developed from the
amalgamation of the optimized descriptor sets of each region.

The flexibility of segmenting a compound into analyzable
segments proved especially useful for analyzing region C*.
When region C*, consisting of region C only (refer to
Introduction and refs 3 and 4), was initially encoded7,9-11,14

for analysis, the information content of the data proved to
be insufficient for the ANN to form any correlations from.
By creation of region C* as a composite of regions B and C
(refer to Introduction and refs 2-4), this problem was
overcome.

The application of physicochemical parameters and DPP
descriptors to model the substructures of region A* has been
shown to be successful. These descriptors can have the
potential of broadly describing a pharmacophore of the
capsaicin-receptor interaction site, given a more complete
data set for representation. The use of connection table
representations to model the substructures of region B* has
also been shown to be very successful, in so far as the
optimized set of descriptors closely defined a model of the
receptor site as proposed by other researchers.2 With more
work, this method may be refined to develop a complete
pharmacophoric representation of the region. Region C*
proved to be more difficult to model. Although the informa-
tion content implicit in the descriptor sets was sufficient to
model the region with success, more work will be required
to develop methods of extracting information, such as
structural shapes, from the optimized descriptors.

We are currently investigating new methods of data
representation to model the complete set of 123 capsaicin
analogues which in its generic form will have the capability
of being extended to other classes of drugs.

Table 5. Squared Cross-Correlation Table (R2 > 0.10) of the Optimal Parameter Set for Region B*a

P2b P2ha P3ha P3hb P4A P5b P5hb P7ha EB C4 S2 S1

P2b 1.00
P2ha - 1.00
P3hn - - 1.00
P3hb - 0.12 - 1.00
P4A - - - 0.10 1.00
P5b - - 0.14 - - 1.00
P5hb - - 0.19 - 0.14 0.14 1.00
P7ha - - - - - - 0.16 1.00
EB 0.46 - - - - - - - 1.00
C4 0.35 - - - - - - - 0.16 1.00
S2 - - - - 0.12 - - - - - 1.00
S1 - - - - 0.32 - - - - - - 1.00

a P5b implies the descriptorb for the fifth atom in the region B* substructure.

Table 6. Squared Cross-Correlation Table (R2 > 0.10) of the Optimal Parameter Set for Region C*a

3øCv 4øCv f3øP f4øPC ∆4G ∆3J ∆5J W1 - C N3+ O2 S1 E/Zc Zc
3øCv 1.00
4øCv - 1.00
f3øP 0.17 - 1.00
f4øPC - - - 1.00
∆4G 0.13 - - - 1.00
∆3J - - - - - 1.00
∆5J - - - - - 0.39 1.00
W1 - C - - 0.18 - - - - 1.00
N3+ - - 0.11 - 0.14 - - - 1.00
O2 - - - 0.36 - - - - - 1.00
S1 - - 0.15 0.19 0.12 - - - - - 1.00
E/Zc 0.18 - 0.16 - 0.25 - - - - - 0.20 1.00
Zc - - - - - - - - - - - 0.10 1.00

a For explanation of variables, refer to refs 9-11.
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