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Abstract

This thesis offers an integrated perspective of the theory, applications, and imple-

mentation oftrue motion estimation. Taking the pictures of 3D real-world scene gen-

erates sequences of video images. When an object in the three-dimensional real world

moves, there are corresponding changes in the brightness—or luminance intensity—of its

two-dimensional image. The physical three-dimensional motion projected onto the two-

dimensional image space is referred to as “true motion.” The ability to track true motion by

observing changes in luminance intensity is critical to many video applications. This thesis

explores techniques that track such motion and shows how these techniques can be used in

many important applications.

On the theoretical side, three fundamental issues are explored: (1) the intensity-

conservation principle, (2) basic matching- and gradient- measurement, and (3) four levels

of constraints for motion-consistency (i.e., block-, object-, neighborhood-, temporal-). Var-

ious existing and future true-motion-estimation algorithms can be constructed from these

theoretical bases. Based on the theoretical development, we have built a true motion tracker

(TMT) using aneighborhood relaxation formulation.

From an application perspective, the TMT successfully captured true motion vectors

in our experiments for many video applications. For example, inMPEG video compres-

sion, the use of true motion vectors on individual macroblocks can optimize the bit rate for

residual information and motion information. The TMT also offers significant improve-

ment in motion-compensatedspatial- and temporal- video interpolation, e.g., frame-rate

up-conversion and interlaced-to-progressive scan conversion. Another piece of evidence
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that demonstrates the effectiveness of the TMT is its successful application toobject mo-

tion estimation andvideo-object segmentation, both of which are vital preprocessing steps

for object-based video processing in MPEG-4 and MPEG-7 applications.

In regard to implementation, although the proposed TMT is computation-demanding

and control-intensive, we have an effective system design of the TMT. We tackle the

great challenge by (1) partitioning the TMT into two parts—computationally intensive and

control-intensive and (2) supporting both parts with a multimedia architecture consisting of

a core-processor and a processing array. The first computation-demanding part of the TMT

is efficiently conducted on the processing array, and the other control-intensive part of the

TMT is easily executed on the core-processor.
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Chapter 1

Introduction

This work is on digital video processing and is concerned specifically with true motion

estimation. There have been two major revolutions in television history. The first occurred a

half century ago in 1954 when the first color TV signals were broadcast. Today, black-and-

white TV signals have disappeared entirely from the airwaves. The second revolution is

now imminent. By the end of 1998,digital TV signals� will be broadcast on the air [6]. By

the end of 2006, traditionalanalog TV signals† will have disappeared from the airwaves just

as completely as black-and-white signals have now. Digital TV is more than just theater-

quality entertainment at home; it also allows many multimedia applications and services to

be introduced. The digital video processing technology discussed in this thesis is closely

linked to the second and imminent revolution.

While there are various research topics in the field of digital video processing, this work

focuses primarily on motion estimation techniques. Video processing differs from image

processing in that most objects in the video move. Understanding how objects move helps

us to transmit, store, understand, and manipulate video in an efficient way. Algorithmic

development and architectural implementation of motion estimation techniques have been

major research topics in multimedia for years.

�A digital video signal is in a discrete digital coded number form suitable for digital storage and
manipulation.

†An analog Video signal is in a continuously varying voltage form.

1
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Video processing
and coding

True motion
tracking

Motion estimation

Figure 1.1: The scope of this work is about a digital video processing technique.
Among various research topics in the digital video, this thesis explores the challenges
of extracting “true” motion in video images in order to obtain a better picture quality
and a better manipulation of video objects.

This thesis examines both methods for extracting true motion and applications of true

motion estimation. While there are various motion estimation techniques, extracting true

motion in video images delivers pictures of superior quality and increases the ease with

which video objects can be manipulated. Specifically, one contribution of this work is a

true motion tracker (TMT) based on a neighborhood relaxation formulation. Motion fields

estimated by our TMT are closer to true motion than motion fields estimated by conven-

tional minimal-residue block-matching algorithm (as adopted in MPEG test models). We

demonstrate that a dependable TMT paves the way for many follow-up implementations.

1.1 Motion Estimation Algorithms in Video
There are two kinds of motion estimation algorithms: the first identifies the true motion

of a pixel (or a block) between video frames, and the second removes temporal redundan-

cies between video frames.
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1. Tracking the true motion: The first kind of motion estimation algorithms aims to

accurately track the true motion of objects/features in video sequences. Video se-

quences are generated by projecting a 3D real world onto a series of 2D images (e.g.,

using CCD). When objects in the 3D real world move, the brightness (pixel‡ inten-

sity) of the 2D images change correspondingly. The 2D motion projected from the

movement of a point in the 3D real world is referred to as the “true motion” (as shown

in Figure 1.2). For example, Figure 1.3(a) and (b) show two consecutive frames of

a ball moving upright and Figure 1.3(c) shows the corresponding true motion of the

ball. Computer vision, the goal of which is to identify the unknown environment via

the moving camera, is one of the many potential applications of true motion.

2. Removing temporal redundancy: The second kind of motion estimation algorithm

aims to remove temporal redundancy in video compression. In motion pictures, sim-

ilar scenes exist between a frame and its previous frame. In order to minimize the

amount of information to be transmitted, block-based video coding standards (such

as MPEG and H.263) encode the displaced difference block instead of the origi-

nal block (see Figure 1.4). For example, a block in the current frame is similar to

a displaced block in the previous frame in Figure 1.5. The residue (difference) is

coded together with the motion vector. Since the actual compression ratio depends

on the removal of temporal redundancy, conventional block-matching algorithms use

minimal-residue as the criterion to find the motion vectors [45].

Although the minimal-residue motion estimation algorithms are good at removing temporal

redundancy, they are not sufficient for finding the true motion vector, as clarified by the

following example. In Figure 1.5, two motion vectors produce the minimal residue, but one

of the two motion vectors is not the true motion vector. In this case, the non-uniqueness

‡A tiny chunk of an image that has been converted to a digital word. There are typically a constant
number of pixels per line, ranging from a few hundred to a couple thousand. Pixel is short for PIXture
(picture) ELement.
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X

Y

Z

Image plane

3D physical point

2-D projection in
the iamge plane

(world coordinate)

X

Y

Z

Image plane

Physical motion

True motion
in 2-D iamge

Physical 3D motion: V=(Vx,Vy,Vz)

Projected 2D motion: v=(vx,vy)

(a) (b)

Figure 1.2: (a) A 2D image comes from projection of a 3D real world. Here, we
assume a pinhole camera is used. (b) The 2D projection of the movement of a point
in the 3D real world is referred as the “true motion.”

of the motion vectors that can produce the minimal residue of a block contributes to their

difference. The motion estimation algorithm for removing temporal redundancy is happy

with finding any of the two motion vectors. However, the motion estimation for tracking the

true motion is targeted at finding the only one. In general, motion vectors for the minimal

residue, though good for the redundancy removal, may not actually be true motion.

1.2 Classes in True Motion Trackers
Table 1.1 shows a brief summary of motion estimation algorithms and their techniques.

Despite this wide variety of approaches, algorithms for computing motion flow can be

divided into the following classes:

Matching-based techniques: These operate by matching specific “features” (e.g., small

blocks of images) from one frame to the next. The matching criterion is usually a

normalized correlation measure.

Gradient-based techniques: These are also known as “differential” techniques. They es-

timate motion vectors from the derivatives of image intensity over space and time,
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Frame i-1 Frame i Motion

(a) (b) (c)

Figure 1.3: (a)(b) show two consecutive frames of a ball moving upright and (c) shows
the true motion—the physical motion—in the 2D images.

DCT

IDCT
Frame

Memory
Motion

Estimation

- Q

IQ

Video in Motion
Compensation

Quantizer
indicator

Quantized
transform

coefficients

Motion
Vectors

To VLC
Encoder

Figure 1.4: A generic MPEG-1 and MPEG-2 encoder structure is shown here. There
are two basic components in video coding. The first one is the discrete cosine trans-
form (DCT) which removes spatial redundancy in a static picture. Another one is
motion estimation which removes temporal redundancy between two consecutive pic-
tures. When the encoder receives the video, motion estimation and motion compen-
sation first remove the similar parts between two frames. Then, DCT and quantiza-
tion (Q) remove the similar parts in the texture. These quantizer indicators, quantized
transform coefficients, and motion vectors are sent to a variable length encoder (VLC)
for final compression. Note that the better the motion estimation, the less the work to
be done in the DCT. That is to say, the better the motion estimation, the better the
compression performance.
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Frame i-1 Frame i Motion

(a) (b) (c)

Figure 1.5: (a)(b) show two consecutive frames of two balls moving upright and (c)
shows that there are two possible motion vectors that can produce the minimal residue
and remove temporal redundancy in the 2D images. One of the two motion vectors is
true motion while the other is not.

by considering the total temporal derivative of a conserved quantity.

Frequency-domain or filter-based techniques: These approaches are based on spatio-

temporal filters, which are velocity-sensitive. They are typically considering the

motion problem in the frequency domain.

In [89], Simoncelli studies image velocity from computer vision as well as biologi-

cal modeling. He also compares various approaches to velocity estimation and learns that

many of the solutions are remarkably similar and their origins can be viewed as filtering

operations. The unification of theories regarding gradient-based and filter-based techniques

bridges a long standing gap between the two techniques. In [7], Anandan presents a frame-

work which provides a unifying perspective for correlation-matching and gradient-based

techniques.

This work shows a unification theory of matching-based techniques and gradient-based

techniques. We start discussing and describing some approaches of matching-based tech-

niques and gradient-based techniques. In doing this, we have two goals in mind. The first

is to introduce a set of representative solutions to the image velocity problem. In order

to understand a set of basic properties that are desirable in a velocity estimation system,

we consider approaches that are derived from different motivations. The second goal is to
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Figure 1.6: Given the 2D images, the goal of our true motion tracker is to find the 2D
true motion from the image intensity changes.

summarize a number of basic features in true motion estimation and to pave the way toward

the construction of a TMT that is at once both simple and powerful.

1.3 Theoretical Foundation
As mentioned before, a video sequence is generated by projecting a 3D real-world

moving scene onto a series of 2D images. 2D motion projected from the movement of a

point in the 3D real world is referred to as true motion§ (shown in Figure 1.6). (Object

motion is a collective decision based on all the true motion vectors belonging to the feature

blocks of the same object.) The goal of this technology is to identify the 2D true motion

from two or more 2D images.

§There is some information in 3D which is unavailable in 2D images, for example, occluded parts and
depth information on each pixel. Some unknown information will affect the information gathering processes
and the follow-up applications. Without the INTER-object depth information, objects with different sizes
may look the same. In this case, they may have different motion in 3D, but may have the same 2D image
motion. If the application of the motion tracker is video compression, then the loss of such depth information
is insignificant. If the application of the motion tracker is motion-based video-object segmentation, the loss of
such information will diminish the ability to distinguish different moving objects. Without the INTRA-object
depth information, two pixels that have the same 3D motion, may look different in 2D motion. Therefore,
the motion difference may create noise in the image processing. In addition to developing noise-immune
post-processing techniques so as to ignore the noise, one may get around this problem by introducing an
appropriate or approximate object model in the motion tracking processes (see Section 1.3.2).
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1.3.1 Intensity Conservation Principle

One of the most important and fundamental assumptions made in motion estimation is

that the intensity is conserved over time, as explained below: A pixel�x�t��y�t��T in the

image corresponds to a 3D point�X�t��Y�t��Z�t��T in the real world. If the 3D point can be

seen throughout the tracking period, the corresponding pixel is assumed to have constant

brightness and color. Considering monochromatic video, the 2D image intensity of the

projection of the 3D point is conserved over time, that is,

I�x�t��y�t�� t�� I �t (1.1)

whereI�x�y� t� is the intensity of the pixel�p� �x�t��y�t��T at timet and is equal to a constant

I over time. Eq. (1.1) is fundamental to most motion estimation algorithms¶. Based on this

foundation, there are two main classes in motion tracking:

1. Matching-Based Measurement:

In matching-based approaches, pixel intensities in one frame are compared with pixel

intensities in another frame. Smaller differences imply a better match. Based on

the differences of pixel intensities, true motion vectors can be determined. Let�v �

�vx�vy�
T � �x�t �1��x�t��y�t �1��y�t��T represent the motion of pixel�p. Because

I�x�t��y�t�� t� � I

� I�x�t �1��y�t �1�� t �1�

we have

I�x�t�� vx�y�t�� vy� t �1�� I�x�t��y�t�� t�� 0 (1.2)

¶Note: this equation may not hold true in the some conditions, for example, (1) object occlusions and
reappearance (see Section 2.2), (2) non-motion brightness changes, lighting changes (see Section 7.1), (3)
camera acquisition errors, spatial aliasing, and temporal aliasing.
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2. Gradient-Based Measurement:

Gradient-based approaches measure the spatio-temporal derivatives of pixel intensi-

ties and determine true motion vectors based on the “normal components” of velocity.

Following the assumptionintensity conservation over time, then the total derivative

of the image intensity function with respect to time (assumingI�x�y� t� is differen-

tialable onx�y� t) should be zero at each position in the image and at every time:

∂I
∂x

dx
dt

�
∂I
∂y

dy
dt

�
∂I
∂t

� 0

where�v � �vx�vy�
T � �dx

dt �
dy
dt �

T is the motion of pixel�p. Namely,

∂I
∂x

vx �
∂I
∂y

vy �
∂I
∂t

� 0 (1.3)

Eq. (1.2) is the basis for measuring the displaced frame difference for block-matching

motion estimation algorithms, and Eq. (1.3) is the basis for measuring the “normal compo-

nents” of velocity for optical flow techniques [8]. Both of the equations can be character-

ized using the same parameters, denoted asvx andvy. In short, we can use the following

generic expression to represent both Eq. (1.2) and Eq. (1.3):

s�vx�vy� � 0 (1.4)

Since there are two unknown components of�v constrained by only one linear equation,

Eq. (1.4) by itself does not offer a unique solution, as shown in Figure 1.7. There are

ambiguities in determining the true velocity. Namely, an isolated pixel has no information.

1.3.2 Consistency Constraints in Motion Fields

In this section, we integrate basic velocity measurement to produce a motion field.

Categories of the motion tracking algorithms depend largely upon the constraints chosen

for motion consistency.
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Matching-based Gradient-based
Overview [36] [8]
Feature selection [7, 34]
Frequency domain [57, 89]
Spatial correlation [11, 29, 30, 109] [43, 86, 100, 107]
Temporal correlation [11, 29, 30, 109] [43]
Variable block size [9, 35, 63, 87]
Pixel/block subsampling [11, 72]
Multiresolution [11, 27, 68, 101, 109, 112] [43]
Motion vector multiscale [35, 58, 85, 90] [55, 76]
Motion consistency [80]
Rigidity-constrained [34] [74]
Probability model [7] [89]
Rate-distortion optimized [13, 14]

Table 1.1: Examples of motion estimation algorithms. (Numbers refer to the bibliogra-
phy.)

Vx

Vy
The set of velocities
that satisfy the same 
gradient constraint

Vx

Vy

Unique motion vector

(a) (b)

Figure 1.7: (a) A single linear equation in gradient-based motion tracking approaches
cannot determine a unique motion vector. (b) If the pixels in a small region have the
same motion vectors, then it is more likely that we can find a unique motion vector by
two or more linear equations.
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The Beginning of Time.

Generally speaking, two “s�vxi �vyi� � 0” equations can yield a unique solution. If two

or more pixels are known to have the same motion, then it becomes possible for us to

determine the motion from two or more “s�vxi �vyi� � 0” equations. A larger number of

pixels allows us to obtain a more robust estimation of motion.

Pixels contained in the same moving object move in a consistent manner in a video

sequence. Assuming translational motion only, the blocks associated with the same object

should share exactly the same motion. Even for the most general motion, there should

at least be a good degree of motion similarities between the neighboring blocks. There-

fore, the motion vector can be more accurately estimated if the motion trend of an entire

neighborhood is considered, as opposed to that of a single feature point.

Optical Flow Technique.

In [8], Barron, Fleet, and Beauchemin present a number of gradient-based

techniques, regularly called optical flow techniques. Although there are some

differences in those techniques, many optical flow techniques have two basic

processing stages.

In the first stage, “normal components” of velocity, such as spatio-temporal

derivatives, are measured, for example, see Eq. (1.3):

s�vx�vy� �
∂I
∂x

vx �
∂I
∂y

vy �
∂I
∂t

In the second stage, those basic velocity measurements are integrated to

produce a motion field, which involves assumptions about the smoothness of

the underlying flow field. For example:

min
Z

R
s�vx�vy�

2�λ�k∇ vxk
2�k∇ vyk

2�d�p

where the magnitude ofλ reflects the influence of the smoothness term andR

is the region that we would like to track the motion of in the video image.
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Three spatial constraints and one temporal constraint are used to identify the motion of

a pixel or a region:

Block-Constraint:

Let B stand for a block of pixels in the video image and assume that the motion of the

block is purely translational, i.e.,�
� vxi

vyi

�
��

�
� v�x

v�y

�
� ��pi � B

we then have

∑
�pi�B

ks�v�x�v
�
y�k� 0

which implies that

�v� � arg

�
min
�v

n
∑

�pi�B
ks�v�x�v

�
y�k
o�

If we assume there is one unique minimum, then�
� v�x

v�y

�
�� arg

�
min
�v

n
∑

�pi�B
ks�vx�vy�k

o�
(1.5)

where thek � k can be 1-norm or 2-norm. Matching-based techniques locate the minimum

by testing all the possible motion-vector candidates. To reduce the computational com-

plexity, matching-based techniques often use 1-norm. On the other hand, gradient-based

approaches usually use gradient-descent techniques. To ensure the formulation is differen-

tiable, gradient-based approaches often use 2-norm.

Block-Matching Motion Estimation Algorithm Technique.
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The basic idea of the BMA is to locate a displaced candidate block that

is most similar to the current block, within the search area in the previous

frame. Various similarity-measurement criteria have been presented for block

matching. The most popular one is the sum of the absolute differences (SAD)

of a block of pixels. The motion vector is determined by the least SAD for all

possible displacements within a search area, as the following:

�v � arg

�
min
vx�vy

n
SAD�B�vx�vy�

o�
(1.6)

where

SAD�B�vx�vy�� ∑
�p�B

jI�x�y� t�� I�x� vx�y� vy� t �1�j (1.7)

The exhaustive search leads to the absolute minimum of the prediction error,

as shown in Figure 1.8.

Neighborhood-Constraint:

The chance that the motion of a block is purely translational is fairly large when the size

of the block is small. We can find translational regionsfR1�R2� � � � �Rng within an object

whose shape is arbitrary and within an arbitrary motion region. Since the motion is purely

translational in each region,�
� vxi

vyi

�
��

�
� v�x j

v�y j

�
� ��pi � R j

That is,

∑
�pi�R j

ks�v�xi
�v�yi

�k� 0

Because pixels contained in the same moving object move in a consistent manner, there

should be a good degree of motion smoothness between the neighboring regions. That is,
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previous
frame

current
frame

motion
vector

Bi
Di(v)

v

(a) (b)

(c) (d)

(e) (f)

Figure 1.8: Block-matching motion estimation algorithms find the motion vector (�v)
of the current block (Bi) by finding the best-matching displaced block (Di��v�) in the
previous frame. For example, (c) and (d) show the 137th frame and 138th frame of
the “foreman” sequence. The current frame is divided into non-overlapping blocks, as
shown in (d). To find a motion vector of a block (as shown in (f)) in the current frame
by finding the best-matching displaced block in the corresponding search window (as
shown in (e)) in the previous frame. The displacement vector which produces the
minimal matching-error is the motion vector (as shown in Figure 1.9).
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(a)

(b)

(c)

Figure 1.9: (a) shows the current block. (b) shows different displaced blocks in the
previous frame. (c) shows the corresponding residues (matching errors). The dis-
placement (upper-right) that finds the best-matching block (as marked) is the motion
vector.
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�v j ��vk. Then, it is clear that

motion � argmin
f�vjg

	

� ∑

R j�N

�
 ∑

�pi�R j

ks�vx j �vy j�k

�
A�λ ∑

R j�N
k∇ �v jk

��
� (1.8)

where the neighborhoodN is the union of then disjoint regions (i.e.,N � R1�R2��� ��

Rn) andλ ∑k∇ �v jk is for the motion smoothness in the neighborhood.

Neighborhood Relaxation Technique.

The true motion field is piecewise continuous. In Section 2.3, we show how

the motion of a feature block is determined by examining the directions of all

its neighboring blocks. (On the other hand, the minimum SAD of a block of

pixels is used to determine the motion vector of the block in BMAs.) This al-

lows a chance that a singular and erroneous motion vector may be corrected by

its surrounding motion vectors (just like median filtering). Since the neighbor-

ing blocks may not have uniform motion vectors, a neighborhood relaxation

formulation is used to allow for some local variations of motion vectors among

neighboring blocks:

motion of Bi� j � argmin
�v

n
SAD�Bi� j��v��

∑
Bk�l�N �Bi� j�

W �Bk�l�Bi� j� min
�δ
fSAD�Bk�l��v��δ�g

o

whereBi� j is a block of pixels for which we would like to determine the motion,

N �Bi� j� is the set of neighboring blocks ofBi� j, W �Bk�l�Bi� j� is the weighting

factor for different neighbors, and a small�δ is incorporated to allow for some

local variations of motion vectors among neighboring blocks [20].

Object-Constraint:

Because 2D video is the projection of 3D scenes onto images, all pixels that belong to

a 3D object follow the object motion. If we know the structure, the motion model, and the
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location of an objectO in the video, then we can determine the pixel motion for all pixels

contained within that object. Namely,�
� xi�t �1�

yi�t �1�

�
�� Model

�

�
� xi�t�

yi�t�

�
� � motion parameters

�
A

holds for all�pi � O. Then, again,

motion � arg

�
min

motion

n
∑

�pi�O
ks�vxi�vyi�k

o�
(1.9)

There are various object structure models (such as, 2D rigid body, 3D rigid body, plastic)

and a variety of motion models (such as, translation, rotation, deformation). Some of them

are very powerful but they are also computationally intensive.

2D Affine Matching Technique.

One of the most commonly used motion models to describe the motion of

an object is the 2D affine model:�
� xi�t �1�

yi�t �1�

�
��

�
� a11 a12

a21 a22

�
�
�
� xi�t�

yi�t�

�
��
�
� b1

b2

�
�

which can model 2D objects in translational/rotational motion and 3D objects

in translational motion. Under this assumption, Eq. (1.9) becomes

fai j�bkg � arg
n

min
fai j �bkg

∑
�pi�O

kI�a11xi�t��a12yi�t��b1�

a21xi�t��a22yi�t��b2� t �1�� I�xi�t��yi�t�� t�k
o

Since there are six unknown parameters, at least six reference points are re-

quired in order to generate a unique solution.

2D Affine Gradient-Based Technique.
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In a manner similar to the previous approach, the 2D affine motion model

can be used with gradient-based measurement as well:

fai j�bkg � arg
n

min
fai j �bkg

∑
�pi�O

k
∂I
∂x

��a11�1�xi�t��a12yi�t��b1��

∂I
∂y

�a21xi�t���a22�1�yi�t��b2��
∂I
∂t
�k
o

Object-Constrained Feature Corresponding Technique.

In [34], Dreschler and Nagel present an object tracking method in station-

ary TV sequences. Frames from such an image sequence can be separated into

stationary and non-stationary parts. Whereas the stationary parts consist of

static foreground and background, the non-stationary parts are divided further

into sub-images corresponding to one or more moving objects, for example, a

car or a pedestrian. In Dreschler and Nagel’s method, prominent features of

non-stationary objects on each frame are first selected. Then, the tracking of

the features is formulated as the correspondence problem, i.e., the search for

a suitable match between features from two different image framesk. To in-

crease the accuracy of the tracking results, a graph-based matching approach,

which constrains the movement of a set of features, is used to solve this feature

correspondence problem.

Rigidity-Constrained Optical Flow Technique.

In [74], Mendelsohn, Simoncelli, and Bajcsy present another algorithm

for estimating motion flow. Unlike traditional optical flow approaches that

impose smoothness constraints on the flow field, this algorithm assumes that

the camera is aimed at a rigid object such that there should be a consistent

kSuch a problem occurs not only during the evaluation of temporal image sequences, but also in the
disparity determination required for binocular stereo-vision.
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relationship between pixel velocities. Therefore, they assume smoothness on

the inverse depth map.

Temporal-Constraint:

In a short period of time, the motion of a pixel over a small number of frames can be

considered as constant. LetT represent a period of time in the video sequence and assume

that the motion of the pixel is constant,�
� vx�t�

vy�t�

�
��

�
� v�x

v�y

�
� �t � T

Then, it is clear that

∑
t�T

ks�v�x�v
�
y�k� 0

It implies that

�v� � arg

�
min
�v

n
∑

t�T
ks�v�x�v

�
y�k
o�

If there is one unique minimum, then�
� v�x

v�y

�
�� arg

�
min
�v

n
∑

t�T
ks�vx�vy�k

o�

Spatial/Temporal Correlation Technique.

The true motion field is also piecewise continuous in the temporal domain.

That is, motion fields are not only piecewise continuous in spatial domain (2D)

but also piecewise continuous in temporal domain (1D). In [29, 109], de Haan

et al. and Xieet al. introduce motion estimation algorithms that exploit mo-

tion vector correlations between temporal adjacent blocks and spatial adjacent

blocks. The initial search area can be reduced by exploiting these correlations.
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Matching-based Gradient-based
Block constraint [36, 101] [8, 76]

Neighbor constraint [20]
Object constraint [34] [74]

Temporal constraint [29, 109]

Table 1.2: By combining matching-based or gradient-based measurement with the
block constraint, the object constraint, the neighborhood constraint, or the temporal
constraint, we define a variety of motion tracking algorithms. (Numbers refer to the
bibliography.)

Different Motion Estimation Algorithms in One Generic Equation.

By combining either matching-based measurement or the gradient-based measurement

with the block constraint, the object constraint, the neighborhood constraint, or the tem-

poral constraint, we define a variety of motion tracking algorithms (see Table 1.2). For

example, block-matching algorithms (BMAs) are based on the minimization of the match-

ing error (see Eq. (1.2)) of a block of pixels (see Eq. (1.5)).

All of the constraint equations can be characterized by the same form of integration. In

short, we can use the following generic expression to represent all of them:

f�vig� arg

�
min
f�vig

n
∑ks��pi��vi�k

o�
(1.10)

wheref�vig satisfy certain constraints (e.g., block-wise translational motion, 2D affine mo-

tion).

1.3.3 Correctness, Precision, and Accurate in Motion Estimation

Before discussing “better” true motion tracking algorithms, some terms must first be

defined:

1. Correctness: An estimated motion vector�u is correct when it is close (within a cer-

tain range) to the true motion vector�v�. The correctness of an estimated motion field
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is the ratio of the correctly estimated motion vectors to the total estimated motion

vectors.

2. Precision: The precision of the estimated motion field is inversely proportional to

the estimation error between the estimated motion field and the true motion field.

3. Accurate: An estimated motion field is accurate when it is correct and precise.

In video processing, subjective visual quality is one of the most important issues. We

find that the correctness of the motion field is highly correlated to subjective visual quality

(e.g., in non-residue motion compensation). The first goal of this work is to develop a

high-correctness true motion tracker.

1.3.4 Tradeoffs in Different Measurement

In this work, we first focus on implementing a core true-motion tracker using matching-

based measurement (gradient-based measurement is used in Chapter 4).

Motion estimation techniques that use matching-based measurement are adopted

widely by video compression communities for two important reasons: they are easy to

implement and are efficient at removing redundancy. Matching-based techniques are often

derived using the sum of the absolute differences (SADs) and locate the minimum SAD

by testing all the possible motion-vector candidates. The required operations aresimple

and regular (integer additions and subtractions) and are easy to implement in ASICs (e.g.,

systolic arrays). In addition, in many video compression standards, removing temporal

redundancy is more important than finding the true motion vector. (As mentioned in Sec-

tion 1.1, the motion vector for minimal residue may not be the true motion.) Finding the

minimum SAD by testing all the possible motion-vector candidates is an efficient way to

remove redundancy.

On the other hand, gradient-based techniques (using gradient-based measurement) are

usually adopted by computer vision communities because finding the true motion vector is
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more important than removing temporal redundancy. Based on an analytical formulation

using the spatial and temporal derivatives of image intensity (using floating-point multipli-

cations and divisions), gradient-based techniques can precisely determinesub-pel motion

vectors. This is difficult for matching-based techniques to do.

However, gradient-based approaches often perform poorly in highly textured re-

gions [89] and fast motion regions [76] (see Section 4.3.1). Practical gradient-based algo-

rithms use finite differences to approximate the derivatives. Finite differences approximate

the derivatives well at slow motion regions, but unfortunately the approximation degrades

rapidly with increasing motion speed [76]. When the initial position is too far away from

the solution, it is likely that gradient-based approaches converge to a local minimum and

produce undesirable results. That is, in high motion regions, they could find motion vectors

inaccurately.

There are two reasons for focusing on the implementation of a core true-motion tracker

based on matching-based techniques, and for why we use gradient-based techniques in

Chapter 4: (1) We would like to demonstrate that matching-based techniques can not only

remove redundancy but can also find true motion vectors when proper constraints are given.

(2) If proper initial motion vectors are given, the gradient-based techniques can be accurate

in high motion regions. In this context, the initial motion vectors can be provided by the

matching-based true motion tracker so as to avoid complex computations, such as floating-

point multiplications and divisions.

1.3.5 Tradeoffs in Different Constraints

In this work, our true motion tracker is built upon neighborhood relaxation. In Sec-

tion 1.3.2, we present three spatial constraints and a temporal constraint used to integrate

basic velocity measurement for producing a motion field. In this section, we discuss the

tradeoffs of different constraints and explain the reason for choosing the neighborhood

constraint.
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The block constraint has several advantages: (1) the assumption behind this constraint

is very simple; (2) it covers the most common cases; (3) its implementation is also very

easy. Therefore, it is widely used in most video compression standards [3, 51].

The block constraint requires a hard decision in determining the block size. The smaller

the block, the greater the chance that more than one “minimum” exists. (The high number

of possible candidates makes it very hard to determine which is the true one.) On the other

hand, the larger the block, the greater the chance that the block does not follows purely

translational motion (e.g., the blocks can contain two or more moving objects.)

The advantage of using the object constraint is two-fold: (1) it is powerful in modeling

the real world; (2) it covers most cases in video.

However, the object constraint is very complex and slow in implementation. Before

the object constraint can be applied to integrate basic velocity measurement, some critical

questions must be answered:

1. Choice of object model: Applying complicated object models to simple objects

is acceptable, but it is more expensive in terms of computation. Therefore, it is

important to choose the best (simple and accurate) model for an object. For example,

from a far distance a book is a 2D object, and a human head from a distance is a 3D

cylinder.

2. Choice of motion model: In order to reduce computation time and increase tracking

stability, the best motion model for the object must be selected. For example, the

translational motion model is simpler than the general affine model.

3. Object location in the image: We must determine whether a pixel belongs to an

object or lies outside of it. The more accurate the object boundary, the more accurate

the motion estimation.

4. Initial parameter estimation: Most object/motion models have a high number of



Chapter 1: Introduction 24

parameters; the better initial estimation of the parameters would result in more satis-

factory final tracking results.

Several difficulties are encountered when applying the object constraint to motion track-

ing. It is generally agreed to be an ill-posed problem, because theoretically the motion

models can only be applied to regions homogeneous with respect to the movement, which

means that a preliminary stage of segmentation is required. Since the object motion is not

known, no criteria are available to carry out the segmentation [34, 37, 43, 74]. (Many ap-

proaches to object motion estimation problems get around this difficulty by basing initial

object segmentation on block motion vectors as a preprocessing stage.)

An advantage of the temporal constraint is that the temporal constraint and the spatial

constraints can supplement each other (see Section 2.4). Applying the temporal constraint

without any spatial constraint is unique. Although theoretically speaking, two independent

equations can solve two unknown variables, we need much more than three frames to have

two independent equations in the real world. Therefore, it is preferable that the length of

the periodT is greater than three. However, when the length of the periodT is too large,

it is unlikely that the motion vector of the pixel remains constant.

A disadvantage of the temporal constraint is the cost (processing delay and memory

size). Three or more frames of the video must be stored before the motion vectors can

be determined. This results in a processing delay, and requires more memory space than

motion estimation algorithms based on two frames.

The neighborhood constraint is a compromise between between block constraint and

object constraints. For example, its implementations are much simpler and faster than the

object constraint, but not as simple as the block constraint. It is also more applicable to

a broader range of situations than the block constraint is, but not as broad as the object

constraint. In the neighborhood constraint, finding small piecewise-translational regions

within a moving object is easy. Neither object model nor motion model is required for

motion tracking. However, the neighborhood constraint suffers the same problems with the
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block constraint: (1) how to decide the size of the neighborhood, and (2) how to determine

whether the neighborhood belongs to the same moving object (see Section 5.3.4).

In this work, we focus on the neighborhood constraint. We would like to develop a

fundamental motion tracker applicable to a number of tracking problems, even to object

motion tracking. Therefore, our core true-motion tracking algorithm does not assume any

object information.

1.4 Contribution and Organization of Dissertation
In this work, we discuss fundamentals of true motion estimation, application-specific

implementations, and system design of a true motion tracker.

One contribution the thesis makes to the field of digital video processing is our baseline

TMT, which uses block-matching and neighborhood relaxation techniques. The proposed

true motion tracker is based solely on the sum of the absolute differences (SADs)—the

simplest method in matching-based techniques. Simple and regular computations are used.

The neighborhood relaxation formulation allows for the correction of a singular and er-

roneous motion vector by utilizing its surrounding motion vector information (just like

median filtering). Our method is designed for tracking more flexible affine-type motions,

such as rotation, zooming, shearing, etc.

Applications highlight the importance of the true motion tracker. This work discusses

the theory of true motion tracking with respect to its many useful applications and demon-

strates that true motion tracking is effective in achieving lower bit-rates in video coding and

higher quality in video interpolation. This work evaluates the wide variety of applications

of true motion tracking.

This thesis also addresses the TMT system design and implementation. The effective

implementation of the TMT on programmable parallel architectures shows another promis-

ing aspect of the proposed TMT.
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Part I: Theory of True Motion Tracker

Figure 1.10 depicts the organization of this work and the relationship between differ-

ent sections and chapters. In Section 1.3, we discuss the theoretical foundation of true

motion tracking: the intensity conservation principle, two basic means of measurement

(matching-based and gradient-based), and four motion-consistency constraints (block-,

object-, neighborhood-, and temporal-).

These two basic techniques and four different constraints can form many different kinds

of motion estimation algorithms, as shown in Table 1.2. Among the wide variety of mo-

tion estimation algorithms, we shall place our focus on the neighborhood-matching motion

estimator. In addition, Chapter 4 breaks new ground by integrating matching-based and

gradient-based techniques.

In order to improve the correctness and precision of the true motion tracker, we reca-

pitulate five rules (block-sizing, traceability, trackability, and consistency) from some basic

observations of true motion tracking (cf. Table 2.1). In Section 2.1, the block-sizing rule,

which allows a decision regarding the right block size to be made, is discussed. Basically,

we prefer a large block size but wish to avoid the error of having different moving objects in

a single block. Therefore, in Section 2.3, we demonstrate that the spatial-consistency rule

can lead to a spatial neighborhood relaxation formulation, which can incorporate more spa-

tial neighborhood information. This formulation is our baseline TMT—the key component

in Chapters 3, 4, and 5.

In Section 2.2, the traceability and trackability rule presents the method for and im-

portance of identifying and ruling out untraceable and untrackable blocks. This rule is

used in Chapter 5. In Section 2.4, the temporal-consistency rule leads to a temporal re-

laxation scheme, which can incorporate more temporal information (similar to the spatial-

consistency rule leading to a spatial relaxation scheme). The frame-rate up-conversion

scheme discussed in Chapter 3 uses the temporal relaxation formulation.
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Block-Sizing Rule 

Traceability and
Trackability Rule

Spatial-Consistency Rule

Temporal-Consistency
 Rule

Multiresolution-
 Consistency Rule

Matching-
Based

Gradient-
Based

Block-constraint

Object-constraint

Neighbor-constraint

Temporal-constraint

Rate-optimized
 coding and frame-
 rate up-conversion

Motion-based
 deinterlacing

Object-motion 
 estimation and
 video-object
 segmentation
 

Chapter 3

Chapter 4

Chapter 5

Section 2.3

Section 2.4

Section 2.5

Section 2.2

Section 2.1

Figure 1.10: The organization of this work and the correlation between different sec-
tions and chapters. Section 1.3 shows two basic measurement techniques and four
different constraints, which can be applied to many different kinds of motion estimation
algorithms. In Chapter 2, we present a set of rules for “better” true motion trackers.
Based on these, we build up our true motion tracker and three different application-
specific true motion trackers as used in Chapters 3, 4, and 5.



Chapter 1: Introduction 28

As shown in Section 2.5, the multiresolution-consistency rule leads to a motion track-

ing scheme using multiple resolutions. In addition, similar to Chapter 4, Section 2.5 also

explores how the precision of the tracking results can be increased using a motion vector

refinement scheme, in which small changes on the estimated motion vectors are allowed.

Moreover, this work is perhaps the first research that presents a multiresolution motion

estimation scheme in conjunction with neighborhood relaxation.

Part II: True Motion Tracker and Applications

This work discusses true motion tracking with respect to its many useful applications.

True motion estimation in video sequences has many useful applications, such as:

1. Video compression: includes efficient coding, rate optimized motion vector cod-

ing, subjective picture quality (less block effects), object-based video coding, object-

based global motion compensation, and so on.

2. Video spatio-temporal interpolation: includes field rate conversion applications,

interlaced-to-progressive scan conversion, enhancement of motion pictures, synthe-

sis, and so forth.

3. Video analysis and understanding: includes object motion estimation (including re-

covering the camera motion relative to the scene), video object segmentation (in-

cluding determining the shape of a moving object), 3D video object reconstruction

(monoscopic or stereoscopic), machine vision for security, transportation, and medi-

cal purposes, etc.

For each of the above applications, different degrees of accuracy and resolution in the

computed motion flow are required. Moreover, different applications can afford different

amounts of computational time. As a result, different applications exploit different tech-

niques.
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We design the TMTs with the applications in mind. Although our baseline TMT is

generally reliable, it still suffers from some of the problems that occur in the natural scene,

such as, homogeneous regions, object occlusion and reappearance, etc. We do not tackle

the problems in the baseline TMT. Instead, we tackle the problems based on theappli-

cations since different applications require different degrees of accuracy and resolution in

the motion fields and can afford different computational times. The advantages of this ap-

proach are (1) the baseline TMT is simple and (2) the application-specific TMT is efficient.

This is perhaps the first thesis research that demonstrates that the TMT can be suc-

cessfully applied to video compression (as shown in Chapter 3). According to MPEG

standards, the motion fields are encoded differentially. Therefore, the minimal-residue

block-matching algorithm (BMA) can optimize the residual coding but cannot optimize

the bit rate for motion information coding. Using the true motion on individual blocks can

also optimize the bit rate for residual and motion information. In addition, since the TMT

provides true motion vectors for encoding, the blocking artifacts are decreased and, hence,

the pictures look better subjectively.

As another contribution, Chapter 3 also shows that the TMT offers significant improve-

ment over the minimal-residue BMA in motion-compensated frame-rate up-conversion us-

ing decoded motion vectors. Motion-compensated interpolation differs from the ordinary

interpolation in that the pixels in different frames are properly skewed according to the

movements of the object. The more accurate the motion estimation, the better the motion-

compensated interpolation.

Another contribution is that we demonstrate in Chapter 4 that the proposed TMT can

be applied to the spatio-temporal interpolation of video data. Using the interlaced-to-

progressive scan conversion as an example in the spatio-temporal interpolation of video

data, we extend the basic TMT to an integration of the matching-based technique and the

gradient-based technique. The application-specific TMT for the interlaced-to-progressive

scan conversion differs from the application-specific TMT discussed in Chapter 3. The
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more accurate the motion estimation, the better the motion-compensated interpolation.

Therefore, we have a high-precision application-specific TMT, which takes much more

computational time. The matching-based motion estimation can find “full-pel” motion vec-

tors accurately. Afterwards, the gradient-based technique may be adopted to find “sub-pel”

motion vectors more precisely and easily, based on those full-pel motion vectors.

As the last application-related contribution, we demonstrate in Chapter 5 that a modifi-

cation of the TMT can be successfully applied to motion-based video-object segmentation.

For object-based coding and segmentation applications, the major emphasis is not placed

on the number of feature blocks to be tracked (i.e., quantity) but on the reliability of the fea-

ture blocks we choose to track (i.e., quality). The goal of application-specific TMT in this

chapter is to find motion vectors of the features for object-based motion tracking, in which

(1) any region of an object contains a good number of blocks, whose motion vectors exhibit

certain consistency; (2) only true motion vectors for a small number of blocks per region are

needed. This means that we can afford to be more selective in our choice of feature blocks.

Therefore, one of the natural steps is to eliminate those unreliable or unnecessary feature

blocks. We propose a new tracking procedure: (1) At the outset, we disqualify some of the

reference blocks that are considered to be unreliable to track (intensity singularities). (2)

We adopt a multi-candidate pre-screening to provide some robustness in selecting motion

candidates. (3) We have a motion candidate post-screening to screen out possible errors in

tracking the blocks on object boundaries (object occlusion and reappearance).

Part III: Effective System Design and Implementation of the True Motion Tracker

This discussion would be incomplete if the subject of the system design and implemen-

tation of the TMT were omitted. Because conventional BMAs for motion estimation are

computationally demanding, to design an efficient implementation of the BMA has been

a challenge for years. Although the proposed TMT is more computationally intensive and

control-intensive than conventional BMAs, an effective system implementation in Chap-

ter 6 demonstrates another promising aspect of the TMT.
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First, the TMT is implemented on a programmable parallel architecture consisting of a

core processor and an array processing accelerator. Driven by novel algorithmic features of

multimedia applications and advances in VLSI technologies, many architecture platforms

for new media-processors have been proposed in order to provide high performance and

flexibility. Recent architectural designs can be divided into internal (core processor) and

external (accelerator) designs. Some algorithmic components can be implemented using a

programmable core-processor while others must rely on hardware accelerators. Therefore,

we implement the TMT using architecture that integrates a core-processor and an array

processing accelerator.

Second, using an optimal operation and scheduling scheme, we process the regular

and computationally intensive components of the TMT on the processing array. System-

atic methodology capable of partitioning and compiling algorithms is vital to achieving

the maximum performance of the parallel and pipelined architecture (like systolic design

methods). Because the gap between processor speed and memory speed is getting larger

and larger, the memory/communication bandwidth is a bottleneck in many systems. An

effective operation placement and scheduling scheme must deliver an efficient memory us-

age. Particularly, memory access localities (data reusability) must be exploited. Another

important contribution made here is an algebraic multiprojection methodology for opera-

tion placement and scheduling, which can manipulate an algorithm with high-dimensional

data reusability and provides high memory-usage efficiency.

To summarize, the architecture platform and the operation placement and scheduling

scheme are useful for our development of the TMT system implementation. First, the

TMT algorithm is partitioned into two parts—a regular and computationally intensive part

versus a complex but less computation-demanding part. The regular and computationally

intensive part will be assigned to the processing array to exploit the accelerator’s high

performance, while the complex but less computation-demanding part will be handled by

the core-processor due to its high flexibility.
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Useful Rules for True Motion Tracking

Hundreds of motion tracking (motion estimation) algorithms have been developed for

machine vision, video coding, image processing, etc. Some of them are quite similar in

the basic techniques but are different in computational formulation. Each of the techniques

brings a new point of view and a new set of tools to tackle the problems untackled by

other algorithms. However, each of them may probably fail to handle situations that occur

in natural sceneries. In this chapter, we study the ground common to all motion tracking

algorithms and establish the foundation for our true motion tracker (TMT).

2.1 Choose the Right Block
In this section, we discuss the relationship between the block size in the block-

constraint and the correctness and precision of the estimated motion field.

Block-Sizing Rule: Use large blocks to improve correctness, but not so large as to hurt

correctness.

Block-Sizing Observation: In a video sequence, the pixels of the same moving object

are expected to move in a consistent way. The pixels associated with the same object

should share a good degree of motion similarities. Consider only translational motion

in block-constraint matching-based techniques:

32
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Rules Functions and Advantages
Block-sizing rule Use large blocks to improve correctness,

but not so large as to hurt correctness

Traceability and Locate and weed out (1) untextured regions, and (2) object bound-
trackability rule ary, occlusion, and reappearance regions to improve correctness

Spatial- Use spatial smoothness to improve correctness;
consistency rule use spatial neighborhood relaxation to improve precision

Temporal- Use temporal smoothness to improve correctness;
consistency rule use temporal neighborhood relaxation to improve precision

Multiresolution- Use multiresolution relaxation to reduce computation;
consistency rule use motion vector refinement to improve precision

Table 2.1: Rules for accurate motion tracking.

1. Within a same moving object, when the block is larger and larger, it becomes

increasingly unlikely to find a matched displaced block using a displacement

vector that is not the true motion vector.

2. When the block size is excessively larger than a consistent moving object, find-

ing the true motion for any point in the block becomes difficult.

For simplicity, we use a two-dimensional (one spatial dimension and one temporal di-

mensional) signalf �n� t� to explain these phenomena. We define the score function for

matching-based techniques as

s�n�∆� � j f �n�∆� t �1�� f �n� t�j (2.1)

and the block-constraint motion estimation algorithm as

d � arg

�
min

∆

n k

∑
n�1

s�n�∆�
o�

wherek is the block size,∆ is the displacement, andd is the estimated motion vector.
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1. We consider that blocks are always contained within a same moving object. Assum-

ing (without losing generality) that the wholef �n� t� is shifted by a true displacement

d0 into f �n� t �1� at timet �1, i.e., then

f �n� t� � f �n�d0� t �1� �n (2.2)

To find a matched displaced block using a displacement vectord that is not the true

motion vectord0 means that

k

∑
n�1

s�n�d� � 0

i.e., for alln � f1� � � � �kg,

f �n� t� � f �n�d� t �1� �from Eq. (2.1)�

� f �n�d�d0� t� �from Eq. (2.2)�

which means that a block of signals are identical to another block of signals. As the

block size is larger and larger, a match between the features of two blocks becomes

increasingly harder. That is, it is increasingly unlikely that this block will be confused

with other blocks.

Another way of stating this phenomenon is this: as the block sizek becomes larger,

it becomes easier to distinguish the true displacementd0 from the displacementd by

the “minf∑s�n�∆�g” criterion.

2. We consider that a block contains two or more moving objects. For simplicity, we

assume that the block size isk and the block contains two different moving blocks—

one is fromn � 1 to n � k� and the other one is fromn � k��1 to n � k (k� � k).

Different parts of thef �n� t� are shifted by different displacements as the following:

f �n�d1� t �1� � f �n� t� � 1� n� k�

f �n�d2� t �1� � f �n� t� � k��1� n� k
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(a) In order to have matched displaced block usingd1, i.e.,

k

∑
n�1

s�n�d1� � 0

we must have

f �n�d1� t �1� � f �n�d2� t �1� � k��1� n� k

which means that a block of signals (fromn � k�� 1� d1 to n � k � d1) is

identical to another block of signals (fromn � k��1�d2 to n � k�d2).

(b) Similarly, in order to have matched displaced block usingd2, we must have

f �n�d1� t �1� � f �n�d2� t �1� � 1� n� k�

which means that a block of signals (fromn � 1�d1 to n � k��d1) is identical

to another block of signals (fromn � 1�d2 to n � k��d2).

In both cases, as the block size (k� k� or k�) becomes larger, a match between the

features of two blocks becomes increasingly harder. That it, it is increasingly unlikely

to find a matched displaced block using the true motion vectors of the objects due to

the matching error introduced by different moving objects.

By assuming that the image signal isseparable, the problem of finding the unknown

displacementd from f f �n� t�g andf f �n� t � 1�g is similar to our problem of finding the

motion vector�vx�vy� from fI�x�y� t�g andfI�x�y� t �1�g. The larger the block size used

to find the unknown true displacement,d0, from the “minf∑s�n�∆�g” criterion, the higher

the ability to distinguish the true displacementd0 from other displacements. And so, we

conclude that the larger the block, the greater the chance to find the unique and correct

estimation. We also showed that it is difficult to have a correctly estimated motion vector

when the block size is too large.

We assume that the true motion field is piecewise continuous in the spatial domain.

Given this premise, the motion vector can be more dependably estimated if the global
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motion trend of an entire neighborhood is considered, as opposed to considering one feature

block itself [36, 63]. This enhances the chance that a singular and erroneous motion vector

may be corrected by its surrounding motion vectors [107]. For example, a tracker fails

to track its central block because of noise, but successfully tracks its surrounding blocks.

With the smoothness constraint in the neighborhood, the true motion of the central block

could be recovered.

Making the block (neighborhood) size larger increases the correctness when the block

size is smaller than the translational moving region of an object. A region moves trans-

lationally under three circumstances. (1) A region is contained within an object that is

moving translationally related to the camera. (2) A region is contained within an object

that is moving non-translationally, but the movement is minute and hence a small piece of

the object moves as if translationally. (3) A region is contained within a stationary back-

ground when the camera is panning or not moving. For most coding standards, the block

size is 16	 16. From the actual video scene (with picture CIF 352	 288 or larger), such

a block size is usually smaller than most of the translational moving region. Generally, the

motion vector obtained from a larger block is more noise-resistant than that obtained from

a smaller block. So, in this work, we use a neighborhood larger than the conventional block

size.

On the other hand, when the block size is larger than a translational moving region of

an object, it is unlikely to find a matched displaced block using the true motion vectors

of the objects due to the matching error introduced by different moving objects. Clearly,

choosing a correct block size is critical.

In order to reduce the estimation error introduced when the block contains different

objects on the block size, a weighting scheme is introduced that puts more emphasis on

the center of a block and less emphasis on the periphery of a block. In general, when a

block contains different objects, the center of the block contains a single object while the

periphery of the block contains other objects. In this case, the weighting scheme can reduce
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the damage and so enable us to use a larger block.

Neighborhood-Sensitive Gradient-Based Technique.

Since the motion fields are piecewise continuous in the spatial domain,

several algorithms have put the neighborhood influences into the optimization

criteria, just like SNAKE [53]. In [100], Tomasi and Kanade present an algo-

rithm that minimizes the sum of squared intensity differences between a past

and a current window. In addition to modeling the changes as a more complex

transformation, such as an affine map, the algorithm emphasizes the central

area of the window as the following:

min
Z

R
w��p�s��p��v�2d�p

wherew��� is a Gaussian-like function, which puts higher weights on the center

than on the boundary.

Neighborhood-Sensitive Block-Matching Technique.

Instead of considering each feature block individually, we determine the

motion of a feature block (say,Bi� j) by moving all its neighboring blocks

(N �Bi� j�) along with it in the same direction. A score function is introduced

as the following [100]:

score�Bi� j��v� � SAD�Bi� j��v��

∑
Bk�l�N �Bi� j�

�W �Bk�l�Bi� j� SAD�Bk�l��v�� (2.3)

� image force (external energy)�

constraint forces (internal energy)
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whereW �Bk�l�Bi� j� is the weighting function. The final estimated motion vec-

tor is the minimal-score displacement vector:

motion of Bi� j � argmin
�v
fscore�Bi� j��v�g

where�v should be one of the possible candidates recorded by the multi-

candidate pre-screening.

The central block’s residue in the score function is calledimage force,

which is similar to the external energy function of SNAKE [53]. In addi-

tion, the neighbors’ residue in the score function is calledconstraint forces,

which reflect the influence of neighbors and correspond to the internal energy

function of SNAKE.

The above approach will be inadequate for non-translational motion, such

as object rotating, zooming, and approaching [86]. For example, in Fig-

ure 2.3(b), an object is rotating counterclockwise. Because Eq. (2.3) assumes

that the neighboring blocks will move in the same translational motion, this

equation may not adequately model the rotational motion.

Instead of choosing a fixed block size (e.g., in video coding), the quad-tree-structured

technique shows an adaptive scheme for choosing different block sizes. The multi-scale

technique uses different block sizes for different levels of estimation precision.

Quad-Tree-Structured Technique.

Because the information details are not uniformly distributed in the spa-

tial domain, Seferidis and Ghanbari [87] use the quad-tree structured spatial

decomposition. Fine structures are important in detailed ares, whereas coarse

structures are sufficient in uniform regions.
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Multi-Scale Technique.

Dufaux and Moscheni report that large range displacements are correctly

estimated on large-scale structures and short range displacement are accurately

estimated on small-scale structures [36]. They introduce a locally adaptive

mesh refinement procedure. This allows both from-fine-to-coarse and from-

coarse-to-fine motion field refinements. While the more classical strategy of

using only coarse-to-fine refinement allows more accurate motion fields on

edges of moving objects, the strategy of using fine-to-coarse refinement allows

more accurate motion fields on homogeneous regions.

Hierarchical Fast Motion Estimation Technique.

Assume that the motion vector obtained from a larger block size provides

a good initial estimate for motion vectors associated with smaller blocks that

are contained by the larger block. The hierarchical methods, which use the

same image size but different block sizes at each level, also restrict the number

of search locations at large-scale motion vectors at first, and then refine the

predicted motion vector later [9, 35].

Multi-Scale Optical Flow Technique.

Practical algorithms use simple finite differences to approximate the

derivatives. In [76], Moulin, Krishnamurthy, and Woods notice that finite dif-

ferences approximate the derivative very well at slow motion; unfortunately

the approximation degrades rapidly with increasing motion speed. Further-

more, gradient approaches often perform poorly in highly textured regions of

an image unless the pre-filter is excellent [89]. Hence, a coarse-to-fine multi-

scale optical flow approach is proposed.
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However, their method did not perform well with fast and complex mo-

tions (e.g., the football and Susie sequences), because of the over-smoothness

parameter caused by the hierarchical estimator. The multi-scale algorithm suf-

fers from (1) propagation of estimation errors from the coarse level of the pyra-

mid to the finer level of the pyramid, and (2) the inability to recover from these

errors.

In short, it is important to use large blocks to improve correctness, but not so large as to

hurt correctness. We have shown a few adaptive techniques that can be used to tackle the

critical decision. In Sections 2.3 and 2.4, we use a relaxation formulation (more computa-

tion), in which some biased noise becomes unbiased noise, to accommodate non-constant

motion. We are using more computation to improve the precision given the assurance of

the correctness even though there is still a risk of losing the correctness.

2.2 Locate and Weed out Untraceable and Untrackable

Regions
There are two cases when a block should be weeded out from the list of correctly

motion-tracked blocks:

1. Untraceable: If a block can be perfectly motion-compensated from the other frames

(1) when the true motion vector is given, and (2) when many motion vectors that

are not true motion are given to the block, then it is extremely challenging to dis-

tinguish the true motion vector from other vectors. In this case, the block is called

“untraceable.”

2. Untrackable: If a block cannot be well motion-compensated when the true mo-

tion vector is given, then it is arduous to identify the true motion vector using the

intensity-conservation principle. In this case, the block is called “untrackable.”
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In both cases, the correctness of the estimated motion vector becomes uncertain and so we

present the following traceability and trackability rule for higher tracking correctness:

Traceability and Trackability Rule: For higher tracking correctness, locate and weed

out (1) untextured regions and (2) the object boundary, occlusion, and reappearance.

Observation of the Homogeneous Region Untraceability: The information details are

not uniformly distributed in the spatial domain—some parts of the image have more

details, some have less. An untextured region keeps its image intensity constant

regardless of the motion, and hence it is extremely challenging to determine how

(or even whether) it moves. Consider only translational motion in block-constraint

matching-based techniques:


 When the block is within a same moving object and is homogeneous (untex-

tured), it is likely to find a matched displaced block using a displacement vector

that is not the true motion vector.

Following our explanation of the previous observation, we have two signalsf1�n� t�

and f2�n� t� and assume (without losing generality) thatf f1�n� t�g is more homogeneous

thanf f2�n� t�g. In general, it is easier to find two pixels with the same intensity in the

homogeneous region. In this case, a match between the features of two blocks becomes

easier. That is, it is harder to distinguish the true displacement from other displacements in

f1�n� than in f2�n�. We conclude that it is harder to find the true motion when the block is

more homogeneous.

We can also look at this phenomenon from another perspective. In gradient-based tech-

niques, we first measure the spatial gradient (∂I
∂x , ∂I

∂y) and the temporal gradient (∂I
∂x). In an

untextured regions, the spatial gradient is equal to zero. In this case, the basic measurement

Eq. (1.4) becomes

s�vx�vy� � 0vx �0vy �
∂I
∂t

�
∂I
∂t
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which means that the basic measurement is independent of the motion vector. Therefore,

determining the true motion vector become extremely difficult.

Since we are considering techniques that only estimate the motion of small regions,

the problem of finding multiple matched blocks will occur whenever the image brightness

pattern is uniform in the region being considered. Often there is not enough information in

a region to determine the motion flow. This is referred to as the “blank wall” problem.

Similarly, if we are looking at a pattern composed of stripes, then we cannot determine

how fast (or whether) it is moving along the direction of the stripes. If the pattern slides

along the direction of the stripes, the image intensity pattern will not change. Again the

pattern need only be striped within the region being considered. This problem is typically

known in the literature as the “aperture” problem.

For confidence in tracking correctness, it is important to identify and rule out the un-

textured region (see our implementation in Section 5.3.1.)

Directional-Confidence Technique.

Choosing a motion vector to describe the motion in a blank region consti-

tutes an over-commitment to a solution. In general, there will be many areas of

the image with insufficient information at a particular scale for the local deter-

mination of displacements. In [7], Anandan advocates the use of “confidence”

or “reliability” measures to indicate whether or not to accept a motion vec-

tor for further processing, and also to indicate the degree to which the motion

vector can be trusted.

Since the image displacement is a vector quantity, it is possible that dif-

ferent directional components of the displacement may be locally computable

with different degrees of reliability. For instance, it is clear that in a homo-

geneous area of the image no component of the displacement can be reliably

estimated. At a point along a line (or an edge), the component perpendicular to
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the line can be reliably computed, while the component parallel to the line may

be ambiguous. At a point of high curvature along an image contour it may be

possible to completely and reliably determine the motion vector based purely

on local information. These observations suggest that the confidence measure

should be directionally selective—i.e., that it should associate different confi-

dences with the different directional components of the motion vector.

Observation of the Boundary and Occlusion Untrackability: Most algorithms for esti-

mating image motion fields rely on the assumption that the image intensity corre-

sponding to a point remains constant as that point moves. Severe violations occur at

boundaries and occlusion regions. For example, a block located at the object bound-

aries contains regions moving in at least two different directions. A single motion

vector compensates one or more of these regions incorrectly [80]. As another in-

stance, as shown in Figure 2.1, due to the object occlusion, the pixel intensity in the

arrow head is not constant.

Because tracking the blocks on the object boundary, occlusion, and reappearance regions

generally produces incorrect motion vectors, it is important to identify and rule out the

object occlusion, reappearance, and boundary for confidence in tracking correctness (see

Section 5.3.4).

Consistency Post-Screening Technique for Untrackable Blocks.

The energy of the residue can reveal how well a block is matched from

the previous frame. From this point, it is possible to determine whether the

block is tracked well or not. For example, in most video coding standards,

there is an INTRA/INTER coding mode decision for each macroblock in the

P-frame (or the B-frame) [3, 23, 45, 75]. The INTER is used when the motion
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Frame i-1 Frame i Frame i+1

Occlusion Reappearance

Figure 2.1: There are 3 consecutive frames of an arrow moving rightward. The arrow
head occludes behind the ball in frame i while the arrow head reappear in frame i�1.

estimation/compensation can find a good match for the block. On the other

hand, when there is a block on the object boundary, the occlusion region, or the

reappearance region, it is difficult to find a matched block from the previous

frame. Hence, the INTRA mode is used for that macroblock. Based on the

same idea, in Section 5.3.4, we have a motion candidate post-screening step

to screen out possible errors in tracking the blocks on object boundaries. The

post-screening step disqualifies a block from the trackable feature block list

when the residue is larger than a predetermined threshold.

2.3 Spatial Neighborhood Relaxation
To remedy the problem of choosing the block size as mentioned in Section 2.1, we

propose a neighborhood relaxation formulation. Almost all the block-matching motion es-

timation algorithms (BMAs) assume that a single translational motion vector is sufficient

to describe the motion in each macroblock. When we choose a larger block size, this

assumption is frequently violated in natural scenes (for example, rotating, expanding, or

contracting motions, or the motion of non-rigid objects—fluids or deforming elastic mate-

rials). In such cases, a single velocity vector is not sufficient to describe the motion of a
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block. The problem is thesize of the block. A neighborhood relaxation formulation enables

us to use a large block without assuming that the whole block is purely translational.

Spatial-Consistency Rule: Use spatial smoothness to improve correctness; use spatial

neighborhood relaxation to improve precision.

Spatial Neighborhood Relaxation Observation: Assuming that the 2D image intensity

of a 3D point projection is conserved over time, then

I�x�y� t� � I�x� vx�x�y��y� vy�x�y�� t �1� (2.4)

whereI�x�y� t� is the intensity of the pixel�p � �x�t��y�t��T at timet.

1. We assume that the motion vector of every pixel of a blockB follows the same

motion vector:	

� �vx�x�y�� � v�x

�vy�x�y�� � v�y
�p � B

where�x� means roundingx to the nearest integer. Then, the weighted sum of

displaced frame difference is equal to zero:

∑
�p�B

w�x�y� jI�x�y� t�� I�x� v�x�y� v�y � t �1�jm � 0 (2.5)

wherew�x�y� � 0 andm � 1. Thew�x�y� is the weighting factor for different

pixels and will be explained more thoroughly in Section 2.3.1. We setm � 1

for simplicity in the implementation. Therefore, most of the BMAs determine

the motion vectors as the following [3, 51]� (cf. Eq. (1.6)):

�v � arg

�
min
vx�vy

fWSAD�B�vx�vy�g

�
(2.6)

�Nevertheless, Eq. (2.5) can only imply

�v� � arg

�
min
vx�vy

f∑
�p�B

w�x�y� jI�x�y� t�� I�x� vx�y� vy� t �1�jg

�

Only if there is one unique minimum, can we have the equal sign as shown in Eq. (2.6). We will address this
issue in Section 5.3.2.
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where WSAD (the weighted sum of the absolute differences) is defined as be-

low:

WSAD�B�vx�vy�� ∑
�p�B

w�x�y� jI�x�y� t�� I�x� vx�y� vy� t �1�j

2. The assumption that�vx�x�y�� and�vy�x�y�� are constant is valid on limited con-

ditions, such as the purely translational motion of a rigid object. It is possible

that there is a pixel�p � B so that�vx�x�y��� v�x � δx �� 0 and�vy�x�y��� v�y �

δy �� 0. To be more accurate, Eq. (2.5) should be written as:

∑
�p�B

w�x�y� jI�x�y� t�� I�x� v�x �δx�x�y��y� v�y �δy�x�y�� t �1�j� 0 (2.7)

Let B � fB1�1�B1�2� � � � �Bn�ng and Bi� j be the center block, as shown in Fig-

ure 2.2 and set

δx�x�y� � δy�x�y� � 0 ��p � Bi� j

When the neighborhood is associated with the same object, each block shares

similar motion vectors:	

� δx�x�y� � δ�k�l�x jδ�k�l�x j � 1

δy�x�y� � δ�k�l�y jδ�k�l�y j � 1
��p � Bk�l (2.8)

whereBk�l is the neighboring blocks ofBi� j. From Eq. (2.7) and Eq. (2.8), we

have

∑
�p�Bi� j

WSAD�Bi� j�v
�
x�v

�
y��

∑
Bk�l ��Bi� j

�
min

�1�δx�δy�1

�
WSAD�Bk�l�v

�
x �δx�v

�
y �δy�

��
� 0 (2.9)

3. For simplicity in implementation, we calculate the un-weighted sum of the ab-

solute difference instead of the weighted sum of the absolute difference. Let

w�x�y� � 1 ��p � Bi� j andw�x�y� � W �Bi� j�Bk�l� ��p � Bk�l. Then, Eq. (2.9)
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Bi,j

B1,1

Bm,n

B

Bk,l

Figure 2.2: Neighborhood blocks in the B . Bi� j is the center block and B1�1, Bk�l, Bm�n

are the neighbors of Bi� j.

equals to

SAD�Bi� j��v
��� ∑

Bk�l�N �Bi� j�

W �Bk�l�Bi� j� min
�δ
fSAD�Bk�l��v

���δ�g� 0 (2.10)

where�v� � �v�x �v
�
y�

T , �δ � �δx�δy�
T , and SAD (the sum of the absolute differ-

ences) is defined as below:

SAD�B�vx�vy�� ∑
�p�B

jI�x�y� t�� I�x� vx�y� vy� t �1�j

We divide a region into a number of small blocks so that each of them can be easily

described by a single motion vector. The integration of these blocks can accurately track

the true motion. The neighborhood relaxation formulation is the following:

score�Bi� j��v� � SAD�Bi� j��v�� ∑
Bk�l�N �Bi� j�

W �Bk�l�Bi� j� min
�δ
fSAD�Bk�l��v��δ�g (2.11)

whereBi� j means a block of pixels whose motion we would like to determine,N �Bi� j� is

the set of neighboring blocks ofBi� j, andW �Bk�l�Bi� j� is the weighting factor for different

neighbors. A small�δ is incorporated to allow some local variations of motion vectors

among neighboring blocks. Some biased noise becomes unbiased noise after this variation

process. The motion vector is obtained as

motion of Bi� j � argmin
�v
fscore�Bi� j��v�g
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(a) (b)

Figure 2.3: Neighborhood relaxation will consider the global trend in object motion
and provide some flexibility to accommodate non-translational motion. Local varia-
tions�δ among neighboring blocks, cf. Eq. (2.11), are included in order to accommo-
date other (i.e., non-translational) affine motions such as (a) rotation, and (b) zoom-
ing/approaching.

As shown in Figure 2.3, the variation afforded to every block can be used to fine-tune

the motions to accommodate the non-translational effect. This in principle can track more

flexible affine-type motions, such as rotating, zooming, shearing, etc.

2.3.1 Spatial-Dependent Neighborhood Weighting Factors

In Eq. (2.11), not all neighboring blocks have the same weighting factors. In fact, they

can be made to be dependent on several factors, such as thedistance to the central block,

the confidence of the blocks, the color/texturesimilarity betweenBi� j andBk�l, etc. In

terms of distance, the weighting function could be a Gaussian-like function, putting higher

emphasis in the central area. In terms of the confidence, low-confidence blocks should be

guided by their higher confidence neighbors [7]. In general, a block with a larger variance

can be tracked more confidently. (An obvious example is that homogeneous blocks do

not yield a high confidence.) Therefore, the weighting function must take into account the

block variance.

In this discussion, we assume that all the blocks inB come from a same moving ob-

ject. However, Eq. (2.10) may not hold true whenBi� j is close to object boundaries (this is

elaborated in Section 5.3.4). Because different objects usually have different color/texture

characteristics, we setW �Bk�l�Bi� j� to be proportional to the color/texture similarity be-

tweenBi� j andBk�l. This will reduce the weights of the neighborhoods that contain different
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objects.

2.4 Temporal Neighborhood Relaxation
In the previous formulations, only the intensity information in the framet and the in-

formation in the framet �1 are used. It is natural to extend this work by using multiple

frames.

Temporal-Consistency Rule: Use temporal smoothness to improve correctness; use tem-

poral neighborhood relaxation to improve precision.

Temporal Neighborhood Relaxation Observation: True motion field is also piecewise

continuous in the temporal domain. The motion estimation will be more accurate

by exploiting multiple-frame information. The basic motion tracking formulation,

Eq. (1.10), is extended to the following:

f�vi�t�g� arg

�
min
f�vi�t�g

n
∑
t
∑

i
ks��pi��vi�t�� t�k

o�
(2.12)

wheref�vi�t�gi satisfy certain spatial constraints andf�vi�t�gt satisfy certain dynamic

models, such as one of the following:

1. Linear model: �vi�t� ��vi�t�1� ��vi�t �1�

2. Neighborhood relaxation model: �vi�t� ��vi�t�1���δ1 ��vi�t �1���δ�1

3. Recursive dynamic model: �vi�t � 1� � filter��vi�t���vi�t � 1�� � � � ��vi�t � q��

whereq is the order of the filter.

In principle, exploiting multiple-frame information can increase the correctness of the

motion estimation. The motion of a feature block is determined by examining the directions

of all its temporal neighbors. This allows the chance that a singular and erroneous motion

vector may be corrected by its surrounding motion vectors (just like spatial neighborhood).
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In addition to the spatial neighborhood relaxation formulation, we also present the temporal

neighborhood relaxation formulation to improve precision.

In a short period of timeT , the motion of a pixel should be similar, i.e.,�v��t� �

�v��t �� �t � t � � T where�v��t� is the true motion vector from the framet to the frame

t �1. Let

�v��t� ��v��t ����δ

and define the new sum of the absolute differences with time as a parameter:

SAD�Bi� j��v� t�� ∑
�p�Bi� j

jI��p� t�� I��p��v� t �1�j

whereBi� j is a pure-translational moving region. We know that SAD�Bi� j��v��t�� t�� 0 and

SAD�Bi� j��v��t��δ� t ��� 0, and hence

∑
∆t�T

SAD�Bi� j��v
��t���δ� t �∆t�� 0

After that, we define our spatial and temporal neighborhood relaxation formulation as

the following:

score�Bi� j��v�t�� � SAD�Bi� j��v�t�� t�

� ∑
Bk�l�N �Bi� j�

W �Bk�l�Bi� j� min
�δ
fSAD�Bk�l��v�t���δ� t�g

� ∑
∆t�T

Wt�∆t� min
�δ
fSAD�Bi� j��v�t���δ� t �∆t�g (2.13)

where theT is the temporal neighborhood andWt�∆t� is the weighting factor in the tempo-

ral neighborhood. The motion vector for blockBi� j from framet to framet �1 is obtained

as:

motion of Bi� j � argmin
�v
fscore�Bi� j��v�g

In Chapter 3, we use this model in our frame-rate up-conversion motion estimation

algorithm.
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2.5 Multiresolution Motion Estimation with Neighbor-

hood Relaxation
In the previous two sections, we used the neighborhood relaxation scheme (more com-

putation) to improve the precision of the block-matching true motion tracker. In this

section, we use a motion-vector refinement scheme (extra computation), in which small

changes to the estimated motion vectors are allowed, to increase the precision of correct

motion vectors given the assurance of the correctness (although there is still a risk of losing

the correctness).

Similar to the true motion tracker shown in Chapter 4, this section uses a refinement

scheme to increase the precision of correct motion vectors. Different from the tracking

method shown in Chapter 4, the method reduces the computational complexity by a mul-

tiresolution scheme.

Multiresolution-Consistency Rule: Use multiresolution relaxation to reduce computa-

tion; use motion vector refinement to improve precision.

The use of multiple resolutions in the recognition process iscomputationally and con-

ceptually interesting. In the analysis of signals, it is often useful to observe a signal in

successive approximations. For instance, in pattern recognition applications the vision sys-

tem attempts to classify an object from a coarse approximation. If the classification does

not succeed, additional details are added such that a more accurate view of the object is

obtained. This process can be continued until the object has been recognized.

From a given image, multiresolution analysis consists of a set of images having different

levels of details, i.e., more or less energy in the high frequencies. We obtain images of

lower resolution by successive low-pass filtering, followed by down-sampling. We denote

the reduction in resolution by a mapping function:

R : I�k�  I�k�1�
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where the imageI�k� is a set of pixelsfI�k��x�y�g andI�0� is the original image. Most of

the time, the filter is half-band and the down-sampling is done with a factor of two in each

direction (horizontal and vertical).

Let s�k���pi��vi� be defined over the image at levelk, then Eq. (2.12) can be extended to

the following:

f�v�k�i g� arg

	

�min

f�vig

n
∑
�p�k�i

ks�k���p�k�i ��vi�k
o��
� (2.14)

wheres�k���p�k�i ��vi� is similar to the definition in Section 1.3.1 but is defined over theI�k� in

this section.

Observation of Motion Field Inheritance of Multiresolution Processes: We have a set

of multiresolution images
n

I�k�
o

using a linear transformationR , which is a

half-band filter followed by a 2:1 down-sampling, i.e.,R
�n

I�k���p�k�i � t�
o�

�n
I�k�1���p�k�1�

i � t�
o

. Assume that we have the ability to filter, subsample, and quan-

tize the motion vectors, then the motion fields of various levels usually follow the

same multiresolution relationship, i.e.,R
�
f�v�k�i g

�
� f�v�k�1�

i g.

1. We have the ability to filter, subsample, and quantize the motion vectors. When

the motion field f�v�k�i g is band-limited, thenR
�n

I�k���p�k�i ��v�k�i � t �1�
o�

�n
I�k�1���p�k�1�

i � v̂�k�1�
i � t �1�

o
where we define

R
�
f�v�k�i g

�
� fv̂�k�1�

i g (2.15)

We have

R
�n

I�k���p�k�i � t�� I�k���p�k�i ��v�k�i � t �1�
o�

� R
�n

I�k���p�k�i � t�
o�

�R
�n

I�k���p�k�i ��v�k�i � t �1�
o�

�
n

I�k�1���p�k�1�
i � t�

o
�
n

I�k�1���p�k�1�
i � v̂�k�1�

i � t �1�
o

�
n

I�k�1���p�k�1�
i � t�� I�k�1���p�k�1�

i � v̂�k�1�
i � t �1�

o
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2. Because the true motion vector can minimize the displaced frame difference, we

define the estimated motion vectors as

f�v�k�i g� arg min
fṽ�k�i g

n
DFD�I�k��fv�k�i g�

o
(2.16)

where the displaced frame difference (DFD) is defined as

DFD�I�k��fv�k�i g��
���nI�k���p�k�i � t�� I�k���p�k�i � ṽ�k�i � t �1�

o���
Assume before and afterR , the minimum displaced frame difference isunique be-

fore and afterR andthe position of the minimum does not change. Namely, when

DFD�I�k��f�v�k�i g� is the minimum,

DFD�I�k�1��fv̂�k�1�
i g� is the minimum. (2.17)

From Eq. (2.16) and Eq. (2.17),

fv̂�k�1�
i g� f�v�k�1�

i g (2.18)

3. From Eq. (2.15) and Eq. (2.18), we conclude thatR
�
f�v�k�i g

�
� f�v�k�1�

i g, i.e., the

motion fields of various levels usually follow the same multiresolution relationship.

4. There are two cases whereR
�
f�v�k�i g

�
�� f�v�k�1�

i g:

(a) The position of the minimum will change before and afterR , perhaps because

of an aliasing introduced by the spatial sampling. A one-dimensional difference

signalf1��1�1��1� � � �g will becomef0�0� � � �g after the 2:1 resolution reduc-

tion. While the sum of the absolute differences is 1�1�1�1� � � � before the

resolution reduction, the sum of the absolute differences is 0�0� � � � after the

resolution reduction. In this case, the position of the minimum may change.
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(b) When (1) there are multiple minimal SADs in theI�k� images or (2) there is an

aliasing after the resolution reduction, there are multiple minimal SADs in the

I�k�1� images. In these cases, the statement that DFD�I�k�1��fv̂�k�1�
i g� is min-

imum is not equivalent to the statement thatfv̂�k�1�
i g are the estimated motion

vectors of theI�k�1� images.

Observation: Under the multiresolution framework, we assume

1. I�k� is band-limited toωk.

2. If I�k� is band-limited toωk, then the motion fieldf�v�k�i g is also band-limited to

ωk.

3. If the imageI�k� has noise, the motion vectorsf�v�k�i g have noise.

and we make the following statements:

1. If the imageI�k� has noise, the estimation of the motion vectorsf�v�k�1�
i g has

higher correctness than that off�v�k�i g.

2. If the imageI�k��t� has some subtle motion, the estimation of the motion vectors

f�v�k�1�
i g are less precise than that off�v�k�i g.

We define the following symbols before our discussion: ˆvi is the estimated motion

vector,�vi is the true motion vector, and ˜vi is the motion vector noise. We know that

v̂i ��vi � ṽi

We divide the motion signals into two sets. One is low-pass band signals (which are

band-limited from 0 toωk�2), denoted as ˆviL, �viL, and ˜viL. The second one is high-pass

band signals (which are band-limited fromωk�2 to ωk), denoted as ˆviH ,�viH , and ˜viH . We

know that

v̂i � v̂iL � v̂iH � �vi ��viL ��viH � ṽi � ṽiL � ṽiH



Chapter 2: Useful Rules for True Motion Tracking 55

Because the lower resolution image is obtained by a low-pass filter followed by a 2:1

down-sampling,I�k�1� is band-limited toωk�2 � ωk�1. Therefore, the high-frequency

(from ωk�2 toωk) signals inI�k� will be eliminated. That is,

fv̂�k�1�
i g � R

�
fv̂�k�i g

�
� R

�
f�v�k�iL � ṽ�k�iL g

�
Now, we have the following:

1. The high-frequency noise in theI�k� creates the high-frequency noise in thefṽ�k�iH g.

During the resolution reduction, the high-frequency components (large noisy mo-

tion) are eliminated, and the estimation of the motion vectorsf�v�k�1�
i g has higher

correctness than that off�v�k�i g.

2. Because the high-frequency componentsf�v�k�iH g are filtered, if the imageI�k��t� has

some subtle motion, the motion vectorsf�v�k�1�
i g are less precise thanf�v�k�i g.

This multiresolution technique simplifies tracking of large motions while reducing the

amount of necessary computation. When there are three different resolutions, the finest res-

olution is 16 times larger than the coarsest resolution. Therefore, the search area used at the

coarsest resolution is 16 times smaller. Thus, the computational complexity is dramatically

reduced.

Although we show that the estimated motion field obtained from the third level image

can have higher correctness than the estimated motion field taken directly from the original

image, the motion vector obtained from the coarsest resolution is 4 times coarser in scale.

As a result, local refinement in the finer resolution is required for higher precision. One

method for tackling both correctness and precision is the hierarchical updating scheme. In

this scheme, (1) coarse resolution images are used for coarse scale motion vectors, and (2)

finer resolution images are used to refine the motion vector candidates in a fine scale (see

Figure 2.4).
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Multiresolution Technique with Different Image Sizes for Previous Frame.

Reducing the number of search positions and the number of pixels in resid-

ual calculation can also reduce computation. The multiresolution motion es-

timation algorithms rely on the technique of predicting an approximate large-

scale motion vector in a coarse-resolution video and refining the estimated

motion vector in a multiresolution fashion to achieve the motion vector in the

finer resolution. The size of the image is smaller at a coarser level (i.e., of a

pyramid form). Since A block at the coarser level represents a larger region

than a block with the same number of pixels at the finer level, a smaller search

area can be used at coarser levels. In addition, multiresolution motion estima-

tion algorithms also reduce the number of pixels in residual calculation. These

algorithms can be further divided into two groups: constant block size and

variable block size.

1. In [68, 101], the same block size is used at each level. If the image size is

reduced to half as the level becomes more coarse, one block at a coarser

level covers four corresponding blocks at the next finer level. In this

way, the motion vector of the coarser-level block is either directly used

as the initial estimate for the four corresponding finer-level blocks [68] or

interpolated to obtain four motion vectors of the finer level [101].

2. In [112], different block sizes are employed at each level to maintain

a one-to-one correspondence between blocks in different levels. As a

result, the motion vector of each block can directly be used as an initial

estimate for the corresponding block at the finer level.

Multiresolution Technique with Same Image Size for Previous Frame.
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In [27], instead of reducing the number of search locations, the multiresolu-

tion method trades the number of search locations for better estimation quality.

This method uses different image resolutions with the same image size of a

pyramid form. Since the same image size is used at each level, the number of

possible motion candidates is the same at each level. The block size is not the

same at each level and is reduced by half as the level becomes coarser. A block

at the coarser level represents the same region as that at the finer level. Then,

in the coarsest level, a set of motion candidates is selected from the maximum

motion candidate set using a full search with fewer pixels in residual calcula-

tion. In each of the finer levels, the motion candidate set is further screened.

At the last level, only a single motion vector is selected.

Multi-scale Optical-Flow Technique.

Based on a 3D Markov model for motion vector fields, Kim and Woods

use an extended Kalman filter as a pel-recursive estimator [55]. The three

dimensions consist of the two spatial dimensions plus a scale (coarse-to-fine)

dimension.

Multiresolution-Spatio-Temporal Correlation Technique.

Based on spatio-temporal correlation integrating with a multiresolution

scheme, a fast motion estimation, which is about 2 orders of magnitude faster

than full search motion estimation algorithms, is introduced by Chalidab-

hongse and Kuo [11].

We also present a novel true motion tracker based on successive refinement of motion-

vector candidates on images of different resolutions. Although many similar multiresolu-

tion approaches have been proposed, there is no neighborhood relaxation in conventional
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Resolution-reduced images
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frame t-1
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frame t

5

Motion
vectors

1 2

3
4

Multiresolution Motion Estimation

Figure 2.4: The 3-level multiresolution motion estimation scheme has five steps: (1)
and (2) reduce the image size into a quarter along both directions. (3) performs a
full-search motion estimation in the coarse scale. (4) and (5) refine the motion-vector
candidates in the fine scale.

multiresolution motion estimation algorithms. Our method is the first one that integrates

multiresolution with neighborhood relaxation.

Step 1 The algorithm starts with a search on the images of the most-coarse resolution.

The third level images are divided into subblocks of 8	8 pixels, as shown in Fig-

ure 2.5. (Each of the subblocks can search in the�3	�3 positions when the original

search distance is�15.) The SADs are denoted as

SAD�k�
8 �i� j��v� �

7

∑
x�0

7

∑
y�0

jI�k��8i� x�8 j� y� t��

I�k��8i� x� vx�8 j� y� vy� t�1�j

wherek� 2 and�v� �vx�vy�
T . Here,�i� j� in SAD�k�

8 �i� j��v� is the subblock coordinate,

i.e., a pixel at�x�y�T is in the subblock at�bx�8c�by�8c�T . (When the picture size is

352	 288 pixels, there are 44	 36 subblocks.)
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Resolution
Reduction

Figure 2.5: The first level images are the images of original resolution. The second
level images are the images of a quarter resolution of the first level. (A pixel in second
level corresponds to the low-pass filtering of four pixels in the corresponding position.)
The third level images are a quarter of the second level.
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Figure 2.6: Each macroblock in the second-level image is covered by one macroblock
in the third-level image and one subblock in the third-level image. Hence, a mac-
roblock on this level will at least inherit the two motion-vector candidates (one from
the subblock and one from the macroblock) from the third level as the base motion
vectors. In order to capture the motion vectors of the neighborhood, we also take
the motion vectors from three nearest-neighbor macroblocks (in the third-level image)
into account. Therefore, a macroblock on this level will inherit the five motion-vector
candidates (one from the subblock and four from the macroblocks) from the third level
as the base motion vectors.
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Without too much computational overhead, the SADs of non-overlapping mac-

roblocks (of 16	16 pixels) then can be computed as

SAD�k�
16 �i� j��v� �

15

∑
x�0

15

∑
y�0

jI�k��16i� x�16j� y� t��

I�k��16i� x� vx�16j� y� vy� t�1�j

�
1

∑
∆i�0

1

∑
∆ j�0

fSAD�k�
8 �2i�∆i�2 j�∆ j��v�g

Here,�i� j� in SAD�k�
16 �i� j��v� is the macroblock coordinate, i.e., a pixel at�x�y�T is

in the macroblock at�bx�16c�by�16c�T . (When the picture size is 352	 288 pixels,

there are 22	 18 macroblocks.)

In conventional multiresolution motion estimation algorithms, only one of either 2	

argmin�vfSAD�k�
8 ��v�g or 2	argmin�vfSAD�k�

16 ��v�g (but not both) is used as the motion

candidate for the refinement in the second level images. (There is a multiplicand of 2

because a motion vector in level-�k�1� is twice as large as the same motion vector

in level-k.) We observe that the motion vector for the macroblock (from SAD16)

is better at capturing the global common motion when the macroblock is inside a

moving object. On the other hand, the motion vector for the subblock (from SAD8)

is better at capturing its own true motion when the macroblock covers two or more

moving objects. Hence, we select the motion vectors that carry minimal SADs (either

for subblocks or for macroblocks) as the candidates, as shown here:

V �k�1��i� j� � f2	arg min
�v�V �k��� i

2���
j
2��g�

fSAD�k�
8 �i� j��v�g�

2	arg min
�v�V �k��� i�1

2 ��
h

j�1
2

i
�g�

fSAD�k�
16 �

�
i�1

2

�
�

�
j�1

2

�
��v�g�
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2 ��
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2
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�
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16 �

�
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2

�
�

�
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whereV denotes the set of motion vector candidates andV �3� � f�3	�3g when

the original search range is�15.

Step 2 The motion vector candidates are refined on the images of the finer resolution.

As shown in Figure 2.6, a macroblock on this second level will inherit the five

motion-vector candidates (one from subblock and four from macroblocks) from the

third level as the base motion vector candidates. Then, the subblocks will search

in the�1	�1 window around these five motion vectors. The motion vectors that

carry minimal SADs are selected (either for the subblocks of 8	8 pixels or the mac-

roblocks of 16	16 pixels) as the motion candidates for the first level.

Step 3 In the final step of this method, only macroblocks of the finest resolution require

motion estimation.

Again, a macroblock on this level will inherit five motion vectors from the second

level as the base motion vectors, and then search in the�1	�1 window around

these five motion vectors for the final true motion vector. The motion vector that

carries minimal SAD is selected.

The resolution reduction also alleviates the computational burden of calculating the

local variations�δ because the local variations disappear after the resolution reductions.

Moreover, the successive refinement procedure in the finer resolution serves the same pur-

pose of the iterative procedure in the common neighborhood relaxations, which we omit in

Eq. (2.11).



Chapter 3

Application in Compression:

Rate-Optimized Video Compression and

Frame-Rate Up-Conversion

Video compression can make use of the true motion tracker in various shapes, such as

rate-optimized motion vector coding, object-based video coding, and object-based global

motion compensation [19, 24, 52]. In this chapter, we demonstrate thatthe proposed true

motion tracker (TMT) can provide higher coding efficiency and better subjective visual

quality than conventional minimal-residue block-matching algorithms.

Video compression plays an important role in many multimedia applications, from

video-conferencing and video-phone to video games. The key to achieving compression

is to remove temporal and spatial redundancies in video images. Block-matching motion

estimation algorithms (BMAs) have been widely exploited in various international video

compression standards to remove temporal redundancy.

For differentially encoded motion vectors, we observe that a piecewise continuous mo-

tion field reduces the bit-rate. Hence, we propose a rate-optimized motion estimation al-

gorithm based on the neighborhood relaxation TMT. The unique features of this algorithm

come from two parts: (1) we incorporate the number of bits for encoding motion vectors

63
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into the minimization criterion, and (2) instead of counting the actual number of bits for

motion vectors, we approximate the number of bits by the residues of the neighborhood.

This algorithm has two advantages: (1) its bit-rate is lower than the original coder

using full-search motion-estimation algorithms, and (2) its computational complexity is

lower than the computational complexity of the rate-distortion optimized method.

In addition, we present a motion-compensated frame-rate up-conversion scheme using

the decoded motion. Such use of the decoded motion can save computation on the decoder

side. The more accurate the motion information is, the better the performance of frame-rate

up-conversion will turn out to be. Hence, using the true motion vectors for the compression

results in a better picture quality of frame-rate up-conversion than using the motion vectors

estimated by the minimal-residue block-matching algorithms (BMA).

3.1 Rate-Distortion Optimized Motion Estimation
In most video compression algorithms, a tradeoff between picture quality and com-

pression ratio (and computational cost) is unavoidable. Generally speaking, the lower the

compression ratio, the better the picture quality. Considerable efforts have been made to

develop new (better) algorithms that can


 achieve higher picture quality with the same number of bits, i.e., minimize the total

distortion of intra-frames (DI) and inter-frames (Di)

Dtotal � DI �Di

under a bit rate constraint:

Btotal � ∑BI �∑Bi

� ∑BI �∑�Bi res �Bi mv�

� Bconstraint
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whereBI stands for the number of bits for intra-frames,Bi stands for the number of

bits for inter-frames,Bi res stands for the number of bits for inter-frame residues, and

Bi mv stands for the number of bits for inter-frame motion vectors.


 achieve the same picture quality with fewer bits,

Btotal � ∑BI �∑�Bi res �Bi mv�

under the same

Dtotal � DI �Di�

This section discusses the rate-distortion optimized motion estimation algorithm, which

can ascertain best tradeoff points in the rate-distortion curves.

Minimal-residue criterion.

In high-quality video compression applications (e.g., video broadcasting), quantization

scales are usually low (see Figure 1.4). And so, the number of bits for residuesBi res dom-

inates the total number of bitsBtotal. The following was generally believed (until around

1996): the less the residue is, the fewer the bits for residuesBi res will be, and, thus, the

less the total bit rateBtotal will turn out to be. Hence, the minimal-residue criterion is still

widely used in BMAs as:

motion vector � argmin
�v
fSAD��v�g (3.1)

Namely, the motion vector for this block is the displacement vector that carries the minimal-

SAD (the sum of the absolute differences, see Eq. (1.7), Section 1.3.2).

Among numerous motion estimation algorithms [11, 36], the full-search methods,

where the residues of all possible displaced candidates within the search area in the previ-

ous frame are compared, give the best solution in terms of estimation error.

However, the full-search BMAs are flawed because they:
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1. usually do not produce thetrue motion field, physical motion, which could produce

better subjective picture quality (see Section 1.1).

2. cannot generally produce theoptimal bit rate for low bit-rate video coding standards

(as we will explain in a moment).

3. arecomputationally expensive for a practical real-time multimedia application (see

Chapter 6).

Minimal rate-distortion criterion.

The total number of bitsBtotal also includes the number of bits of coding motion vectors

Bi mv. In some coding standards (e.g. H.261, H.263, MPEG-1, MPEG-2, MPEG-4, which

encode the motion vectors differentially within a slice [3, 51]), the following is not always

true: the less the residue is, the less the bit rate will be. Consequently, those conventional

block-matching algorithms (BMAs), which treat the motion estimation problem as an opti-

mization problem on residue only, could suffer from a high price on the differential coding

of motion vectors [14].

Figure 3.1 shows the bit requirement of the motion-vector difference in the MPEG

standards and the H.263 standard. The smaller the difference, the fewer the bits required. A

rate-distortion optimized algorithm or a rate-optimized motion estimation algorithm should

take into account the total number of bits when determining the motion vectors:

f�vig
n
i�1 � argmin

f�vig
fbits�residue�B1��v1��Q1��bits��v1�

� bits�residue�B2��v2��Q2��bits�∆�v2�

� � � �

� bits�residue�Bn��vn��Qn��bits�∆�vn�g (3.2)

where Bi stands for the blocki, �vi is the motion vector of blocki, ∆�vi � �vi ��vi�1
�,

residue�Bi��vi� represents the residue of blocki, Qi stands for the quantization parameters

�In fact,∆�vi ��vi�prediction of�vi [3, 51]. In this work, we assumeprediction of�vi ��vi�1 for simplicity.
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Figure 3.1: Variable length coding in motion vector difference used in the MPEG stan-
dards and the H.263 standard.

of Bi, andbits�residue�Bi��vi��Qi� is the number of bits required for this residue.

In [14], Chen and Willson formulated the motion estimation problem as a shortest-path

finding problem, minimizing the number of bits for texture and for motion as given in

Eq. (3.2). They used Viterbi-type dynamic programming to determine the optimal motion

vectors. Calculating the number of bits for a residue is computationally expensive (such

an undertaking includes a DCT transform, a quantization, a run-length coding, and a vari-

able length coding). This technique does achieve good bit rates. In [13], Chen, Villasenor,

and Park presented an alternative motion estimation algorithm that considers rate-distortion

trade-offs in a multiresolution framework. Their algorithm reduces the computational com-

plexity but increases the bit rates.

3.2 Neighborhood-Relaxation Motion Estimation for

Rate Optimization
Since a piecewise continuous motion field is so attractive in reducing the bit rate for

differentially encoded motion vectors, this section presents a neighborhood relaxation for-

mulation for the rate-optimized motion estimation.

Eq. (3.2) can be written as

motion of Bi � argmin
�v
fbits�residue�Bi��v��Qi��bits�∆�v�g
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by assuming that the motion vectors of other blocks are fixed. Because expressing mathe-

matically the bit costs for different residues and∆�v is extraordinarily difficult, the above is

first simplified into the following approximation

motion of Bi � argmin
�v

nα1

Qi
SADi��v��α2jj∆�vjj

o
� argmin

�v
fSADi��v��βjj∆�vjjg (3.3)

because (1) thebits�residue�Bi��v��Qi� increases whenSADi��v� increases andQi decreases;

(2) bits�∆�v� increases whenSADi��v� andjj∆�vjj increases. Theβ � α2Qi�α1.

First, we assume that the rate-optimized motion vector ofBi’s neighbor produces close-

to-minimal SAD. Say,Bj is the neighbor ofBi and�v�j is the known optimal motion vector

of Bi:

�v�j � argmin
�v
fSAD�Bj��v�g (3.4)

Second, we assume that SAD�Bj��v� increases linearly as�v deviates from�v�j according to

SAD�Bj��v�� SAD�Bj��v
�
j��γjj�v��v�j jj (3.5)

or

jj∆�vjj� jj�v��v�j jj � γ�1�SAD�Bj��v��SAD�Bj��v
�
j�� (3.6)

Substituting Eq. (3.6) into Eq. (3.3), we have

motion of Bi � argmin
�v
fSAD�Bi��v��µ ∑

B j�N �Bi�

�
SAD�Bj��v��SAD�Bj��v

�
j�
�
g (3.7)

whereN �Bi� means the neighbor blocks ofBi (µ � β�γ� α2Qi�α1γ).

Here we use an idea commonly adopted in the relaxation method: we let SAD�Bj��v�j�

remain constant during the blocki updating of the neighborhood relaxation. Therefore, the

SAD�Bj��v�j� can be dropped from Eq. (3.7), resulting in

motion of Bi � argmin
�v
fSAD�Bi��v��µ ∑

B j�N �Bi�

SAD�Bj��v�g (3.8)
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If a motion vector can reduce the residue of the center block and reduce the residues

of the neighbors as well, then this motion vector will be selected for the encoder. That is,

when two motion vectors produce similar residues, the one closer to the neighbors’ motion

will be selected. The motion field produced by this method is smoother than that produced

by the minimal-residue criterion (see Eq. (3.1)).

The above approach is inadequate for modeling non-translational motion, such as object

rotation, zooming, and approaching [86]. For example, an object is rotating counterclock-

wise in Figure 2.3(b). In this case, the neighbor blocks have small motion differences.

Because Eq. (3.8) assumes that the neighboring blocks will move in the same translational

motion, this approach may not adequately model the rotational motion. Since the neighbor-

ing blocks may not have uniform motion vectors, a further relaxation on the neighboring

motion vectors is introduced (see Eq. (2.11), Section 2.3):

motion of Bi � argmin
�v
fSAD�Bi��v�� ∑

B j�N �Bi�

�µi� j	SAD�Bj��v��δ�g (3.9)

where a small�δ is incorporated to allow local variations of motion vectors among neigh-

boring blocks, which comes from the non-translational motions, andµi� j is the weighting

factor for different neighboring blocks†. As illustrated in Figure 2.3, this can in principle

track more flexible motions, such as rotation, zooming, shearing, etc.

3.2.1 Coding Efficiency of Neighborhood-Relaxation Motion Estima-

tion

We incorporated Eq. (3.9) into the baseline H.263 video codec provided by Telenor

R&D [96].

The motion vectors found by the original minimal-residue-based approach and by our

neighborhood relaxation method are shown in Figure 3.2‡. The motion field of our method

†The shorter the distance betweenBi andB j, the larger theµi� j. The larger theQi, the larger theµi� j. In
practice, we use the 4 nearest neighbors withµi� j � �0�05�0�40�.

‡A block of 16� 16 pixels is used as a macroblock for motion vector estimation. Only forward prediction
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(a) (b)

(c) (d)

Figure 3.2: Comparison between the motion estimation algorithm using the minimal-
residue criterion and using our neighborhood relaxation formulation. (a)(b) show the
105th frame and the 108th frame of the “foreman” sequence. (c) shows the motion
vectors found by the original approach which is based on the minimal residue criterion.
(d) shows the motion vectors found by our neighborhood relaxation method.
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is smoother and, consequently, the number of bits for coding motion vectors is smaller.

Using a fixed quantization parameter, our method can achieve13.9% bit-rate reductions

(25.4% bit-rate reductions in coding motion vectors) as well as ahigher (+0.02 dB) signal-

to-noise ratio (SNR) in coding the 108th frame of the “foreman” sequence.

In the full-search motion estimation on the minimal SAD, two possible situations will

produce a small SAD: (1) tracking after the true motion, and (2) tracking after noise. In

general, the larger the residue, the lower the SNR after the quantized DCT coding. How-

ever, even when two residual blocks have the same SAD, some differences still exist in their

SNRs and bit counts [75]. The DCT-based quantization tends to truncate high-frequency

components. When two residual blocks have the same SAD, the one that has predomi-

nately higher frequency components will have a lower SNR. In the full-search BMA on

the minimal SAD, occasionally some small SADs are the result of tracking after the noise

effect. Those blocks usually have more high-frequency components and hence have lower

SNRs [13, 66]. Our true motion tracker is deliberately made impervious to noise. There-

fore, our TMT could give even higher SNR after judicious bit-rate saving.

Figure 3.3 shows the rate-distortion curves for the H.263 QCIF test sequences [1]§.

Clearly, our proposed neighborhood relaxation motion estimation algorithm performs as

well as (if not better than) the original minimal-residue motion estimation algorithm. When

the quantization step is coarse, the cost of residue coding is relatively smaller and thus the

cost of coding the motion vectors becomes dominant. In this case, our method results

in a better picture quality and a lower bit rate. (As illustrated in the lower-left corner of

Figure 3.3(f), the improvement increases as the quantization step grows.)

Figure 3.4 demonstrates the visual quality difference between two motion estimation

algorithms. Because the motion field estimated by the neighborhood relaxation TMT is

much smoother than the motion field estimated by the minimal-residue BMA, the block

is implemented in the experiments. The maximum horizontal and vertical search displacement is�16.
§QCIF: 176 pixels� 144 pixels
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Figure 3.3: The rate-distortion curves for all the H.263 sequences. (a) shows the rate-
distortion curve for the carphone sequence (average over the 380 frames). (b) claire
(490 frames). (c) foreman (300 frames). (d) grandma (860 frames). (e) miss-am
(150 frames). (f) mthr-dotr (300 frames). (g) salesman (445 frames). (h) suzie (150
frames). Because there is a scene change in the 60th frame of the trevor sequence,
we divide the simulation of the trevor into two parts. (i) first part of the trevor (60
frames) and (j) second part of the trevor (90 frames).
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artifacts are less noticeable.

3.2.2 Coding Efficiency of Multiresolution Motion Estimation

We also incorporated the multiresolution tracking algorithm described in Section 2.5

into the baseline H.263 video codec provided by Telenor R&D. Motion estimation is known

to be the main bottleneck in real-time encoding applications, and the search for an effective

motion estimation algorithm has been a challenging problem for years. The multireso-

lution algorithm described in Section 2.5 not only reduces the bit-rate but also reduces

computational complexity (7 times faster than the conventional full-search block-matching

algorithm).

Figure 3.5(a) shows the motion vectors found by the multiresolution method with-

out neighborhood relaxation and our multiresolution motion estimation. These results are

based on the 105th frame and the 108th frame of the “foreman” sequence (as shown in Fig-

ure 3.2). The motion field of our method is smoother than that of the full-search BMA. As

a result, the number of bits for coding motion vectors is smaller. Using a fixed quantization

parameter, our method can achieve10.7% bit-rate reductions (21.3% bit-rate reductions in

coding motion vectors) as well as ahigher (+0.01 dB) SNR in coding the 108th frame of

the “foreman” sequence.

Note that Figure 3.5(b) also shows the motion vectors found by the multiresolution

methodwithout neighborhood relaxation. Similar to the results given by our TMT, this

method also produces smoother motion field than the original full-search method. Thus,

it lowers the bit rate by 7.2% (it reduces the bits for motion vectors by 25.5%). Alas, it

degrades the SNR by -0.06 dB.

Figure 3.6 further shows that our new algorithm is also better than the previous mul-

tiresolution algorithm. The H.263 test sequence library can be categorized into the fol-

lowing classes: (1) Low spatial detail and a medium amount of movement (e.g., miss-am,

mthr-dotr). (2) Medium spatial detail and a medium amount of movement (e.g., carphone,
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foreman, suzie, second part of trevor). (3) High spatial detail and a small amount of move-

ment (e.g., claire, grandma, salesman). (4) High spatial detail and a large amount of local

movement (e.g., first part of trevor). When there is high spatial detail and a small amount

of movement, there are more bits for texture and fewer bits for motion vectors. Therefore,

potential for motion vector savings is less. As shown in Figure 3.6 (b), (d), and (g), three

algorithms perform almost the same. On the other hand, (a), (c), (e), (f), (h), (i), and (j)

show significant improvement (from 0.2 dB up to 1.5 dB) from the proposed algorithm to

the conventional multiresolution search algorithm. In all the test sequences except (e), the

differences between the proposed algorithm and the full-search BMA are within 0.1 dB

range. In sequence (e), the proposed algorithm shows 0.2 dB better than the full-search

method.

3.3 Frame-Rate Up-Conversion
Frame-rate up-conversion has attracted much attention in recent years. To accomplish

acceptable coding results at low bit-rates, most codecs reduce the temporal resolution, but

often at the expense of having to bring the received video back up to its original frame rate.

The frame-rate up-conversion problem can be formulated as the following: to find

fI�2t �1�g givenfI�2t�g (see Figure 3.7). The schemes for this frame-rate up-conversion

problem can be categorized as:

1. No interpolation:

Typically, the last decoded frame is repeated until a new one is received, i.e.,I�2t �

1� � I�2t�. This simple solution creates jerkiness in areas of large and complex

motion, especially when the time delay between transmitted frames is relatively long.

2. Non-motion-compensated interpolation:

Linear interpolation averages the pixel values between two transmitted frames to re-

create the missing ones, i.e.,I�2t�1� � fI�2t�� I�2t�2�g�2. This scheme leads to



Chapter 3: Rate-Optimized Video Compression and Frame-Rate Up-Conversion75

blurriness and ghost artifacts in areas of motion.

3. Motion-compensated interpolation:

Motion-compensated schemes interpolate the pixel values along the motion trajec-

tory between two frames. The motion-compensated interpolation provides the best

solution in various up-sampling applications [10, 47, 54, 99] (especially, for moving

objects).

In the next section, we present a frame-rate up-conversion method that “motion-

compensated” interpolates the missing frames by utilizing decoded motion vectors. Our

method has the following unique features:

1. Our approach is based on the decoded motion vectors and thus does not require a

separate motion estimation just for the interpolation. Most previous methods are not

designed for a coding environment and require the high-quality motion estimation,

which is computationally expensive. For example, in [99], the receiver needs to

perform a separate motion estimation just for the interpolation.

2. Our approach does not require proprietary information to be sent and hence can work

with most video coding standards. As mentioned before, blocks located at the ob-

ject boundaries contain regions moving in at least two different directions. A single

motion vector compensates one or more of these regions incorrectly. In [54], the

proposed algorithm considers multiple motion vectors for a single block so as to

provide better picture qualities. However, this scheme requires extra motion infor-

mation to be sent. In [47], the motion-compensated interpolation scheme is based on

an object-based interpretation of the video. The interpolation scheme can use the de-

coded motion and segmentation information without refinement. (This is attributable

to the fact that the object-based representation is close to the real world.) However, a

proprietary codec is used.
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3. In order to have better performance, we use the TMT (see Eq. (3.9)) at the encoder

instead of the original minimal-residue BMAs (see Eq. (3.1)). The more accurate the

motion information, the better the performance of frame-rate up-conversion.

3.4 Motion-Compensated Interpolation Using Transmit-

ted Motion Vectors
In this section, we present our motion-compensated interpolation scheme for frame-

rate up-conversion, which uses the decoded motion vectors (cf. Figure 3.8). The proposed

interpolation scheme is based on the following premise: As shown in Figure 3.9, if block

Bi moves�vi from frameFt�1 to frameFt�1, then it is likely that blockBi moves�vi�2 from

frameFt�1 to frameFt , i.e.,

I��p��vi� t�1� � I��p�
�vi

2
� t� � I��p� t �1� ��p � Bi

Basic formulation.

The basic technique of motion-based frame-rate up-conversion is to interpolate frame

Ft based on frameFt�1, frameFt�1, and block motion vectorsf�vig as the following:

Ĩ��p�
�vi

2
� t� �

1
2

n
I��p��vi� t�1�� I��p� t �1�

o
��p � Bi (3.10)

The pixel intensity at frameFt is reconstructed as the average of the intensity of the cor-

responding pixels at frameFt�1 and at frameFt�1, in order to reduce the reconstruction

noise.

Motion estimation on the encoder side.

There are a number of choices of motion estimation algorithms on the encoder side.

1. The minimal residue BMAs as widely adopted in most coding standards, see

Eq. (3.1).
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2. The more accurate the motion estimation (�vi�2), the smaller the reconstruction error

(∑ jjĨ��p� t�� I��p� t�jj), i.e., the higher the quality of the motion-based interpolation.

Therefore, one possible technique of frame-rate up-conversion using transmitted mo-

tion is to encodeFt�1, Ft�1, � � �with f2v̂ig where ˆvi is the motion vector ofBi from Ft

toFt�1. In this case, the reconstruction error will be minimized, but the rate-distortion

curves may not be optimized.

3. Another possible motion estimation algorithm is to use the neighborhood relaxation

TMT (see Eq. (3.9)). We show that the neighborhood relaxation TMT captures the

true movement of the block more accurately than the minimal-residue BMAs do. It is

likely that�vi�2 using Eq. (3.9) is more accurate than�vi�2 using Eq. (3.1) and hence

produces better frame-rate up-conversion results. In addition, we have just shown

that it provides better rate-distortion curves.

4. Another possible motion estimation algorithm is to use the spatial and temporal

neighborhood relaxation formulation (see Eq. (2.13), Section 2.4):

score�Bi� j��v� � SAD�Bi� j�0��v� t� t�2�

� ∑
Bk�l�N �Bi� j�

W �Bk�l�Bi� j� min
�δ
fSAD�Bk�l�0��v��δ� t� t�2�g

�Wt

n
min
�δ
fSAD�Bi� j�0�

�v
2
��δ� t� t�1�g

�min
�δ
fSAD�Bi� j�

�v
2
��δ��v� t�1� t�2�g

o
(3.11)

where the SAD is defined as

SAD�Bi� j��v1��v2� t1� t2�� ∑
�p�Bi� j

jI��p��v1� t1�� I��p��v2� t2�j

When we find the motion vector for blockBi� j from framet�2 to framet as:

motion of Bi� j � argmin
�v
fscore�Bi� j��v�g
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the first term of Eq. (3.11) minimizes the residue coding forBi� j itself, the second

term minimizes the motion vector coding for�vi� j, and the third term minimizes the

motion interpolation error. This formulation reduces reconstruction errors at the cost

of sacrificing coding efficiencies. Nevertheless, both of the coding efficiency and

the reconstruction error of this formulation are better than or equal to conventional

motion estimation algorithms (e.g., full-search BMAs).

Uncovered and occluded regions.

In Eq. (3.10), it is assumed that a pixel can be seen in all frames. However, in reality, a

pixel may be occluded or uncovered (see Figure 2.1), i.e.,

I��p��vi� t�1� � I��p�
�vi

2
� t� �� I��p� t �1�

or

I��p��vi� t�1� �� I��p�
�vi

2
� t� � I��p� t �1�

Therefore, in addition to the motion interpolation formulation shown in Eq. (3.10), we use

the following heuristics to interpolate the uncovered and the occluded regions:

1. Uncovered region: We identify a blockBi as an uncovered region, when it can be

seen inFt andFt�1 but not inFt�1. When a blockBi in Ft�1 is coded as the INTRA

block¶, it usually implies there is no matched displacement block inFt�1. That is,Bi

¶To code a particular macroblock in a P- or B- video-object-plane (VOP), there are many coding-mode
choices as specified by the MPEG-4 standard [3]. For one, the encoder must choose between INTRA and IN-
TER coding [23]. The INTER mode uses motion compensation. First, the block matching motion estimation
is used, for a current block, to find the best matched block. A motion compensated difference block (residual
block) is formed by subtracting the pixel values of the predicted block from that of the current block point
by point. Texture coding is then performed on the difference block. On the contrary, in the INTRA mode,
texture coding is performed on the original texture of the macroblock. No motion compensation is required
in this mode. Because most of the blocks in the current frame are similar to a predicted block in the existing
frames, the residue of the block subtracted by a similar predicted block is usually small. In this case, a small
number of bits can encode the residual block. Most of the time, coding the motion vector as well as coding
the residue costs fewer bits than coding the texture of the block. In some cases (e.g., no textural information
in the block, no matched displacement block), coding the difference (residue) block and the motion vector
may require more bits than coding the original texture of the current block. In these cases, INTRA mode
is chosen to encode the block. Here, when the INTRA mode is chosen forBi, we assume that there is no
matched displacement block for it.
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is in the uncovered region (fromFt�1 to Ft�1). Since we have no information about

the uncovered region fromFt to Ft�1, we use a heuristic: a pixel is in the uncovered

region if it (1) belongs to the corresponding location of an INTRA blockBi and (2)

has not been motion compensated by other blocks. Hence, we have the following

formulation:

Ĩ��p� t� � I��p� t �1� ��p � Bi (3.12)

Note that since the block is INTRA coded, there is no motion information about the

block. In this heuristic, we assume the occluded and uncovered regions are stationary

(�v � 0). The reason is that object occlusion and reappearance often happen in the

background. And, it is most likely that the background has no motion. Hence, zero

motion vectors are used for the occluded and uncovered regions.

2. Occluded region: Similar to the uncovered region, we identify a blockBi as an

occluded region, when it can be seen inFt�1 andFt but not inFt�1. All the blocks

that are not in the occluded region can be motion compensated by the Eq. (3.10) and

Eq. (3.12). WheñI��p� t� has not been assigned any value by Eq. (3.10) and Eq. (3.12),

it usually is in the occluded region. As a result,

Ĩ��p� t� � I��p� t�1� (3.13)

To reduce the block artifacts.

When given frameFt�m and frameFt�n, our method to reconstruct the frameFt can be

summarized as follows:

I ��p� t� � ∑
fBig

∑
�p�Bi

w��p��pi �
n�vi

m�n
�
� n

m�n
I��p�

m�vi

m�n
� t�m��

m
m�n

I��p�
n�vi

m�n
� t �n�

�
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W ��p� t� � ∑
fBig

∑
�p�Bi

w��p��pi �
n�vi

m�n
�

Ĩ��p� t� �

	

� I ��p� t��W ��p� t� if W ��p� t� �� 0

I��p� t�1� if W ��p� t� � 0
(3.14)

where�vi is the movement ofBi from frameFt�m to frameFt�n, �pi is the pixel coordinate

of the upper-left corner ofBi, andw��p��pi� is the window function.

With respect to window function there are two two choices:

1. The conventional non-overlapped block motion compensation scheme:

We set w��p��pi� � 1 when �p is inside the Bi (0 �

the x-component and y-component of�p � �pi � 7 when the block size is 8	 8).

We setw��p��pi� � 1 when�p is outside theBi. Because the motion tracker determines

the motion vector�vi of Bi, the motion compensation is only applied to theBi. If

there is a small motion difference betweenBi� j and its neighbors, the conventional

non-overlapped block motion compensation scheme will create noticeable block

artifacts around the block boundary.

2. The overlapped block motion compensation scheme (OBMC):

In the overlapped block motion compensation scheme, a pixel inBi� j will be motion-

compensated by three motion vectors—one is the motion vector ofBi� j and two are

the motion vectors of the neighbor blocks ofBi� j. Theweighted motion compensation

scheme will (1) put more weights on the pixels that are closer to the block center and,

(2) put fewer weights on the pixels that are on the block boundary, and (3) put even

fewer weights on the pixels that are on the boundary of the neighbor blocks, as shown

in Figure 3.10. This scheme smoothes out motion vector differences gradually from

the pixels in this block to the pixels in the next block. Hence, the block artifacts will

be reduced.

In order to reduce the block artifacts, we make the weighting functionw��p��pi� similar to
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the coefficients defined for the overlapped block motion compensation scheme. In a huge

purely-translational moving region, where all the motion vectors are the same, there is no

difference between the conventional non-overlapped block motion compensation scheme

and the overlapped block motion compensation scheme.

In addition, the weighting function can take into account theconfidence of the tracking

of the block. In general, the less the residue of a block, the higher theprobability of

correctly tracking the block (see Section 7.1). If the true motion tracker fails to track a

blockBi� j but can track its surrounding blocks, reducing the weighting factors of the block

can relatively increase the weighting factors of its surrounding blocks, which have higher

correctness. That is, we can propagate the motion information from high-confidence block

to low-confidence block so as to have better reconstruction pictures.

3.4.1 Performance Comparison in Frame-Rate Up-Conversion

Figure 3.7 shows our performance comparison scheme in the frame-rate up-conversion

using transmitted true motion. Table 3.1 shows the performance of our motion-based

frame-rate up-conversion using the neighborhood relaxation true motion tracker (see

Eq. (3.9)) compared with the performance of the motion-based frame-rate up-conversion

using the original minimal-residue motion estimation (see Eq. (3.1)). Our simulation re-

sults show that our true motion estimation algorithm performs about 0.15dB–0.3dB better

than the minimal-residue motion estimation method.

Figure 3.11 shows the frame-by-frame performance comparison of frame-rate up-

conversion approaches. When there is almost no movement in the video, the difference

between the two motion estimation algorithms is minimal. When there is some huge move-

ment in the video, our method can show significant improvement. (Section 3.2.1 shows a

similar result in video coding—the larger the motion, the greater the improvement gained

by our proposed method.)
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(a) (b)

Figure 3.4: The comparison between the proposed rate-optimized motion estimation
algorithm and the original minimal-residue motion estimation algorithm. (a) shows the
decoded 76th frame of the coastguard sequence using the original minimal-residue
motion estimation algorithm. (b) shows the decoded 76th frame of the coastguard
sequence using the proposed rate-optimized motion estimation algorithm. Because
the motion field estimated by the neighborhood relaxation TMT is much smoother
than the motion field estimated by the minimal-residue BMA, the block artifacts are
less noticeable (especially, in the background).

Sequences Original BMA Our Method SNR Improvement
akiyo 42.71 dB 42.87 dB 0.16 dB
coastguard 30.47 dB 30.62 dB 0.15 dB
container 40.47 dB 40.77 dB 0.30 dB
foreman 28.30 dB 28.63 dB 0.33 dB
hall monitor 36.02 dB 36.15 dB 0.13 dB
motherdaughter 39.68 dB 39.93 dB 0.25 dB
news 32.78 dB 33.08 dB 0.30 dB
silent 34.01 dB 34.33 dB 0.32 dB
stefan 21.06 dB 21.20 dB 0.14 dB

Table 3.1: Comparison of different motion-based frame-rate up-conversion schemes.
Our true motion tracker performs about 0.15dB–0.3dB SNR better than the minimal-
residue motion estimation method.
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Figure 3.5: The simulation result based on the 105th frame and the 108th frame of
the “foreman” sequence as shown in Figure 3.2. (a) shows the motion vectors found
by our multiresolution search method with neighborhood relaxation. The motion field
is smoother than the motion field produced by the minimal-residue criterion shown
in Figure 3.2 and, as a result, the bits for coding motion vectors is fewer. (b) shows
the motion vectors found by the multiresolution approach without neighborhood relax-
ation. (c)&(d) show the rate-distortion curve for our method, the original full-search
method, and the multiresolution method without neighborhood relaxation. It is clear
that our method could give better quality and better bit-rate.
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Figure 3.6: The rate-distortion curves for all the H.263 sequences. (a) shows the rate-
distortion curve for the carphone sequence (average over the 380 frames). (b) claire
(490 frames). (c) foreman (300 frames). (d) grandma (860 frames). (e) miss-am
(150 frames). (f) mthr-dotr (300 frames). (g) salesman (445 frames). (h) suzie (150
frames). Because there is a scene change in the 60th frame of the trevor sequence,
we divide the simulation of the trevor into two parts. (i) first part of the trevor (60
frames) and (j) second part of the trevor (90 frames).
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Figure 3.7: Our approach toward comparing the performance of the frame-rate up-
conversion scheme using transmitted true motion. We drop one of every two frames in
the original sequence (fI�t�g � fI�2t�g), then encode the sequence using a standard
video codec (fI�2t�g � fĨ�2t�g). While we decode the sequence, we also interpolate
the missing frames (fĨ�2t�g � fĨ�2t �1�g). We compare the skipped original frame
(fI�2t�1�g) and the interpolated reconstructed frame (fĨ�2t�1�g) for the performance
measurement.
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Figure 3.8: Our frame-rate up-conversion scheme, which uses the decoded motion
vectors. After a variable-length coding decoder (VLD), a basic MPEG decoder in-
cludes an inverse quantization (IQ), an inverse discrete cosine transform (IDCT),
and a motion compensation (cf. Figure 1.4). Our frame-rate up-conversion scheme
scheme uses the decoded motion vectors for motion-compensated interpolation.
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vi/2 vi
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Figure 3.9: The proposed motion interpolation scheme. If block Bi moves�vi from frame
Ft�1 to frame Ft�1, then it is likely that block Bi moves�vi�2 from frame Ft�1 to frame Ft .
We use the�vi�2 to interpolate the missing pixels. When there is an occluded region in
the next frame, we use the pixels in the previous frame for interpolation. When there
is an uncovered region in the previous frame, we use the pixels in the next frame for
interpolation.

Significant improvement may not be shown by the average numbers in Table 3.1. Fig-

ure 3.12 shows an example in the foreman sequence. When the foreman turns his head,

the lamination of his face changes. That is, the rudimentary assumption of the intensity

conversation is not valid in this scene. This condition is extraordinarily difficult for motion

trackers (see Section 7.1). Therefore, the motion vectors estimated by a minimal-residue

criterion have many errors. Because our true motion tracker is more reliable, the SNR

improvement in this example is 1.5 dB.

In summary, we have demonstrated that the neighborhood relaxation TMT can be suc-

cessfully applied to video compression. Specifically, in this chapter, we used it as a cost-

effective rate-optimized motion estimation algorithm. Using the true motion vectors for

video coding has the following advantages:

1. It optimizes the bit rate for residual and motion information. It is our observation that

the coding cost is reduced when the block motion vectors resemble the true motion

of the video.

2. It reduces the block artifacts and subjectively provides better pictures.
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Figure 3.10: Weighting coefficients in the overlapped block motion compensation
scheme when the block size is 8�8 [3, 51]. A pixel in Bi� j will be motion-compensated
by three motion vectors—one is the motion vector of Bi� j and two are the motion vec-
tors of the neighbor blocks of Bi� j. The weighted motion compensation scheme will
(1) put more weights on the pixels that are closer to the block center and, (2) put fewer
weights on the pixels that are on the block boundary, and (3) put even fewer weights
on the pixels that are on the boundary of the neighbor blocks. The highlighted center
is the location of the block itself on which the weighting function puts most emphasis.
This scheme smoothes out motion vector differences gradually from the pixels in this
block to the pixels in the next block.
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Figure 3.11: Frame-by-frame performance difference of the frame-rate up-conversion
scheme between original BMA and the proposed true motion estimation using the
(a) akiyo, (b) coastguard, (c) container, (d) foreman, (e) hall monitor, (f) mother and
daughter, (g) news, and (h) stefan sequence.
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(a) (b) (c)

(d) (e)

Figure 3.12: Simulation results for visual comparison. (a) the 138th frame of the
“foreman” sequence. (b) the 139th frame, which is not coded in the bit-stream. (c) the
140th frame. (d) the reconstructed 139th frame (28.31 dB) using transmitted motion
vectors which are generated from full-search motion estimation. (e) the reconstructed
139th frame (29.81 dB) using transmitted motion vectors which are generated from
the proposed true motion estimation.
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3. It offers significant improvement in motion-compensated frame-rate up-conversion

over the minimal-residue BMA. The more accurate the motion estimation, the better

the performance of frame-rate up-conversion. If we would like to perform the frame-

rate up-conversion using the compression domain information (i.e., we do not want

to have the motion estimation again at the decoder side), then encoding the video

using the “true” motion vectors provides great improvement.

In addition, we incorporated the neighborhood relaxation in a multiresolution frame-

work to reduce the computational complexity. Motion estimation is known to be the main

bottleneck in real-time encoding applications, and the search for an effective motion esti-

mation algorithm has been a challenging problem for years. The computational complexity

required by our algorithm is around 17 times less than that required by the full-search BMA.

The overall speedup of the whole video coding using this fast motion estimation algorithm

is about 6.6. Moreover, in 9 out of our 10 benchmark simulations, the performance of the

full search algorithm and that of our multiresolution method are about the same. In 1 out

of our 10 benchmark simulations, our method has noticeable improvement.

Conventional multiresolution algorithms use only information from coarser levels to

refine the motion vector in finer levels, and do not exploit spatial correlations of the motion

vectors. Although the computational complexity of a conventional multiresolution algo-

rithm is less than our methodk, its motion vectors could come from tracking after a local

minimum. Consequently, simulation shows that its coding efficiency is inferior to either

the full search BMAs or our method.

kA multiresolution algorithm without neighborhood relaxation is about 30% less complex than our mul-
tiresolution algorithm with neighborhood relaxation.



Chapter 4

Application in Spatio-Temporal

Interpolation: Interlaced-to-Progressive

Scan Conversion

True motion vectors play an important role in various spatio-temporal interpola-

tion applications, including frame-rate or field-rate conversion applications, interlaced-to-

progressive scan conversion, enhancement of motion pictures, and synthesis [22, 30, 40].

This chapter demonstrates a motion-compensated interlaced-to-progressive scan conver-

sion (deinterlacing) method�.

Our deinterlacing scheme has two innovations. First, we increase the accuracy in mo-

tion estimation. Second, we reduce the errors in interpolation. While in previous chapters,

our true motion trackers (TMTs) find motion vectors offull-pel resolution, the TMT in this

chapter finds motion vectors ofsub-pel resolution.

Our high-precision TMT vertically integrates two parts: (1) a matching-based motion

tracker as the basis (as shown in Chapter 2) and (2) a gradient-based motion vector refiner.

�In interlaced scan video, multiple video fields are put together to obtain a complete image. Eachfield
covers the entire space of an image, but each line skips the places where lines from other fields will be dis-
played. Unlike interlaced video,progressive scan video makes one pass down the display screen to produce
a complete image.

91
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In general, gradient-based approaches are accurate in finding motion vectors of sub-pel res-

olution. When the initial position is too far away from the solution, it is more likely that the

gradient-based approaches converge to a local minimum and produce undesirable results.

That is, in high motion regions, gradient-based approaches could be inaccurate in finding

motion vectors [76]. But, if proper initial motion vectors are given, the gradient-based

techniques can be accurate in the high motion region. In this context, the initial motion

vectors can be provided by the matching-based TMT. Our simulation results demonstrate

that a deinterlacing scheme using our true motion tracker produces a better performance

than the same scheme using the original minimal-residue block-matching algorithm does.

4.1 Interlaced-to-Progressive Scan Conversion
Interlaced-to-progressive scan conversion techniques have been widely studied in vari-

ous shapes for a number of reasons. Historically, the interlaced scanning scheme has been

introduced to offer a compromise between picture quality and required bandwidth. How-

ever, the interlaced scanning scheme, which has been widely employed in current television

systems, creates some uncomfortable visual artifacts—an edge flicker, an inter-line flicker,

and a line-crawling. Figure 4.1 demonstrates the well-known “comb-effect” in the inter-

laced video. To reduce the visual affects of those artifacts, interlaced-to-progressive scan

conversion is often mandated.

While conventional televisions use the interlaced scanning scheme, current computer

monitors use the progressive scanning scheme. In order to display interlaced video (e.g.,

decoded MPEG-2 video), an interlaced-to-progressive scan conversion is required.

Because of different television standards, format conversion is necessary to interchange

video programs globally. For example, although the US Federal Communications Com-

mission (FCC) set the next generation digital television standard in 1996, the specific video
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(a) (b) (c)

(d) (e) (f)

Figure 4.1: (a), (b), and (c) show the 138th, 139th, and the 140th field of the foreman
sequence, respectively. (d) shows the frame in which the 138th field is put on top of
the 137th field directly. (e) shows the frame in which the 139th field is put on top of
the 138th field. (f) shows the frame in which the 140th field is put on top of the 139th
field. Since the background is almost static, the quality of this part is good. On the
contrary, because the head is moving, a lot of obvious “comb” effects appear.
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formats to be used for digital broadcast television will be the subject of voluntary indus-

try standards [41]. For consumers to perceive various video formats†, format conversion

is also required. The general interlaced-to-progressive scan conversion problem has been

studied extensively from a video format conversion point of view.

Furthermore, interlaced video makes the MPEG-2 encoding less efficient and produces

more artifacts. For theadvanced layered coding scheme, one preprocessing step is to per-

form an interlaced-to-progressive scan conversion [33].

4.2 Motion-Compensated Interlaced-to-Progressive Scan

Conversion
As shown in Figure 4.2, the interlaced-to-progressive scan conversion problem can be

formulated as the following: to findfI�m�2n���t�1� mod 2�� t�g givenfI�m�2n��t mod

2�� t�g, wherem�n is the horizontal and vertical pixel coordinate. That is, it is essentially a

problem of interpolating the missing lines in every received field. Solutions to the problem

have been classified as:

1. Intraframe techniques:

Intraframe techniques interpolate the missing line based on the scanned lines im-

mediately before and after the missing line. One example is the “line-averaging”,

which replaces a missing line by averaging the two lines adjacent to it, i.e.,

I�m�2n�2t�1� � fI�m�2n�1�2t�1�� I�m�2n�1�2t�1�g�2 or I�m�2n�1�2t� �

fI�m�2n�2t�� I�m�2n�2�2t�g�2. And, there are other improved intraframe meth-

ods that use more complicated filers or edge information [64]. However, such tech-

niques cannot predict information that is lost from the current field but does appear

†The HDTV video formats include 720 lines� 1280 pixels per line format at 24, 30, and 60 frames per
second progressively scanned and a 1080 lines� 1920 pixels per line format at 24 and 30 frames per second
progressively scanned and 60 fields per second interlaced scanned. In November 1998, CBS broadcast 1080i
HDTV programs while ABC broadcast 720P HDTV programs [6].
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Figure 4.2: The interlaced-to-progressive scan conversion problem can be formulated
as the following: to find fI�m�2n � ��t � 1� mod 2�� t�g given fI�m�2n � �t mod 2�� t�g.
That is, it is essentially a problem of interpolating the missing lines in every received
field.
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in neighboring fields.

2. Non-motion-compensated interframe techniques:

Interframe techniques take into account the pixels in the previous fields (or fu-

ture fields) in the interpolation procedure. For example, one simple and widely-

adopted method is the field-staying scheme, which letsI�m�2n���t�1� mod 2�� t��

I�m�2n���t�1� mod 2�� t�1�. In general, non-motion-compensated approaches,

which apply linear or nonlinear filters, are fine for stationary objects. But, non-

motion-compensated approaches result in severe artifacts for moving objects, as

shown in Figure 4.1.

3. Motion-compensated interframe techniques:

For moving objects, motion compensation should be used in order to achieve a higher

picture-quality. Some motion compensated deinterlacing techniques have been pro-

posed [28, 62, 104, 106]. It has been shown that the motion compensated deinter-

lacing methods are better than the interframe methods and non-motion-compensated

interframe methods.

There are three variations in the motion-compensated deinterlacing methods:

(a) Integer-pixel motion compensation: If every pixel has only full-pel move-

ment, then a missing pixel can be reconstructed by an existing pixel without

any interpolation. This method is computationally easy because only full-

pel motion estimation is required. For example, we can treat this interlaced-

to-progressive scan conversion problem as two field-rate up-conversion

problems—(1) to findfI�m�2n�2t � 1�g given fI�m�2n�2t�� I�m�2n�2t � 2�g

and (2) to findfI�m�2n�1�2t�g givenfI�m�2n�2t�1�� I�m�2n�1�2t�1�g—

in which we can use the method presented in Chapter 3. When the region has no

motion and/or no texture, this method performs well. However, the assumption
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that every pixel has only full-pel movement is often invalid and hence reduces

the practical use of this method.

(b) Interpolation using the generalized sampling theorem: If a pixel has sub-pel

movement, then an existing pixel from another field will move to the current

field on a non-grid point. As shown in Figure 4.3, in order to reconstruct all

the grid-point pixels, a generalized sampling theorem is used [104]. In spite

of the effectiveness of the method, a perfect reconstruction requires the use of

pixels from many lines, in which the motion vectors may not be constant. In

addition, when the region has an odd-pixel vertical-movement, it is difficult to

reconstruct the missing pixels.

(c) Recursive deinterlacing: If it is possible to have a perfectly deinterlaced pre-

vious frame in a memory, the previous frame can be used to deinterlace the

current input field easily with the Nyquist sampling theorem, as shown in Fig-

ure 4.4. The new deinterlaced field is written in the memory so as to deinterlace

the next incoming field [106]. However, the interpolation defects in the previous

deinterlaced picture can be easily propagated. For example, when the motion

estimator uses the defective deinterlaced image to produce inaccurate motion

vectors, the deinterlaced image of the current frame would also be incorrect. In

order to prevent the error propagation, many adaptive methods, e.g., a median

function and a clip function, are proposed [28].

The method proposed in [62] is unique. Similar to the previous methods, this

method uses the deinterlaced previous frames to deinterlace the current field. It

is encouraging that the next frames are also deinterlaced (by the line-averaging

method) to deinterlace the current field. Since most of the frame information

is available for the motion estimation processing, the motion estimation will be

more correct.
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Figure 4.3: Interlaced-to-progressive deinterlacing methods using the generalized
sampling theorem. (a) shows the previous field and the current field. (b) A motion
estimator determines the pixel positions (the gray squares) in the current field that
correspond to the pixels in the previous field. Note that the more accurate the motion
estimation, the better the pixels to be reconstructed. Therefore, it is important to have
a true motion tracker. (c) The generalized sampling theorem (see Section 4.3.2) is
used to reconstruct the missed grid pixels (the dark circle) in the current frame.
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Figure 4.4: Recursive deinterlacing methods deinterlace the video without using the
generalized sampling theorem. (a) assumes that we have a deinterlaced previous
frame in a memory. The previous frame is used to deinterlace the current field. (b) A
motion estimator determines the pixel positions in the previous frame that correspond
to the pixels in the current field. It is important to have a true motion tracker because
the more accurate the motion estimation, the better the pixels to be reconstructed.
(c) Since the non-grid pixels (the gray squares) in the previous frame can be recon-
structed easily using the Nyquist sampling theorem, the missed pixels in the current
field can be motion compensated using the non-grid pixels. The new deinterlaced
field is written in the memory so as to deinterlace the next incoming field recursively.
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In this chapter, we present a new method based on accurate motion estima-

tion/compensation and the generalized sampling/reconstruction theorem. As shown in Fig-

ure 4.5, our interlaced-to-progressive scan conversion procedure contains two parts: (1)

findingfI�m�∆x�2n�∆y�2t�g givenfI�m�2n�1�2t�1�g andfI�m�2n�1�2t�1�g and

(2) finding fI�m�2n� 1�2t�g givenfI�m�2n�2t�g andfI�m�∆x�2n�∆y�2t�g. The first

step requires a motion-based compensation (see Section 4.3.1) while the second step re-

quires a generalized sampling theorem (see Section 4.3.2).

There are five unique features in our method:

1. Our TMT provides higher resolution for applying the generalized sampling theorem.

In [28], de Haan and Bellers use a 3D recursive-search block matcher to estimate

the motion up to quarter-pel resolution [30]. In [62], the motion estimation is up to

half-pel resolution. Our high-precision TMT vertically integrates two parts: (1) a

matching-based motion tracker as the basis and (2) a gradient-based motion vector

refiner (see Section 4.3.1). Gradient-based approaches are accurate in finding motion

vectors of less than full-pel resolution.

2. Our method uses non-casual information. On the other hand, most of the previous

methods use casual information (they never use the next fields [28, 104, 106]), as

shown in Figure 4.3. In our method, the motion estimation is performed on the

previous field and the next field. By assuming that the motion of a block is linear

over a small time period, we can linearly interpolate the motion vectors related to the

current field. In addition, because we have the information from the previous and

next fields, we bi-directionally interpolate the non-grid-point pixels of the current

field for higher precision.

3. We donot use odd fields for even field motion estimation or vice versa (see Sec-

tion 4.3.3). Most of the previous methods perform the motion estimation using the

previous fields related to the current field [28, 62, 104, 106], no matter if the previous
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Figure 4.5: Our interlaced-to-progressive scan conversion approach contains two
parts: (a) Finding fI�m�∆x�2n�∆y�2t�g given fI�m�2n�1�2t�1�g and fI�m�2n�1�2t�
1�g. (b) Finding fI�m�2n�1�2t�g given fI�m�2n�2t�g and fI�m�∆x�2n�∆y�2t�g. This
part contains two steps (i) finding fI�m�2n�∆y�2t�g given fI�m�∆x�2n�∆y�2t�g and
(ii) finding fI�m�2n�2t�g given fI�m�2n�∆y�2t�g.
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field is even or odd. But, we use previous or nextodd fields for the motion estimation

of the currentodd field. We use previous or nexteven fields for the motion estima-

tion of the currenteven field. Most of the time, pixels in the odd field will stay at

the odd field (e.g., non-motion background, horizontal panning regions). Only when

there is an odd-pixel vertical movement, will a pixel in the odd field move to the even

field. However, when there is an odd-pixel vertical movement, the lost information

in the current odd field is also lost in the previous even field. This means that it is

unnecessary to track the motion of the pixels that move from an odd field to an even

field. Therefore, using previous or nextodd fields for the motion estimation of the

currentodd field or using previous, or nexteven fields for the motion estimation of

the currenteven field is good enough!

4. In our method, we do not use any deinterlaced frames for motion estimation or mo-

tion interpolation. Some of the previous methods use the previous and/or future

deinterlaced frames in order to make the motion estimation easier and the sample

reconstruction simpler [28, 62, 106]. Since the interpolation defects in the previ-

ous/future deinterlaced picture can be too easily propagated to the current frame,

our method does not use any deinterlaced frames for motion estimation or motion

interpolation.

5. Our method adaptively combines the line-averaging technique and the motion com-

pensated deinterlacing technique. Based on the position of the motion compensated

sampled point, we have different weightings assigned to it. When the motion com-

pensated sampled point has the same position as the missed pixel (e.g., non-motion

region), it has the highest reliability. When the motion compensated sampled point

has the same position as the pre-existing pixel, it has the lowest reliability. In addi-

tion, the confidence of the motion vector also influences the weighting of the motion

compensated sampled point. (See Section 3.4 and Section 4.3.3; when the residue of
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the motion vector is larger, it is unlikely that the motion vector is reliable.)

4.3 Proposed Deinterlacing Algorithm
In this section, we present our deinterlacing algorithm based on the accurate TMT

and the generalized sampling/reconstruction theorem. As shown in Figure 4.5, our

deinterlacing approach contains two parts: (1) findingfI�m � ∆x�2n � ∆y�2t�g given

fI�m�2n� 1�2t � 1�g andfI�m�2n� 1�2t � 1�g and (2) findingfI�m�2n� 1�2t�g given

fI�m�2n�2t�g andfI�m�∆x�2n�∆y�2t�g. The first step requires a motion-based compen-

sation (see Section 4.3.1) while the second step requires a generalized sampling theorem

(see Section 4.3.2).

4.3.1 Integrating Matching-Based and Gradient-Based Motion Esti-

mation

In the proposed deinterlacing approach, the first step is to determine thefI�m�∆x�2n�

∆y�2t�g. In order to have accurate∆x and∆y, the TMT in this application requires higher

accuracy than the TMTs presented in the previous chapters. Hence, we present a high-

precision TMT, which vertically integrates the matching-based technique and the gradient-

based technique.

Our matching-based true motion tracker using a neighborhood relaxation formulation

(see Chapter 2) is considered to be reliable. However, the TMT can only find full-pel mo-

tion vectors. That is, the precision of the motion vectors estimated by the matching-based

TMT cannot be smaller than an integer. On the other hand, the precision of the motion vec-

tors estimated by gradient-based techniques can be fractional. Therefore, gradient-based

techniques must be exploited in this high-precision motion estimation.

We do not use gradient-based techniques in the first place because the gradient-based

techniques may not be dependable in the high motion region. Let

s�vx�vy�� I�x0� vx�y0� vy� t0�1�� I�x0�y0� t0�
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Using Taylor’s expansion, we have

s�vx�vy� � s�vx0�vy0���vx� vx0�
∂s
∂vx

��vy� vy0�
∂s
∂vy

�E�∆2�

whereE�∆2� means second and higher order terms. When�vx�vy� resembles the true mo-

tion, s�vx�vy� � 0 (from the rudimentary assumption—intensity conservation over time, see

Eq. (1.1)), i.e.,

s�vx0�vy0���vx� vx0�
∂s
∂vx

��vy� vy0�
∂s
∂vy

�E�∆2� � 0 (4.1)

Consider the following two situations:

1. Whenvx � 0, vy � 0, we choosevx0 � vy0 � 0 so thatE�∆2�� 0. Therefore,

s�0�0�� vx
∂s
∂vx

� vy
∂s
∂vy

� 0

This is equivalent to

I�x0�y0� t0�1�� I�x0�y0� t0�� vx
∂I
∂x

���
�x0�y0�t0�1�

� vy
∂I
∂y

���
�x0�y0�t0�1�

� 0

that is, the foundation for gradient-based techniques (see Eq. (1.3)).

2. On the other hand, whenjvxj � 0 or jvyj � 0, choosingvx0 � vy0 � 0 may lead to a

large errorE�∆2�. A large errorE�∆2� means that

s�0�0�� vx
∂s
∂vx

� vy
∂s
∂vy

�� 0

which is equivalent to

I�x0�y0� t0�1�� I�x0�y0� t0�� vx
∂I
∂x

���
�x0�y0�t0�1�

� vy
∂I
∂y

���
�x0�y0�t0�1�

�� 0

that is, the foundation for gradient-based techniques isinvalid. Thus, the gradient-

based techniques may not be dependable in the high motion region.
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We proposed a motion tracking algorithm that consists of (1) finding the coarse motion

�vx0�vy0� by our matching-based true motion tracker and (2) finding the detailed motion by

a gradient-based motion estimator. This makes sense because the gradient-based techniques

can be dependable in the high motion region if proper initial motion vectors are given (i.e.,

�vx0�vy0�). That is,

I�x0� vx0�y0� vy0� t0�1�� I�x0�y0� t0��

�vx� vx0�
∂I
∂x

���
�x0�vx0�y0�vy0�t0�1�

��vy� vy0�
∂I
∂y

���
�x0�vx0�y0�vy0�t0�1�

� 0 (4.2)

Note that this two-step algorithm will suffer from propagating estimation errors from the

coarse-resolution motion field to the fine-resolution motion field, and may not be able to

recover from the errors [76, 89]. The correctness of the matching-based true motion tracker

is critical.

4.3.2 Generalized Sampling Theorem

TheSampling Theorem is well known as the following: Iff �t� is a 1D function having

a Fourier transformF�ω� such thatF�ω� � 0 for jωj �ω0 � π�Ts (a band-limited signal),

and is sampled at the pointstn � nTs (Nyquist rate), then f �t� can be reconstructed exactly

from its samplesf f �nTs�g as follows:

f �t� �
∞

∑
n��∞

f �nTs�
sin�ω0�t�nTs��

�ω0�t�nTs��
�

∞

∑
n��∞

f �nTs� sinc

�
t�nTs

Ts

�
(4.3)

where sinc�0� � 1 and sinc�x� � sin�πx��πx wheneverx �� 0.

Since the debut of the original sampling theorem, it has been generalized into various

extensions [81]. OneGeneralized Sampling Theorem is the following: If f �t� is band-

limited toω0 � π�Ts, and is sampled at 1�m the Nyquist rate but in each sampling interval

not one butm samples are used (bunched samples) thenf �t� can be reconstructed exactly

from its samplesf f �mnTs �∆Tk� j 0� ∆Tk � mTs� k � 1� � � � �m� ∆Ti �� ∆Tj �i �� jg.

In this work, we are particularly interested inm � 2 and we have derived a closed form

solution in the following. Given
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1. f �t� is band-limited toω0 � π�Ts, and

2. in each sampling interval, there are 2 samplesf f �2nTs�� f �2nTs �∆T �g (where 0�

∆T � 2Ts),

we would like to reconstruct thef f ��2n� 1�Ts�g. After that, f �t� can be reconstructed

exactly using Eq. (4.3).

From the original sampling theorem,

f �2iTs �∆T � � ∑
n

f �nTs� sinc

�
2iTs �∆T �nTs

Ts

�

� ∑
n

f �2nTs� sinc

�
2iTs �∆T �2nTs

Ts

�
�

∑
n

f ��2n�1�Ts� sinc

�
2iTs �∆T � �2n�1�Ts

Ts

�

This implies

f �2iTs �∆T � � ∑
n

f �2nTs� sinc

�
2iTs �∆T �2nTs

Ts

�

� ∑
n

f ��2n�1�Ts� sinc

�
2iTs �∆T � �2n�1�Ts

Ts

�
�i

These equations can be written more concisely in a matrix form as

f̂�h � Sf

wheref̂ is thek	1 column vector of knownk samples,h is thek	1 column vector with

components given by

hi �∑
n

f �2nTs�
sin�ω0∆T �

ω0�2iTs �∆T �2nTs�

and which depends only on the known samples, andS denotes thek	k matrix with entries

Si j �
sin�ω0�∆T �Ts��

ω0�2iTs �∆T � �2 j�1�Ts�
�

The vectorf can be found as the solution to the system of equations as:

f � S�1�f̂�h� (4.4)
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In practice, we find that

Si j �
sin�ω0�∆T �Ts��

ω0�2iTs �∆T � �2 j�1�Ts�
� 0 �ji� jj � 1

Therefore,

f ��2i�1�Ts���
f �2iTs �∆T ��∑

n
f �2nTs�

sin�ω0∆T �

ω0�2iTs �∆T �2nTs�

�
ω0�∆T �Ts�

sin�ω0�∆T �Ts��
(4.5)

And, it can be estimated by an iterative procedure (e.g., [42]) as:

f �l���2i�1�Ts� � f �l�1���2i�1�Ts���
f �2iTs �∆T ��∑

n
f �2nTs�

sin�ω0∆T �

ω0�2iTs �∆T �2nTs�

�∑
n

f �l�1���2n�1�Ts�
sin�ω0�∆T �Ts��

ω0�2iTs �∆T � �2n�1�Ts�

�
ω0�∆T �Ts�

sin�ω0�∆T �Ts��
(4.6)

where f �0���2n�1�Ts� could be 0 orf f �2nTs�� f ��2n�2�Ts�g�2.

4.3.3 Our Interlaced-to-Progressive Scan Conversion Algorithm

Step 1: Motion-Compensation of Non-Grid Samples.

The first step of this proposed deinterlacing approach is to perform the motion-

compensation and obtain a set of missing samples on the non-grid pointsfI�m�∆x�2n�

∆y�2t�g, as shown in Figure 4.5(a). There are many ways to obtain the missing samples,

such as:

1. We can findI�m� vx�2n� 1� vy�2t� � I�m�2n� 1�2t � 1� � I�m� 2vx�2n� 1�

2vy�2t�1� from the motion estimation between field�2t�1� and field�2t �1�.

2. We can findI�m� vx�2n� vy�2t� � I�m�2n�2t �2� from the motion estimation be-

tween field�2t� and field�2t �2�.

3. We can findI�m� vx�2n� vy�2t� � I�m�2n�2t�2� from the motion estimation be-

tween field�2t� and field�2t�2�.
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Step 2: Reconstruction of Grid Samples.

Once a new set of motion compensated samples has been reconstructed, we are able

to use them to determine the set of samples that lie on the sampling grid for the miss-

ing field, as shown in Figure 4.5(b). Even though the sampling and reconstruction prob-

lem is two-dimensional, we assume that the signal is separable‡. So, if we are given

fI�m�2n�2t�� I�m�∆x�2n�∆y�2t�g, it actually takes two steps to findfI�m�2n�1�2t�g:

1. Given fI�m�∆x�2n�∆y�2t�g, to find fI�m�2n�∆y�2t�g:

Because we have enough horizontal samples at the Nyquist rate, we only apply

Eq. (4.3):

I�x�2y�∆y�2t� � ∑
m

I�m�∆x�2y�∆y�2t� sinc�x�m�∆x� (4.7)

(see Figure 4.5(b-i))

2. Given fI�m�2n�2t�� I�m�2n�∆y�2t�g, to find fI�m�2n�1�2t�g:

Since 0� ∆y � 2, we have to use the generalized sampling theorem (see Eq. (4.6))

as:

I�l��x�2y�1�2t� � I�l�1��x�2y�1�2t���
I�x�2y�∆y�2t��∑

n
I�x�2n�2t� sinc�2y�∆y�2n��

∑
n

I�l�1��x�2n�1�2t� sinc�2y�∆y�2n�1�

�
1

sinc�∆y�1�
(4.8)

(see Figure 4.5(b-ii))

‡In the image domain, the sampling and reconstruction problem is two-dimensional. Here, we assume
that the signal isseparable, i.e., the reconstruction of the signal is as the following:

I�x�y� �∑
m

∑
n

I�m�n� sinc�x�m� sinc�y�n�



Chapter 4: Interlaced-to-Progressive Scan Conversion 109

Prediction of Information Never Seen.

The above method generally works well except in the following two special cases:

1. Object Occlusion and Reappearance: As we mentioned earlier, object occlusion

and reappearance make the motion estimation and the motion-based spatial and tem-

poral interpolation more difficult. In this motion-compensated deinterlacing prob-

lem, we ignore the motion vectors at the object occlusion and reappearance region

and use the intrafield information (e.g., using the line-averaging technique).

2. Field Motion Singularity: There is a difficult situation for our method—an object

is moving upward/downward at�2n�1� pixels per field. (∆y � 0.) Under this situ-

ation, multiple fields do not provide more information than a single field does. This

means that we should use the intrafield information (e.g., using the line-averaging

technique).

Reduction of the Block Artifacts.

Using field f2t as the current field, our method can be summarized as follows:

∆�i�2 j�1� � ∑
x
∑
y

∑
fBkg

w�x�y�Bk� δ�i�x� vxi� δ�2 j�1�y� vyi�

n
�I�x�y�2t�1�� I�x�2vxi�y�2vyi�2t �1���2�

∑
m

∑
n

I�m�2n�2t� sinc�x� vxi�m� sinc�y� vyi�2n��

∑
m

∑
n

Ĩ�l��m�2n�1�2t� sinc�x� vxi�m� sinc�y� vyi�2n�1�
o

W �i�2 j�1� � ∑
x
∑
y

∑
fBkg

w�x�y�Bk� δ�i�x� vxi� δ�2 j�1�y� vyi�

sinc�x� vxi� i� sinc�y� vyi�2 j�1�

Ĩ�l�1��i�2 j�1�2t� � Ĩ�l��i�2 j�1�2t��	

� ∆�i�2 j�1��W �i�2 j�1� if W �i�2 j�1� �� 0

0 if W �i�2 j�1� � 0
(4.9)
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where 2�vi is the movement ofBk from field f2t�1 to field f2t�1, δ�a�b� � 1 whenja�bj�

1 andδ�a�b� � 0; otherwise,w�x�y�Bk� is the window function, and the initial value of

Ĩ�0��i�2 j�1�2t� is from the line-averaging technique using the fieldf2t . That is,

Ĩ�0��i�2 j�1�2t� � ∑
n

I�i�2n�2t� sinc

�
2n�2 j�1

2

�

In order to reduce the block artifacts, we choose a weighting functionw�x�y�Bk� that is

similar to the coefficients defined for the overlapped block motion compensation scheme

(OBMC), as shown in Figure 3.10. In this weighting scheme, a pixel inBi� j will be motion-

compensated by three motion vectors—one is the motion vector ofBi� j and two are the

motion vectors of the neighbor blocks ofBi� j. This scheme smoothes out motion vector

differences gradually from the pixels in this block to the pixels in the next block. Hence,

the block artifacts will be reduced.

Moreover, the weighting function can also depend on the tracking confidence of the

block (see Section 3.4). When the confidence of tracking a block is low, we can relatively

increase the effect of the intraframe technique by decreasing the weight of the motion

interpolation.

4.4 Performance Comparison of Deinterlacing Schemes
Figure 4.6 demonstrates our approach toward measuring the performance of an

interlaced-to-progressive scan conversion. The approach consists of the following three

steps. (1) A progressive video benchmarkfI�m�n� t�g is transformed into an interlaced

video fI�m�2n� �t mod 2�� t�g by dropping every other field in each frame. (2) We re-

construct the progressive videofĨ�m�n� t�g by interlaced-to-progressive scan conversion

techniques. (3) The error between the original videofI�m�n� t�g and the reconstructed pro-

gressive videofĨ�m�n� t�g is measured. The better the interlaced-to-progressive conversion,

the smaller the error betweenfI�m�n� t�g andfĨ�m�n� t�g.



Chapter 4: Interlaced-to-Progressive Scan Conversion 111

field dropping

deinterlacing

Original progressive video

Interlaced video

Reconstructed
progressive video

comparision

1

2 3

Performance
measurement

Figure 4.6: Flow chart of the proposed approach for performance comparison in
interlaced-to-progressive scan conversion. (1) We transform a progressive video
benchmark fI�m�n� t�g into an interlaced video fI�m�2n � �t mod 2�� t�g by dropping
every other field in each frame. (2) We reconstruct the progressive video fĨ�m�n� t�g
by an interlaced-to-progressive scan conversion technique. (3) We measure the per-
formance of the technique by comparing the original video fI�m�n� t�g and the re-
constructed progressive video fĨ�m�n� t�g. The better the interlaced-to-progressive
conversion, the smaller the error between fI�m�n� t�g and fĨ�m�n� t�g.
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Field- Line- Motion-Based Field-Rate Up-Convert
Sequences Staying Averaging Original BMA Our TMT +GST
akiyo 42.05 39.70 43.72 43.86 43.86
coastguard 26.85 28.39 33.28 33.42 33.54
container 40.53 27.90 44.08 44.35 45.08
foreman 26.76 30.53 30.69 30.98 31.70
hall monitor 36.07 29.61 38.95 39.04 39.12
motherdaughter 38.97 36.28 42.14 42.46 42.96
news 33.15 34.00 35.71 35.84 36.54
stefan 20.12 27.41 23.88 24.07 25.66

Table 4.1: Performance of different deinterlacing approaches. Numbers are dB in
SNR.

Table 4.1 shows the performance of five different interlaced-to-progressive scan con-

version approaches. The field-staying scheme is better than the line-averaging scheme in

the sequences that have almost no movement (e.g., container). That is, the line-averaging

scheme (an intra-field prediction scheme) cannot accurately predict the pixels that are never

seen. On the other hand, when the sequences have some high motion activities, the field-

staying scheme is not as good as the line-averaging scheme (e.g., foreman and stefan). That

is, when the motion information is not used the inter-field method cannot provide an accu-

rate prediction. Table 4.1 also reveals that there is a 0.2 dB SNR difference between using

the minimal-residue BMA and using our true motion tracker.

Our motion-based interlaced-to-progressive scan conversion, using the true motion es-

timation, is the best in seven out of the eight test sequences. (It fails when the movement in

the scene is intense.) In average, our deinterlacing approach, which utilizes the proposed

true motion tracker and the generalized sampling theorem, is 5 dB SNR better than the

line-averaging method. In [62], the best deinterlacing method is only 4 dB SNR better than

the line-averaging method§.

§During our evaluation, we assumed that the camera is without such filter. If the camera has an optical
per-filter, then the methods may not be evaluated correctly.
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Figure 4.7 shows the frame-by-frame performance comparison of deinterlacing ap-

proaches. Figure 4.8 shows an example in the foreman sequence for visual comparison.

The reconstructed frame using the field-staying method has very clear comb effects in the

moving region (e.g., the head). The reconstructed frame using the line-averaging method

looks blurry in the non-moving regions (e.g., the building). The reconstructed frame using

our approach is better both in the moving and non-moving regions.

In summary, in this chapter, we vertically integrated the matching-based technique and

gradient-based technique into our TMT for higher accuracy and higher precision. An ac-

curate and precise motion tracker is essential for interlaced-to-progressive scan conversion.

Our TMT together with a generalized sampling theorem provides a fundamental tool for

conversion of various video formats.
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Figure 4.7: Frame-by-frame performance difference of deinterlacing schemes with the
proposed true motion tracker and with the original minimal-residue block-matching al-
gorithm using the (a) akiyo, (b) coastguard, (c) container, (d) foreman, (e) hall monitor,
(f) mother and daughter, (g) news, and (h) stefan sequence.
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(a) (b) (c)

(d) (e) (f)

Figure 4.8: Simulation results for visual comparison for different deinterlacing ap-
proaches. (a) the 40th field of the “foreman” sequence. (b) the 41st field. (c) the
42nd frame. (d) the reconstructed 41st frame (32.36 dB) that directly combined the
40th field and the 41st field. Comb effects are very clear in the head region. (e) the
reconstructed 41st frame (31.52 dB) using line-averaging of the 41st field. The image
looks blurry in the non-moving regions. (f) the reconstructed 41st frame (37.45 dB)
using the frame-rate up-conversion method with TMT as proposed in Chapter 3.



Chapter 5

Application in Motion Analysis and

Understanding: Object-Motion

Estimation and Motion-Based

Video-Object Segmentation

Motion analysis and understanding is one of the key components in computer/machine

vision. Relevant applications include object motion estimation, camera motion estimation,

video object segmentation, 3D video object reconstruction [15, 34, 56, 61, 70, 69]. In this

chapter, we present a true motion tracker for object-motion estimation and motion-based

video-object segmentation.

As mentioned earlier, for each of the above applications, different degrees of accuracy

and resolution in true motion tracking are required. As a result, different techniques are

used for different applications. Although the neighborhood-relaxation true motion tracker

is often dependable, it cannot accurately track the motion in homogeneous/occlusion re-

gions. In Chapters 3 and 4, we used an INTRA mode detection scheme to identify oc-

cluded regions. In this chapter, we present a pre-selection technique and a post-screening

116
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technique to tackle the tracking problems in both the homogeneous and the object occlu-

sion regions. Specifically, these techniques are presented for object-motion estimation and

motion-based video-object segmentation.

5.1 Manipulation of Video Object—A New Trend in

MPEG Multimedia
Video-object segmentation is an essential task of many video applications, for instance,

object-oriented video coding, object-based retrieval, and video-object manipulation in com-

posite video.

The H.261, H.263, MPEG-1, and MPEG-2 video compression standards are based on

the same framework: they use block-based motion compensation and DCT-based texture

coding. Generally speaking, these techniques work very well and are eminently practical.

However, two shortcomings are observed. First, the block-based coding of motion and tex-

ture induces block artifacts in reconstructed video. Second, the techniques cannot address

several new functionalities identified in MPEG-4 and MPEG-7 standards, especially for

those functionalities that have the content-based interactivity [2, 4, 88].

MPEG-4 is built on the successes of three fields—digital video technologies, interactive

applications, and the Internet—and will provide the standardized technological elements

that enable the integration of production, distribution, and content access paradigms of the

three fields. As shown in Figure 5.1, MPEG-4 achieves these goals by providing a set of

standardized tools to:

1. represent units of audio and visual content, called “audio/visual objects”;

2. compose these objects together to create compound audiovisual objects (e.g., an au-

diovisual scene);

3. multiplex and synchronize the data associated with audiovisual objects so that they
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can be transported over networks; and

4. interact with the audiovisual scene generated at the receiver’s end.

As shown in Figure 5.2, a key to the success of MPEG-4 is the segmentation of video-

objects, which is the topic we now turn to.

5.2 Motion-Based Video Object Segmentation
Video-object segmentation algorithms separate a video image into several different

parts, such as people, trees, houses, and cars. Depending on the information used, three

kinds of approaches to the segmentation of video objects can be adopted.

1. Texture-based techniques: Several static cues—such as edge/boundary, color, and

texture—have been used for segmenting still images into different object regions.

Because different objects have different color and texture, the segmentation can be

achieved using the texture information. However, one object can consist of a num-

ber of different texture regions. Texture segmentation techniques often generate too

many regions (with no correspondence to real objects). Hence, these techniques are

most suited for sequences with simple and limited textures.

2. Motion-based techniques: The temporal segmentation has a great potential for seg-

menting video into different object regions because there is a rich body of temporal

information, such as object motion [77]. Because different objects have different

motion information, their segmentations can also be based on motion. Although one

object can also consist of a number of different moving regions (e.g., human faces),

many objects in the real scene are rigid objects (e.g., backgrounds). The motion-

based segmentation over an image is generally much more homogeneous than the

texture segmentations. The major pitfall of such schemes is that some parts of the

image may be homogeneous, making it difficult to identify the motion, and thereby

making it difficult to segment.
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Figure 5.1: (a) One of the major differences between the MPEG-4 standard and the
previous MPEG standards (MPEG-1 and MPEG-2) is that a MPEG-4 encoder sepa-
rately encodes different video-objects. (b) Then, a MPEG-4 decoder decompresses
different video-objects and composes the video scene together based on viewers’
option.
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Figure 5.2: Basic MPEG-4 encoder and decoder structure. Similar to the previous
MPEG-1 and MPEG-2 standards, MPEG-4 only specifies the syntax of the bit-stream,
leaving opportunities for improvement at the encoder and decoder implementation.
One of the keys to success at the encoder implementation is to generate proper video
object planes (VOPs).

3. Multicue-based techniques: To overcome the hardships of the previous two kinds

of techniques, the segmentation can be accomplished using multiple spatio-temporal

information, such as combining texture and motion segmentation. In general, these

techniques provide higher quality, but take much more computation than the previous

two kinds of techniques.

As shown in Figure 5.3, our video-object segmentation method uses motion informa-

tion as the major characteristic for distinguishing different moving objects and then for

segmenting the scene into object regions [15, 69]. In our method, we have three steps:

(1) initial motion tracking of feature blocks, (2) the initial feature block clustering, and (3)

the object motion estimation and the final motion-based segmentation. The more accurate

the object motion estimation, the more accurate the video-object segmentation. The more

accurate the initial block motion tracking, the more accurate the object motion tracking.

Therefore, in this chapter, we focus on a true motion estimation algorithm for the initial

motion tracking of feature blocks, which is fundamental for object motion estimation and

for the proposed video-object segmentation scheme.
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Neighborhood-Relaxation
BMA Tracking
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Initial Segmentation

Affine Motion Estimation, 
Compensation, and

Secene Segmentation

Figure 5.3: A flow chart of a motion-based segmentation by the multi-module mini-
mization (MMM) clustering method. First, several frames of a video sequence are fed
into the true motion tracker. After the tracking of moving features, a multi-module min-
imization neural network is used to separate the tracked features into several clusters.
To model the object motion, we use affine motion whose parameters are estimated
from the tracked feature blocks. Finally, affine motion estimation and affine motion
compensation tests for each clusters are applied so that the image is segmented.
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5.3 Block Motion Tracking for Object Motion Estimation
The goal of the proposed TMT is to find the true motion vectors for object motion

estimation. The success of the proposed TMT relies on two conditions: selection of reliable

feature blocks and accuracy of the tracking method.

The novelty of our feature tracker comes from three parts: (1) pre-selection of feature

blocks (Section 5.3.1), (2) multi-candidate pre-screening of motion vectors (Section 5.3.2),

and (3) spatial neighborhood relaxation (Section 5.3.4).

The proposed scheme has the following advantages: (1) it saves considerable compu-

tation because only reliable and important feature blocks will be tracked, (2) it screens out

wrong motion vector candidates, (3) it is resilient to spatial spotty noises, and thus (4) it

produces accurate true motion fields.

5.3.1 Feature Block Pre-Selection

Accurate motion estimation of a block in the presence of ambiguous regions is an ex-

tremely difficult task. In an untextured region whose intensity is constant, a block of pixels

may look identical to another block of pixels. Choosing a vector to describe the motion in a

homogeneous region is an over-commitment and could also be misleading: the later stages

of analysis will not be able to distinguish reliable vectors from unreliable ones. As shown

in Section 2.2, some researchers have advocated the use of “confidence” or “reliability”

measures to indicate which motion flow vectors can be trusted [7, 100].

Observation: For object-based coding and segmentation applications, the major emphasis

is not placed on the number of feature blocks to be tracked (i.e., quantity) but on the

reliability of the feature blocks we choose to track (i.e., quality). This means that we

can afford to be more selective in our choice of feature blocks.

Because we can afford to be more selective in our choice of feature blocks, a natural

first step is to eliminate those unreliable or unnecessary feature blocks. For example, if
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a block does not contain any prominent texture feature, then it is likely to be confused

with its adjacent blocks because of image noise. It is advisable to exclude such a feature

block from the pool of “valid” feature blocks, saving the tracking efforts and improving the

tracking results.

The first step in our true motion tracker for object motion estimation is to avoid track-

ing such homogeneous blocks—we pre-select the feature block by taking into account the

variance of the blocks. Our scheme divides a frame into blocksfBi� jg (with 8	 8 pixels or

16	 16 pixels), just like conventional block-matching algorithms (BMAs). However, our

scheme, unlike BMAs, will not track all of the blocks because many of them do not contain

sufficient prominent features, and thus are unreliable to track. If the block’s variance of in-

tensity is small, the block is considered to be of low-confidence and will be disqualified. In

other words, only blocks with a variance exceeding a certain threshold will be considered.

5.3.2 Multi-Candidate Pre-Screening

After the prominent feature blocks are properly identified, the main component of this

work lies in a novel technique to determine the true motion vectors.

The minimal-residue criterion does not necessarily deliver the true motion vector. As

mentioned earlier in Section 2.3, Eq. (2.5) can only imply that in the noise free condition,

true motion vector can deliver the minimal SAD (the sum of the absolute differences) as:

�v� � arg

�
min
vx�vy

n
∑ jI�x�y� t�� I�x� vx�y� vy� t �1�j

o�

However, multiple minimum residues may exist. Furthermore, when some noise appears,

the true motion vector does not always yield the minimal residue.

Observation: Although the minimal residue criterion often misses the true motion vector:

1. The true motion vector, while not the absolute minimum, is likely to be one of

themultiple minima, according to the residue criterion.
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2. The true motion vector is the absolute minimum if the score criterion can be

modified properly.

In order to keep track of all possible true motions, which may not be the absolute

minimum, we propose a multi-candidate pre-screening scheme in this section. In order to

determine the true motion vectors, we propose a neighborhood relaxation score function in

Section 5.3.3 (also discussed in Section 2.3).

In the true motion tracking for object motion estimation, a multi-candidate pre-

screening scheme becomes necessary for maintaining a more inclusive record of possible

motion vectors, and preventing (1) the true motion vector from being eliminated and (2) the

wrong motion vectors from being accepted at an early stage. Since the true motion vector

may not be the absolute minimum, we should make a final list among severalminima.

At the outset, two kinds of thresholds can be used to qualify or disqualify the candidates.

Let V �i� j� denote the set of motion vector candidates for blockBi� j.

1. One threshold is thelower residue threshold, Rth. As long as the residue is less

than this threshold, the motion vector will be automaticallyaccepted as a possible

candidate, cf. Figure 5.4(a). That is,

�v � V �i� j� � SAD�Bi� j��v�� Rth

2. In contrast, we also propose anupper residue threshold, Rth. If the residue exceeds

this threshold, the motion vector will be automaticallyeliminated from the candidate

pool, see Figure 5.4(b). That is,

�v �� V �i� j� � SAD�Bi� j��v�� Rth

After this initial stage, we now adopt a slightly more sophisticated scheme to select

the final candidates. Since we intend to provide some robustness in selecting candidates, a
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Figure 5.4: Multi-candidate pre-screening contains three parts. At the outset, two
kinds of thresholds can be used to qualify or disqualify the candidates. (a) One is the
lower residue threshold, Rth. As long as the residue is less than this threshold, the
motion vector will be automatically accepted as a possible candidate. (b) In contrast,
we also propose an upper residue threshold, Rth. If the residue exceeds this thresh-
old, the motion vector will be automatically eliminated from the candidate pool. (c)
After this initial stage, we now adopt a slightly more sophisticated scheme to select
the final candidates. Since we intend to provide some robustness in selecting can-
didates, a certain noise margin must be allowed so as to admit a proper number of
possible candidates. In order to maintain some kind of statistical consistency from
block to block, we apply the same level of relative tolerance to all blocks.
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certain noise margin must be allowed so as to admit a proper number of possible candidates,

see Figure 5.4(c). In order to maintain some kind of statistical consistency from block to

block, we apply the same level ofrelative tolerance to all blocks. The motion vectors

yielding no more thanη folds of the minimal SAD will be admitted into the candidate

pool�, i.e.,

�v � V �i� j� iff SAD�Bi� j��v�� Rth�Bi� j� (5.1)

where we define the Rth�Bi� j� asη folds of the minimal SAD but no less than the lower

residue threshold and no more than the upper residue threshold:

Rth�Bi� j��min

�
max

n
η	min

�v
fSAD�Bi� j��v�g�Rth

o
�Rth

�

As mentioned in the trackability rule (Section 2.2), for higher tracking correctness, it

is helpful to identify and rule out the untrackable block, which either is in the occluded or

reappeared regions or contains two moving objects. When a blockB is in the occluded or

reappeared regions or contains two moving objects, finding a matched displacement block

in the previous frame is difficult. That is, it is possible that the SAD�B��v� for every motion

vector candidate is larger than the upper residue threshold. Therefore, the motion vector

candidate set will become null after applying this multi-candidate pre-screening technique.

This scheme helps us in ruling out those untrackable blocks.

5.3.3 Neighborhood Relaxation True Motion Tracker

After the feature block pre-selection and multi-candidate pre-screening, we apply the

neighborhood relaxation formulation to identify the true motion vector from the motion

vector candidate setV �i� j�. Instead of considering each feature block individually, we

determine the motion of a feature block (say,Bi� j) by moving all its neighboring blocks

(N �Bi� j�) along with it in a similar direction. This allows a chance that a singular and

erroneous motion vector may be corrected by its surrounding motion vectors (just like

�In our statistics, whenη � 1�5, about 90% of true motion vectors are kept.
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median filtering). The true motion vector is the absolute minimum after the modification

of the score criterion. That is, (see Eq. (2.11)).

�v�i� j � arg

�
min

�v�V �i� j�
fscore�Bi� j��v�g

�

where we define the score function as

score�Bi� j��v� � SAD�Bi� j��v�� ∑
Bk�l�N �Bi� j�

W �Bk�l�Bi� j� min
�δ
fSAD�Bk�l��v��δ�g (5.2)

Bi� j represents the block of pixels whose motion we would like to determine.N �Bi� j�

is the set of neighboring blocks ofBi� j. W �Bk�l�Bi� j� is the weighting factor for different

neighbors. A small�δ is incorporated to allow some local variations of motion vectors

among neighboring blocks.

5.3.4 Consistency Post-Screening

As mentioned earlier in Section 2.1 and Section 2.3, an estimation error occurs when the

neighborhood contains two moving regions. In this section, we present a consistency post-

screening technique to weed out possible neighborhoods that contain two moving objects.

Observation: When�v�i� j is the true motion vector ofBi� j, and�v�k�l is the true motion vector

of Bk�l, we know that the residues of the true motion vectors are less than the residue

thresholds:

SAD�Bi� j��v
�
i� j�� Rth�Bi� j� (5.3)

and

SAD�Bk�l��v
�
k�l�� Rth�Bk�l� (5.4)

Consider the following two situations:
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1. Bk�l andBi� j are in a single object:

Since they belong to the same object,�v�i� j and�v�k�l should be similar to each

other, i.e.,

�v�k�l ��v�i� j �
�δ (5.5)

From Eq. (5.4) and Eq. (5.5), we know that the SAD of a block using the relaxed

true motion vector of the neighbor block is less than the residue threshold:

SAD�Bk�l��v
�
i� j �

�δ�� Rth�Bk�l� (5.6)

Therefore, from Eq. (5.3) and Eq. (5.6), we know that the score of the neigh-

borhood relaxation formulation (the weighted sum of the SADs) should be less

than the weighted sum of the residue-thresholds:

SAD�Bi� j��v
�
i� j��W �Bk�l�Bi� j�	SAD�Bk�l��v

�
i� j �

�δ�

� Rth�Bi� j��W �Bk�l�Bi� j�	Rth�Bk�l� (5.7)

2. Bk�l andBi� j arenot in a single object:

Assuming that the true motion vector�v�i� j is much different from the true motion

vector�v�k�l, we know that the SAD of a block using the relaxed true motion

vector of the neighbor block is greater than the residue threshold:

SAD�Bk�l��v
�
i� j �

�δ�� Rth�Bk�l�

Therefore, it is likely that the score of the neighborhood relaxation formulation

(the weighted sum of the SADs) is greater than the weighted sum of the residue-

thresholds:

SAD�Bi� j��v
�
i� j��W �Bk�l�Bi� j�	SAD�Bk�l��v

�
i� j �

�δ�

� Rth�Bi� j��W �Bk�l�Bi� j�	Rth�Bk�l� (5.8)

From this observation, our post-screening step disqualifies a block from the feature

block list when the score of the estimation motion vector is greater than the weighted sum
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of the residue-thresholds, i.e.,

SAD�Bi� j��v
�
i� j�� ∑

Bk�l�N �Bi� j�

W �Bk�l�Bi� j�	min
�δ
fSAD�Bk�l��v

�
i� j �

�δ�g

� Rth�Bi� j�� ∑
Bk�l�N �Bi� j�

W �Bk�l�Bi� j�	Rth�Bk�l�

This rules out the tracking of the neighborhood that contains two moving objects for higher

tracking correctness.

5.3.5 Background Removal

Generally, we are not interested in non-moving background objects. (If the background

is of some interest, it can be labelled and tracked as an object.) For example, in our

motion-based video-object segmentation, before initially clustering the feature blocks, a

preprocessing step that removes the feature blocks belonging to the background can facili-

tate the clustering process. As discussed in [69], after the background blocks are removed,

the remaining feature blocks corresponding to the foreground objects tend to have much

bettercenter dominance, which is critical to the success of object motion classification by

clustering the feature blocks in the principal component domain.

Our tracker has a background-removal capability. In [56], the method detects and then

separates moving parts from the background by assuming that the camera never moves.

Here we use a different method, in which we assume that the background takes up the

largest area in the frame and thus the dominant motion vector involved in the scene is

due to the camera movement [63]. When the majority of motion vectors with a relaxation

term is extracted, the corresponding blocks are regarded as background blocks. Because

the relaxation term allows neighboring blocks to have a similar but not exactly the same

motion, this can accommodate most of the camera motions (panning, tilting, translating).
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5.4 Performance Comparison in Feature Block Tracking

5.4.1 Qualitatively

Figure 5.5 depicts two consecutive frames ((a)(b)) and the corresponding blocks tracked

by our method ((c)(d)). The true motion field is illustrated in Figure 5.5(e). Figure 5.5(f)

shows the motion vectors estimated by the minimal-residue block-matching algorithm

(BMA). The conventional full-search BMA obviously performs poorest, with spurious vec-

tors scattered around in homogeneous regions. Significant improvement is observed (Fig-

ure 5.5(g)) by applying the feature block pre-screening to trim down the unreliable blocks.

However, there are still noticeable tracking errors on the object boundaries (e.g., above and

below the left-book). Figure 5.5(h) shows the motion vectors estimated by our approach.

The neighborhood relaxation shows clearly improvement in tracking of the blocks in the

same region, e.g., the lower-left corner. The multi-candidate pre-screening has succeeded

in eliminating many wrong motion vectors. Still, we have observed minor tracking errors

on points along a long edge (e.g., below the left-book).

A possible solution to avoiding tracking errors on points along a long edge is to adopt

Anandan’s scheme [7], in which the weighting factor (inW ��� of Eq. (5.2)) takes into

account the cross-correlation between vertical/horizontal components of the motion vector

and image features. Its purpose is that the motion of a block that has a low confidence in

vertical movement can be guided by its neighbors that have a higher confidence in vertical

movement.

Figure 5.6 shows the comparison of tracking results using the “coastguard” sequence.

Figure 5.7 shows the comparison of tracking results using the “foreman” sequence. It is

clear that the estimated motion field estimated by our approach is much closer to the true

motion. Most of the tracking errors are removed after the feature block pre-selection, the

consistency post-screening, and the background-removal.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.5: (a) and (b) show 2 consecutive frames of 2 rotating books amid a panning
background, (c) and (d) show the feature blocks tracked by our approach. (e) shows
the true motion field corresponding to (a) and (b). (f) the motion vectors estimated
by conventional full-search block-matching algorithms (BMAs). (g) the motion vec-
tors estimated by conventional BMA with the feature block pre-selection (a variance
threshold applied). (h) the motion vectors estimated by our approach, corresponding
to (c) and (d).
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(a) (b)

(c) (d) (e)

Figure 5.6: (a) and (b) show the 30th and 34th frames of the “coastguard” sequence.
The background is moving rightward in order to track on the lower boat. The upper
boat is moving fast rightward. (c) shows the motion vectors estimated by conventional
full-search BMAs. There are some errors in the water. (d) shows the motion vectors
estimated by our neighborhood relaxation method. The motion field is much closer
to the true motion. (e) shows the motion vectors estimated by our approach with
the feature block pre-selection, the consistency post-screening, and the background
removed. Most of the tracking errors are removed. It is clear from the motion field that
there are two moving objects in this picture: the lower boat is moving slowly while the
upper boat is moving quickly.
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(a) (b) (c)

(d) (e) (f)

Figure 5.7: (a) and (b) show the 132th and 136th frames of the “foreman” sequence.
He is moving his head backward. (c) shows the motion vectors estimated by con-
ventional full-search BMAs. There are some errors around his head. (d) shows
the motion vectors estimated by our neighborhood relaxation method. The motion
field is much closer to the true motion. (e) shows the motion vectors estimated by
our neighborhood relaxation method with feature block pre-selection and consistency
post-screening. Some blocks of the low confidence are trimmed. The motion field
is even closer to the true motion. (f) shows the motion vectors estimated by our ap-
proach with feature block pre-selection, consistency post-screening, and background
removed. Most of the tracking errors are removed.
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The tracked results can be subsequently used for motion-based video-object segmen-

tation. In [69], we apply a principal component coordinate transformation on thefeature

track matrix (formed by the tracked feature blocks) for separating image layers or moving

objects. As shown in Figure 5.8, our method has the following steps: (1) a TMT captures

the true motion vectors, (2) feature blocks contained within different moving objects form

separate clusters on the principal component space, and (3) the frame can thus be divided

into different layers (segments) characterized by a consistent motion. Figure 5.9 and Fig-

ure 5.10 show the segmentation results using our TMT.

5.4.2 Quantitatively

Figure 5.11 illustrates the scheme that is used to measure the quality or “trueness” of the

feature-block motion estimation for the object motion estimation. (1) Motion estimation

is performed on the unsegmented original frames to yield the translational motion vectors

(f�vxi�vyi�
Tg). (2) Affine motion parameters are found using the translational motion vec-

tors and the video-object-plane (VOPj�t�). (3) The affine motion parameters (fai j�big) and

the video-object-plane at framet (VOPj�t�) are used to predict the video-object-plane at

framet �1 ( ˆVOPj�t �1�). (4) By comparing VOPj�t �1� and ˆVOPj�t �1�, we know the

performance of the motion estimation for individual blocks.

Table 5.1 shows the comparison of object-motion estimation using different block-

motion estimation algorithms. We use standard test sequences and video-object segmen-

tations provided by the MPEG-4 committee [3]. Because we use the 2D affine model as

our object motion model, we limit our performance analysis to the video objects that can

be described by the affine model (e.g., static background, translational moving objects, and

moving background). In our simulations, the block size is 16	16, the neighborhood in-

cludes the nearest four blocks (see Figure 2.3), and the neighborhood weighting factor is a

constant 0.3.
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Figure 5.8: Flow chart of a motion-based video-object segmentation algorithm pro-
posed in [69]. Primitive local motion attributes are the true motion vectors of a set
of feature blocks determined by a TMT. The feature for each block is extracted by a
principal component (PC) analysis. After that, the feature blocks are clustered into
motion clusters. Finally, all the blocks in the scene are processed. The expectation-
maximization (EM) algorithm is adopted in the last two steps.
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Figure 5.9: Tracking and clustering results of the “2-Books” sequence using our TMT
with the motion-based segmentation algorithm proposed in [69] (see Figure 5.8).
(a)(b)(c) show feature blocks tracked through 3 frames. (Background blocks are re-
moved.) (d) depicts clusters of motion features in the feature space. Two very distinc-
tive object clusters are presented in the feature space. Motion features of blocks from
the left book are marked in ’o’ and those from the right book are marked in ’x’. (e)
and (f) show the corresponding feature blocks for each object marked on the image
after the unsupervised feature block clustering.
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Figure 5.10: The segmentation result (layer extraction) on the “flower garden” se-
quence [69] (see Figure 5.8). (a)(b) show original frames. (c) shows the tracked
motion field. (d) shows the feature blocks in the principal component domain. Four
distinctive and parallel layers are prominently displayed in the feature space. From
top to bottom: house-sky, back-garden, front-garden, and tree. (e) Feature blocks are
classified into four clusters. (g) shows four-layer segmentation of the entire frame. (f)
shows the object-motion compensated frame (without residue).
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Figure 5.11: A measurement of quality or “trueness” in feature-block motion estima-
tion for the object motion estimation. (1) Motion estimation is performed on the un-
segmented original frames for translational motion vectors (f�vxi�vyi�

Tg). (2) Affine
motion parameters are found using the translational motion vectors and the video-
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and the video-object-plane at frame t (VOP j�t�) are used to predict the video-object-
plane at frame t �1 ( ˆVOP j�t �1�). (4) By comparing VOP j�t �1� and ˆVOP j�t �1�, we
measure the performance of the motion estimation for individual blocks.
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Original Our
Video objects Picture minimal- true Improvement

size residue motion (dB)
BMA tracker

akiyo 0 CIF 39.67 39.67 0.00
(static background) QCIF 39.45 39.45 0.00
coastguard 0 CIF 20.14 20.48 0.34
(water) QCIF 21.71 22.68 0.97
coastguard 1 CIF 16.51 17.07 0.56
(moving boat) QCIF 16.06 15.63 -0.43
coastguard 3 CIF 25.16 25.64 0.48
(moving background) QCIF 25.40 26.04 0.64
container 0 CIF 31.29 31.34 0.05
(water) QCIF 31.06 31.50 0.46
container 1 CIF 21.75 21.79 0.04
(static ship) QCIF 23.14 23.14 0.00
container 4 CIF 22.04 27.70 5.66
(static background) QCIF 27.66 29.23 1.57
hall monitor 0 CIF 26.95 27.32 0.37
(static background) QCIF 27.86 27.88 0.02
news 0 CIF 40.76 40.68 -0.08
(static background) QCIF 40.92 41.16 0.24
stefan 1 CIF 19.13 19.50 0.37
(moving background) QCIF 22.00 22.40 0.40

Table 5.1: Performance measurement of object-motion estimation using different
block-motion estimation algorithms, which include (1) the original minimal-residue
BMA and (2) our true motion tracker (see Figure 5.11). In the MPEG-4 standard
test sequences, we use available video objects that can be described by a 2D affine
model. It needs some improvement at two conditions when the video object is smaller
than the TMT neighborhood and when the video object has “untextured” long edges
(see Figure 5.5). On the average, our method is 0.3–0.5 dB superior to the original
BMA.
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On average, our true motion tracker (which includes feature-block preselection, multi-

candidate prescreening, neighborhood relaxation, and consistency postscreening tech-

niques) performs better than the original full-search BMA. In the test condition “container

4,” our TMT demonstrates a great improvement over the original BMA. The video object is

a static background, sky and some buildings. The sky region has no texture, and the blocks

in this region cannot be tracked well. By using our feature-block prescreening technique,

we can filter out these unreliable blocks and improve object-motion accuracy.

Our TMT will need some improvement in two cases: First, our method should check

that the TMT neighborhood is not larger than the video object. In the test condition “coast-

guard 1,” the video object is a moving boat, which is relatively smaller than the size of the

TMT neighborhood when the picture size is QCIF and the block size is 16	 16. In this

case, neighborhood relaxation introduces noise into the motion vectors. As a result, the

object-motion estimation using our TMT is less accurate than the object-motion estimation

using the BMA (see Section 2.1). On the other hand, (1) when the picture size is CIF and

the block size is 16	16 or (2) when the picture size is QCIF and the block size is 8	8,

the size of the neighborhood is smaller than the object and so we can see improvement in

the SNR (0.56 dB/0.76 dB).

Second, our method should eliminate a block along a long edge from the feature-block

list. In the test condition “news 0,” performance degradation is the result of insufficien-

cies and side-effects of the feature-block preselection scheme. After the feature-block pre-

screening technique is used, some blocks that are considered untrackable are eliminated.

The side-effect is that the number of feature blocks is reduced and thus the object-motion

estimation is rendered more sensitive to noise from the block-motion estimation. If there is

an error in the block-motion estimation, methods with fewer feature blocks perform worse

than methods with more feature blocks. For example, when the object-motion estimation

performance using the original BMA is measured with our feature-block preselection tech-

nique, the SNR is 40.64 dB, i.e., our feature-block preselection technique in the original
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BMA degrades the performance by 0.12 dB. Although our neighborhood relaxation for-

mulation can improve the correctness of the motion field, it cannot correctly track a block

along a long edge (as shown in Section 5.4.1). In the future, it will be helpful to delete a

block that has only directional variance.

To summarize, the techniques presented in this chapter allow us to extend our baseline

true motion tracker to a true motion tracker for video-object motion estimation and motion-

based video-object segmentation, important in both MPEG-4 and MPEG-7 standards. In

previous chapters, some noticeable tracking failures occur at homogeneous regions and

object boundaries. In the video-object segmentation and video-object motion-estimation

applications, we have the option of selecting reliable motion vectors. The results show

that our true motion tracker is superior to conventional approaches that do not use proper

pre-selection or post-screening schemes.



Chapter 6

Effective System Design and

Implementation of True Motion Tracker

This chapter shows another promising aspect of our true motion tracker (TMT). In

previous chapters, applications drive the new design of the TMT. Conventional block-

matching algorithms (BMAs) for motion estimation demand intensive computation. Our

TMT requires even more computation and memory bandwidth. The discussion of this

work would have been incomplete if we did not cover the subject of system design and

implementation of the TMT.

BMAs have been widely employed in various international video compression stan-

dards to remove temporal redundancy. As shown in Figure 1.5, the basic idea of the BMA

is to locate a displaced candidate block that is most similar to the current block, within

the search area in the previous frame. Various similarity measurement criteria have been

presented for block matching. The most popular one is the sum of the absolute differences

(SAD) as

SAD�u�v� �
n�1

∑
i�0

n�1

∑
j�0

j s�i�u� j� v�� r�i� j� j �p � u � p� �p � v � p (6.1)

wheren is the block width and height,p is the absolute value of the maximum possible

vertical and horizontal motion,r�i� j� is the pixel intensity in the current block at coordinates

142
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�i� j�, s�i�u� j� v� is the pixel intensity in the search area in the previous frame, and�u�v�

represents the candidate displacement vector. The motion vector is determined by the least

SAD�u�v� for all possible displacements�u�v� within a search area, as shown here:

Motion Vector� argmin
�u�v�

fSAD�u�v�g (6.2)

The operations of a BMA are simple—additions and subtractions. However, BMAs

are known to be the main bottleneck in real-time encoding applications. For example,

6�2	109 additions per second and 3.1 GB/sec external memory access would be required

for a real-time MPEG-1 video coding, when there are 30 frames per second with frame size

352 pixels	 288 pixels and search rangef�16� � � � ��15g	f�16� � � � ��15g. The search

for an effective implementation has been a challenging problem for years.

Our TMT demands even more computation and memory bandwidth. The goal of this

section is to demonstrate an effective implementation of the TMT on programmable fine-

grain parallel architectures.

6.1 Programmable Multimedia Signal Processors
Novel algorithmic features of multimedia applications and advances in VLSI technolo-

gies are driving forces behind the new multimedia signal processors. For example, the

rapid progress in VLSI technology will soon reach more than 100 million transistors in a

chip. This implies a tremendous amount of computing power for many multimedia applica-

tions. The silicon area required for implementing a specific function will decrease consid-

erably, and a higher functionality can be realized on a single chip, for example, single-chip

MPEG-2 encoders from NEC Corporation or Philips Electronics [5]. This trend leads to the

integration of programmable processor cores, function-specific modules, and various sys-

tem interfaces in order to enable high multimedia functionality at decreased system design

costs.
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Many architecture platforms have been proposed to provide high performance and flex-

ibility. The overall architectural design can be divided intointernal andexternal design

spaces. The internal design focuses oncore processor upgrade, while the external design

focuses onaccelerators that off-load tasks from the main core.

Several alternatives are available for exploiting the parallelization potential of multime-

dia signal processing algorithms for programmable architectures (cf. Table 6.1):

1. Single Instruction Stream, Multiple Data Streams (external SIMD):

Aiming at data parallelism, SIMD (Single Instruction Stream, Multiple Data

Streams) architectures are characterized by several data paths executing the same

operation on different data entities in parallel. While a high degree of parallelism

can be achieved with little control overhead, data path utilization rapidly decreases

for scalar program parts. In general, pure SIMD architectures are not an efficient so-

lution for complex multimedia applications; they are best suited for algorithms with

highly regular computation patterns. For example, Chromatic’s Mpact 2, which can

deliver 6 BOPS�, is a mixture of SIMD and VLIW [26].

2. Split-ALU (internal core-processor SIMD):

Architectures featuring a split-ALU are based on a principle similar to SIMD: a num-

ber of lower-precision data items are processed in parallel on the same ALU. Fig-

ure 6.1 shows a possible implementation of the split-ALU concept. The advantage of

this approach is its small incremental hardware cost provided a wide ALU is already

available. Recent multimedia extensions of general-purpose processors are typically

based on this principle, e.g., MAX-2 for HP’s PA-RISC [65], VIS for SUN’s Ultra-

Sparc [79], MMX for Intel’s x86 [50].

3. Multiple Instruction Streams, Multiple Data Streams (external MIMD):

�BOPS: billion operations per second.
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Size of Internal Internal Peak External
Processor Architecture datapath communi- data perform- memory
(Reference) (bits) cation memory ance bandwidth

(KB) (BOPS) (MB/s)

Chromatic VLIW/SIMD 72 792-bit cross- 4 6.0 1200
Mpact 2 [26] (6 ALUs) bar (18 GB/s)
NEC V830R/ RISC core + a SIMD 32/ 64-bit bus 16 2.0 600
AV [93] (split-ALU) processor 64 (1.6 GB/s)
Philips VLIW 32 32-bit bus 16 4.0 400
TriMedia [84] (27 FUs) (400 MB/s)
TI VLIW (6 ALUs 32/ 32-bit bus 64 1.6 800
’C62x [97] + 2 multipliers) 16 (800 MB/s)
TI 4 split-ALU DSPs 32/ crossbar 36 2.1 480
’C8x [98] + RISC core (MIMD) 32 (2.4 GB/s)

Table 6.1: List of some announced programmable multimedia processors. (1) All of
them use massive parallelism (SIMD, split-ALU, MIMD, or VLIW) and pipelines. (2) In
general, the size of the operands for the ALUs or functional units is less than 32 bits.
Some of the ALUs are the split-ALUs that can operate on multiple sets of operands
in one instruction. (3) They have high-speed and high-bandwidth internal communi-
cation channels (400 MB/s to 18 GB/s). (4) They all have high-speed on-chip data
memory (register file, cache, RAM). (5) They can provide high computing power (1
BOPS to 6 BOPS). (6) Their external memory bandwidths are unusually high (400
MB/s to 1200 MB/s).
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Task level as well as data level parallelism can be exploited by MIMD (Multiple In-

struction Streams, Multiple Data Streams) architectures, which are characterized by

a number of parallel data paths featuring individual control units [44]. Thus, MIMD

processors offer the highest flexibility for algorithms to be executed in parallel. For

example, TI’s TMS320C80 [98], which can deliver 2 BOPS, is a MIMD processor.

However, MIMD processors incur a high hardware cost for multiple control units

as well as for a memory system delivering the sufficient bandwidth to supply all

required instruction streams. Furthermore, synchronization difficulties and poor pro-

grammability have prevented MIMD processors from widespread use in multimedia

applications so far.

4. Very Long Instruction Word (internal core-processor MIMD):

Instruction level parallelism is targeted by VLIW (Very Long Instruction Word) ar-

chitectures, which specify several operations within a single long instruction word

to be executed concurrently on multiple functional units (Figure 6.2) [38]. In con-

trast to superscalar architectures, VLIW processors must rely on static instruction

scheduling performed at the compilation time. The advantage is a simplified design

since no hardware support for dynamic code reordering is required. For example,

TMS320C6201 [97], a general-purpose programmable fixed-point DSP adopting a

Very Long Instruction Word (VLIW) implementation, can deliver 1600 MIPS†.

Simultaneously, another widely employed way of adapting programmable processors

to special multimedia signal processing algorithm characteristics is to introduce special-

ized instructions for frequently recurring operations of higher complexity, e.g., a multiply-

accumulate operation with saturation [78]. By replacing longer sequences of standard in-

structions, the use of specialized instructions may significantly reduce the instruction count,

†MIPS: million instructions per second.
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16-bit a1 16-bit a2 16-bit b1 16-bit b2
32-bit operand a 32-bit operand b

16-bit adder
16-bit adder

0
MUX

c_out
c_in

32-bit adder

16-bit result 16-bit result

32-bit result
OR

32-bit ADD or 16-bit ADD

Figure 6.1: An example of the split-ALU implementation. A 32-bit adder can work
as two 16-bit adders, which add two pairs of 16-bit operands. The only difference
between the two functionalities of this adder is the carry propagation from the lower
16-bit adder to the upper 16-bit adder. Splitting this 32-bit adder into two 16-bit adders
allows one single instruction to process multiple data. This data parallelism (also
called subword parallelism) is quite similar to the SIMD architecture.

Functional
Unit

Functional
Unit

Functional
Unit

Program
Control

Register File

Instruction Memory

VLIW
instruction

Figure 6.2: A generic VLIW architecture. A very-long-instruction-word architecture
consists of multiple functional units (FUs). An issue of the VLIW instruction can acti-
vate multiple FUs to operate independently on multiple sets of operands.
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� Assume ��r��� holds �

� ��r��� holds ���

cmp r��r� � If r� 	
 ����

bge �max � go to �max�

mov r��r� � Clip to ����

br �next

�max cmp r��r� � If r� �
 ��

bge �next � go to �next�

mov r��r� � Clip to ��

�next

(a)

min� r��r��r� � If r� 	 ���� r� 
 ����

max� r��r��r� � If r� � �� r� 
 ��

(b)

Figure 6.3: Specialized instructions replace sequences of standard instructions: for
example, the instruction stream for minimum maximum operations on the V810 (a)
compared to the V830 (b). By introducing a single new instruction comprising a fre-
quently executed sequence of standard instructions, the instruction count of multime-
dia code can be reduced significantly [78].
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resulting in faster program execution (Figure 6.3). The design complexity required for im-

plementing specialized instructions can usually be kept at modest levels; the decision about

which instructions to implement depends on the probability of their use.

6.1.1 A High-Throughput Architectural Platform for Multimedia Ap-

plication

In this section, we present an architecture platform for multimedia applications that

builds upon earlier platforms.

Multimedia signal processor design is driven by algorithmic features in multimedia

applications. From algorithmic perspectives, important characteristics of the multimedia

signal processing algorithms can be summarized as following:

1. Intensive computation for highly regular operations

Computation-intensive applications usually depend on a loop of instructions. There

is a large amount of computations for highly regular operations. There is a great

deal of parallelism on common operations, such as addition, subtraction, and multi-

plication. Therefore, parallels and pipelines should be exploited in the multimedia

architecture (cf. Table 6.1).

2. Intensive I/O or memory access

There is a large amount of I/O or memory access in multimedia applications. Hence,

a multimedia signal processor should be able to support a high memory bandwidth

(cf. Table 6.1). Because multimedia data operands have very frequent and very reg-

ular reusability, a good architecture should make good use of the data reusability.

3. Frequent execution of small integer operands

In MPEG and other pixel-oriented algorithms, the data being operated on are small

integers (such as, 8-bit or 16-bit), narrower than the existing integer data paths

of microprocessors. Small processing elements or subword parallelism must be
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exploited for higher efficiency, e.g., HP’s PA-RISC [65], Intel’s x86 [50], NEC’s

V830R/AV [93], SUN’s UltraSparc [79], TI’s C80 [98].

4. High control complexity in less computationally intensive tasks

There are also some high control complexity tasks that are less time-consuming.

It may be more efficient and economical to resort to software solutions for such

tasks. Therefore, flexible RISC cores (master processors) are preferred, e.g., NEC’s

V830R/AV [93] and TI’s C80 [98].

Multimedia signal processor design is also driven by available VLSI technologies.

There are two important features in VLSI technologies:

1. External memory is slow

There is a huge gap between memory speed and processor speed. Therefore, a high-

speed on-chip data memory (register file, cache, RAM) is necessary to bridge the

gap. For example, most of the announced programmable media processors (as listed

in Table 6.1) use 16 KB to 64 KB on-chip data memory.

2. Long-distance communication is slow

Because the feature size of the processing technology is getting smaller and smaller,

more and more of the signal delay is on the wire than the transistor [73]. Long-

distance and global (one to many) communication takes longer and is more expensive

than local communication. Hence, for a sound design, it is important to make use of

local communication channels and it is necessary to support local communication

efficiently.

Conventional standard processors do not correspond well to those characteristics of

multimedia signal processing algorithms. Therefore, special architectural approaches are

necessary for multimedia processors to deliver the required high processing power with

efficient use of hardware resources.
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It is generally agreed that some multimedia signal processing functions can be imple-

mented using programmable CPUs (software solutions) while others must rely on hardware

accelerators (hardware solutions) [71]. A sound multimedia signal processing architecture

style should be based on this principle.

Figure 6.4 shows a proposed architecture style for high-performance multimedia signal

processing that is built upon some earlier platforms proposed by [44, 102, 103, 110]. It

consists of array processors used as the hardware accelerator and RISC cores as the pro-

grammable processor. The programmable processor provides software solutions (which

mean high flexibility) while the accelerator provides hardware solutions for high perfor-

mance.

The processing array in the proposed architecture platform has the following unique

features. (1) Every PU has its own local data memory/cache. The local caches have an

external control protocol. For example, the program can ask the caches not to cache some

part of the data [25]. (2) There is a local bus between two consecutive PUs. Hence, the

PUs can talk to each other in two ways: (a) via the local bus between them, and (b) via the

global communication channel, which may be a bus or a crossbar network.

These unique features provide two advantages. (1) The local data memory can provide

very high data throughput. (2) The local communication can provide very high commu-

nication bandwidth between two consecutive PUs at an attractively low cost (in terms of

area, power, and delay).

It is critical to note that multimedia signal processor designs are supported by algorith-

mic partitioning of multimedia applications. In order to have an effective execution, given

a specific application, the algorithm is first manually or semi-automatically divided into

two parts (cf. Figure 6.5):

1. Computationally intensive and regular components, for which a hardware solution is

preferred.
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Figure 6.4: Proposed architectural style for high performance multimedia signal pro-
cessing. There are two main components: (1) processor arrays to be used as the
hardware accelerator for computationally intensive and regular components in an al-
gorithm, and (2) RISC cores to be used as the programmable processor for complex
but less computationally intensive components. M stands for the local memory. PU
stands for the processing unit. Ctrl stands for the control unit.
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Figure 6.5: The proposed algorithm and architecture codesign approach for multime-
dia applications. In order to have an effective execution, given a specific applica-
tion, the algorithm is first manually or semi-automatically divided into two parts: (1)
computationally intensive and regular components, for which a hardware solution is
preferred (e.g., motion estimation, DCT, IDCT), and (2) complex but less computation-
ally intensive components, for which a software solution is preferred (e.g., VLC, VLD,
rate control). From the results of the automatic operation placement and scheduling
scheme, we can determine the spec of the accelerators, such as the number of PUs,
the size of the datapath, the size of the local data memory. Combining the spec of the
accelerators and the results of the core-processor adaptation, we can determine the
final spec of the architecture.
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2. Complex but less computationally intensive components, for which a software solu-

tion is preferred.

Computationally Intensive and Regular Components.

A systematic multimedia signal processing mapping method can facilitate design of

processor arrays for computationally intensive and regular components. Since massive

parallel and pipelined computing engines can provide high computational power for reg-

ular, intensive operations, various formal systematic procedures for systolic designs of

many classes of algorithms have been proposed [60]. These transfer the computation-

ally intensive, regular operations into simple processing elements, each with a fixed, data-

independent function, along with a one- or two-dimensional nearest-neighbor communica-

tion pattern. These are the basic components of our design methodology for the multimedia

signal processing system.

One major design objective is to make sure that the speed of the external memory

keeps up with the speed of the processing engine. As shown in Section 6.1.2, the proposed

approach is to fully exploit the frequent read-after-read data dependence (i.e., transmit-

tent data) [16, 17]. By exploiting the locality, our allocation and scheduling reduces the

communication-to-computation ratio, and hence reduces the amount of the external mem-

ory access/communication. The performance is enhanced, since the contention problem on

the global communication network can be substantially alleviated.

In short, this architecture adopts systolic-type communication to speed up the compu-

tation since localized communication is faster. Moreover, this architecture reduces power

consumption because it (1) segments global communication in local buses, (2) provides

local, dedicated connection links, and (3) distributes control logics to individual PUs.

Complex but Less Computationally Intensive Components.

The complex but less computationally intensive components (e.g., controlling, data-

dependent tasks) are supported by the software solution on RISC cores. Minor modification
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to improved multimedia processing algorithms can be achieved by software updates. For

example, different video coding standards can be implemented using the same hardware.

6.1.2 Systematic Operation Placement and Scheduling Method

In Appendix A, we present a systematic operation placement and scheduling method

that can facilitate the design of processor arrays for computationally intensive and regular

components. In this section, we briefly review the multimedia signal processing mapping

method presented in Appendix A for readers’ convenience.

In Section 6.1.1, we presented an architecture platform that can be configured to per-

form a variety of application-specific functionalities. The success of the proposed architec-

tural platform depends on the efficient mapping of an application onto the target platform.

For instance, to ensure an effective program, the cache locality is important because of

the large speed gap between microprocessors and memory systems. It is also important to

make use of local communication whenever possible, since it is cheaper, faster, and less

power hungry than global communication.

Different data placement and operation scheduling would need different cache size re-

quirement and global/local communication. We observe that although input dependence

imposes no ordering constraints, input dependence does reveal the critical information on

the data localities. To maximize the hit ratio of the caches, such information should be

utilized for better data placement and operation scheduling by the parallel compilers. The

proposed systematic code scheduling method has the following features:

1. Our multiprojection method deals with high-dimensional parallelism systematically.

It can alleviate the burden of the programmer in coding and data partitioning.

2. It generates a fine-grain parallelism code that has low latency.

3. It exploits good temporary localities so that the utilization rate of caches is high.
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4. It also exploits good spatial localities, which are good for new parallel architec-

tures where localized communication is cheaper than global communication (cf. Fig-

ure 6.4).

6.2 Implementation of Block-Matching Motion Estima-

tion Algorithm
Figure A.3 shows the pseudo code of the BMA of a single current block. We first con-

centrate on the first half, calculating the SADs (cf. Eq. (6.1)). Instead of viewing the BMA

with only two-dimensional read-after-write data dependence, we consider that the BMA

has four-dimensional read-after-read input dependence. Figure 6.6 shows the core in the

4D DG of the BMA for a current block. The operations of taking difference, taking ab-

solute value, and accumulating residue are embedded in a four-dimensional spacei� j�u�v.

The following is the core in the 4D DG of the BMA:

Search window (�E1) �1�0��1�0�T D4 � 0

�0�1�0��1�T D4 � 0

Current blocks (�E2) �0�0�1�0�T D4 � 0

�0�0�0�1�T D4 � 0

Partial sum of SAD (�E3) �1�0�0�0�T D4 � 0

�0�1�0�0�T D4 � 0

The indicesi� j (0� i� j � n) are the indices of the pixels in a current block. Theu andv

(�p � u�v � p) are the indices of the potential displacement vector. The actual DG would

be a four-dimensional repeat of the same core.
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R(i,j)

S(i+u,j+v)

S(i+u,j+v)-R(i,j)Σ

Figure 6.6: A core in the 4D DG of the BMA. There are n� n� 2p� 2p nodes in
the DG. The node i� j�u�v represents the computation, SAD�u� v� � SAD�u� v� �

� s�i � u� j � v� � r�i� j� �. �E1 denotes the read-after-read data dependence
of the search window. The s�i� u� j � v� will be used repeatedly for (1) different i� j,
(2) same i� u, and (3) same j � v. �E1 is a two-dimensional reformable mesh. One
possible choice is �1�0��1�0�T and �0�1�0��1�T . The r�i� j� will be used repeatedly for
different u�v. Hence, �E2, the data dependence of the current block, could be �0�0�1�0�T

and �0�0�0�1�T . The summation can be done in i-first order or j-first order. �E3, which
accumulates the difference, could be �1�0�0�0�T and �0�1�0�0�T . The representation
of the DG is not unique; most of the dependence edges can be redirected because
of data transmittance. Although read-after-read data dependence is not “real” data
dependence (does not affect the execution order of the operations), the read-after-
read data dependence can identify memory and communication localities.
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6.2.1 Multiprojecting the 4D DG of the BMA to a 1D SFG

From this 4D DG, we design a 1D SFG that can easily be implemented in the 1D

processing array shown in Figure 6.2. First, we project the 4D DG alongv, u, and j

direction, using
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To ensure processor availability,M4 � 2p andM3 � n. Therefore,

A � P2P3P4 � �1�0�0�0� (6.3)

ST � �sT
2 P3P4 �M3�s

T
3 P4 �M3M4�s

T
4 � �n�1�1�n�2pn� (6.4)

Therefore, we have

Search window (�E1) Current blocks (�E2) Partial sum of SAD (�E3)

1 (D1 � 1) 0 (D1 � n) 1 (D1 � 1�n)

0 (D1 � 1�2pn) 0 (D1 � 2pn) 0 (D1 � 1)

Because the edge�E1, �0�1�0��1�T , has negative delay, we apply the redirection rule

to it. Therefore, the new delay will be�2pn� 1�. Because the edge�E3, �1�0�0�0�T , has

too many units of delay, we apply the reformation rule to it so that the new delay would

be 2 units. Note that the edge�E2, �0�0�0�1�T , and the edge�E2, �0�0�1�0�T , has the same
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transmittent direction. In addition, the former is a multiple of the latter. Hence, the former

can be eliminated. The final SFG becomes the following:

Search window (�E1) Current blocks (�E2) Partial sum of SAD (�E3)

1 (D1 � 1) 0 (D1 � n) 1 (D1 � 2)

0 (D1 � 2pn�1) 0 (D1 � 1)

which can be visually seen in Figure 6.7.

6.2.2 Interpretation of the SFG

The search window data dependence, passed from PUi to PUi�1, has 1 unit of delay.

As a result, we do not need a global broadcasting of the search window. Using local

communication is faster and less power demanding.

In the mean time, the search window data dependence, passed from PUi to itself, has

�2pn�1� units of delay. Consequently, we can expect that the same data will be reused

after �2pn� 1� operations. Using a cache with size�2pn� 1� bytes is enough for this

scheduling. For example, the cache size is 0.5 K-Bytes forn � 16 andp � 16. (Note that

it is independent on the frame size.)

The reference data of the current block always stay in the same PU. There are 16 bytes

for each PU. They can be put into either the cache or registers.

The summation of SAD, which is read-after-write data dependence, has two directions.

The one which is inside PUi itself has one unit of delay. That is, it is used immediately one

after one to collect all of SAD in terms of loopj. The other one, which is passed from PUi

to PUi�1, collects all of the partial sum of SAD in terms of loopi. Because it has two units

of delay, the data passing is not synchronous. (The systolic implementation of the SFG is

shown in Figure 6.8.)

The program can be divided into 4 parts:

1. First initialization loop, where there are no reference data of the current block and

search window data in the PU, as shown in Figure 6.9.
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0
SAD

Reference data in the current block

Partial sum of the absolute differences

Search
window

(2pn-1 delays) (n delays)

(1 delay) (2 delays)

(1 delay)

Figure 6.7: The SFG from multiprojecting the 4D DG of the BMA.

0
SAD

Reference data in the current block

Partial sum of the
absolute differences

Search
window

2pn-2
delays

n-1
delays

1 delay no delay

Figure 6.8: The systolic implementation of the SFG from multiprojecting the 4D DG of
the BMA (cf. Figure 6.7).
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PU0 PU1 PU2 � � � PUn�1

v=-p - (idle) - (idle) - - (idle)
u=-p - - - -
j=0 - - - -
SAD[u,v]=0 - - - -

get(s[i+u,j+v]) - - - -

get(r[i,j]) - - - -

SAD[u,v]+=abs(s[i+u,j+v]-r[i,j]) - - - -
j=1 - - - -

get(s[i+u,j+v]) - - - -

get(r[i,j]) - - - -

SAD[u,v]+=abs(s[i+u,j+v]-r[i,j]) - - - -
...

...
...

...
...

Figure 6.9: A “source-level” representation of the code assigned to the processor i
(0� i � n) during the initialization loops. Note that there is a get�r�i�j�	 from j � 0

to j � n�1 when u ��p. When there is a mark like get(r[i,j]) , it denotes an external

memory operation.
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PU0 PU1 PU2 � � � PUn�1

send(SAD[u,v]) - (idle) - (idle) - - (idle)
v=-p - (idle) - - -
u=-p+1 v=-p - - -
j=0 u=-p - - -
SAD[u,v]=0 j=0 - - -

get(s[i+u,j+v]) get(SAD[u,v]) - - -

send(s[i+u,j+v]) get(s[i+u,j+v]) - - -

SAD[u,v]+=abs(s[i+u,j+v]-r[i,j]) get(r[i,j]) - - -

j=1 SAD[u,v]+=abs(s[i+u,j+v]-r[i,j]) - - -

get(s[i+u,j+v]) j=1 - - -

send(s[i+u,j+v]) get(s[i+u,j+v]) - - -

SAD[u,v]+=abs(s[i+u,j+v]-r[i,j]) get(r[i,j]) - - -

...
...

...
...

...

v=-p send(SAD[u,v]) - - -
u=-p+2 v=-p - - -
j=0 u=-p+1 v=-p - -
SAD[u,v]=0 j=0 u=-p - -

get(s[i+u,j+v]) get(SAD[u,v]) j=0 - -

send(s[i+u,j+v]) get(s[i+u,j+v]) get(SAD[u,v]) - -

SAD[u,v]+=abs(s[i+u,j+v]-r[i,j]) send(s[i+u,j+v]) get(s[i+u,j+v]) - -

j=1 SAD[u,v]+=abs(s[i+u,j+v]-r[i,j]) get(r[i,j]) - -

get(s[i+u,j+v]) j=1 SAD[u,v]+=� � � - -

send(s[i+u,j+v]) get(s[i+u,j+v]) j=1 - -

SAD[u,v]+=abs(s[i+u,j+v]-r[i,j]) send(s[i+u,j+v]) get(s[i+u,j+v]) - -
...

...
...

...
...

Figure 6.10: A “source-level” representation of the code assigned to the processor i
(0� i � n) during the initialization loops. After u � �p, then r�i�j� can be loaded
from the local cache. Also, because the next processor would require the data to be
passed, the instruction get�r�i�j�	 is replaced by send�s�i�u�j�v�	. When there
is a mark like send(s[i+u,j+v]) , it denotes a local bus transaction. Since the local
buses are effectively used, there are only two external memory operations in each j
loop in total.
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PU0 PU1 PU2 � � � PUn�1
...

...
...

...
...

v=-p+1 send(SAD[u,v])
... � � � � � �

u=-p v=-p+1 send(SAD[u,v]) � � � � � �

j=0 u=-p v=-p+1 � � � � � �
SAD[u,v]=0 j=0 u=-p � � � � � �

SAD[u,v]+=abs(s[i+u,j+v]-r[i,j]) get(SAD[u,v]) j=0 � � � � � �

j=1 SAD[u,v]+=abs(s[i+u,j+v]-r[i,j]) get(SAD[u,v]) � � � � � �

SAD[u,v]+=abs(s[i+u,j+v]-r[i,j]) j=1 SAD[u,v]+=� � � � � � � � �
j=2 SAD[u,v]+=abs(s[i+u,j+v]-r[i,j]) j=1 � � � � � �
SAD[u,v]+=abs(s[i+u,j+v]-r[i,j]) j=2 SAD[u,v]+=� � � � � � � � �
j=3 SAD[u,v]+=abs(s[i+u,j+v]-r[i,j]) j=2 � � � � � �
...

... SAD[u,v]+=� � �
...

...

SAD[u,v]+=abs(s[i+u,j+v]-r[i,j]) j=n-3
... � � � � � �

j=n-2 SAD[u,v]+=abs(s[i+u,j+v]-r[i,j]) j=n-3 � � � � � �
SAD[u,v]+=abs(s[i+u,j+v]-r[i,j]) j=n-2 SAD[u,v]+=� � � � � � � � �
j=n-1 SAD[u,v]+=abs(s[i+u,j+v]-r[i,j]) j=n-2 � � � � � �

get(s[i+u,j+v]) j=n-1 SAD[u,v]+=� � � � � � � � �

send(s[i+u,j+v]) get(s[i+u,j+v]) j=n-1 � � � � � �

SAD[u,v]+=abs(s[i+u,j+v]-r[i,j]) send(s[i+u,j+v]) get(s[i+u,j+v]) � � � � � �

send(SAD[u,v]) SAD[u,v]+=abs(s[i+u,j+v]-r[i,j]) send(s[i+u,j+v]) � � � � � �

...
...

...
...

...

Figure 6.11: A “source-level” representation of the code assigned to the processor i
(0� i � n) after the cache is full.
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2. Initialization loops with cold caches, where there are reference data of the current

block in the PU but there are no search window data in the PU, as shown in Fig-

ure 6.10.

3. Full-speed pipeline with few cache misses, where reference data and most of the

search window data are in the cache. However, the very last search window datum is

new (cf. Figure 6.11).

4. Full-speed pipeline with cache filled-up, where reference data and search window

data are already in the cache (cf. Figure 6.12).

PUi is one operation ahead of the PUi�1 in terms of j and one loop ahead in terms ofu.

6.2.3 Implementation

For cache and communication localities, it is important to maximize the exploitation of

read-after-read input dependence. Therefore, our multi-dimensional projection method for

operation placement and scheduling is introduced.

Table 6.2 shows the comparison among several placement and scheduling results using

16 PUs. Our placement and scheduling result (obtained by multiprojecting the 4D DG of

the BMA) reduces the amount of the external memory access by 103 times. With an 8-KB

cache and 21 MB/sec local communication, the required bandwidth of the external memory

access is more practical although this placement and scheduling takes more cycles (1.7%).

Moreover, when the data dependence between different reference blocks are taken into

account, the dimension of the DG of the BMA is more than 4. Table 6.2 also shows that

multiprojecting the 5D DG of the BMA reduces the amount of the external memory access

by an additional 2.5 times, leading to approximately three orders of magnitude in reduction.

The proposed implementation of this computationally intensive and regular component

of the BMA can achieve a speed-up ratio of 15.9, compared to a single processor implemen-

tation. After that, we concentrate on the second half of the BMA, determining the motion
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External Local commu- Total Operations
Operation placement & scheduling memory nication cache per

access per channel size block

Brute force without cache 3.1 GB/s 0 0 16384
Brute force with cache 64 MB/s 0 180 KB 16384
Ours from multiprojecting the 4D DG of the BMA 43 MB/s 33 MB/s 8 KB 16639
Ours from multiprojecting the 5D DG of the BMA 24 MB/s 27 MB/s 180 KB 16639

Table 6.2: Comparison between the operation placement and scheduling by the brute
force method and our method (with frame size is 352�288, p � 16, n � 16, and 16
PUs). The parallelism is fully realized in the brute force method, and the number
of operation cycles is minimized. However, the operation placement and scheduling
can only work when an unusually high external memory bandwidth or a huge cache
is provided. If the design does not exploit local communication and local caches,
each pixel in the previous frame and the current frame will be read repeatedly �2p�2

times. Hence, an extremely high external memory bandwidth is required. In order to
capture the data reusability in the brute force design, each PU can use a local cache
to store �2p� lines of the previous frame and n pixels of current block. Consequently,
the cache size is �352 (pixels/line) � 32 (lines/PU) + 16 (pixels/PU)� � 16 PUs �

180 KB, which is larger than the current state-of-the-art on-chip cache. Because
the design does not use the local communication, each PU requests a copy of the
previous frame independently, i.e., a pixel is read 16 times. Although the access
to external memory is much less than that of the design without caches, it is still a
large amount. In our designs, besides using a small compiler-directed cache [25, 48]
to exploit the data reusability, the PUs use few cycles to exchange information via
the local communication channels. Therefore, while using more cycles (1.7%), our
designs use a small external memory bandwidth.
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vector by the least SAD (cf. Eq. (6.2) and the pseudo code of the BMA of a single current

block in Figure A.3). Since this part is control intensive but less computation-consuming

(around 12.2 MOPS‡), it is easily supported by the software solution running on a RISC

core.

6.3 Implementation of True Motion Tracking Algorithm
Because the true motion field is piecewise continuous, the motion of a feature block is

determined by examining the directions of all its neighboring blocks. (Conventionally, the

minimum SAD of a block of pixels is used to find the motion vector of the block in BMAs.)

This allows a chance that a singular and erroneous motion vector may be corrected by its

surrounding motion vectors (just like median filtering). Since the neighboring blocks may

not have uniform motion vectors, a neighborhood relaxation formulation is used to allow

some local variations of motion vectors among neighboring blocks:

Score�Bx�y��v� � SAD�Bx�y��v�� ∑
Bk�l�N �Bx�y�

W �Bk�l�Bx�y� min
�δ
fSAD�Bk�l��v��δ�g

whereBx�y means a block of pixels whose motion we would like to determine,N �Bx�y�

is the set of neighboring blocks ofBx�y, W �Bk�l�Bx�y� is the weighting factor for different

neighbors. A small�δ is incorporated to allow some local variations of motion vectors

among neighboring blocks. The motion vector is obtained as

motion of Bx�y � argmin
�v
fScore�Bx�y��v�g

This section demonstrates how to implement the TMT algorithm on the proposed architec-

tural platform, which has a 16-PU processing array.

‡MOPS: million operations per second.
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6.3.1 Algorithmic Partitioning of the True Motion Tracking Formula-

tion

Although the formulation seems complicated, it can be divided into four steps as shown

below. After that, each of them are regular for the hardware or software implementation.

Step 1.

We calculate the basic SADs as shown below:

SAD�x�y�u�v� �
n�1

∑
i�0

n�1

∑
j�0

j s�nx� i�u�ny� j� v�� r�nx� i�ny� j� j (6.5)

wheren is the block width and height,p is the absolute value of the maximum possible

vertical and horizontal motion, indicesx andy indicate the block position,r�nx� i�ny� j� is

the pixel intensity (pixel intensity) in the current block at coordinates�i� j�, s�nx� i�u�ny�

j� v� is the pixel intensity in the search area in the previous frame, and�u�v� represents

the candidate displacement vector.

For a frame with 352 pixels	 288 pixels, there are 22 blocks	 18 blocks because the

block size is 16	16 (n � 16). That is, 0� x � 22 and 0� y � 18. As the search range

p is 16, there are 32	32	16	16	2� 524	103 additions for a block. For a P-frame,

therefore, there are 208	106 additions, which must be finished within 1/30 of a second in

a real-time application.

This step takes considerable computation and memory access. (In fact, it is the most

computationally intensive part of the true motion tracker.) Fortunately, it is regular for

parallel and pipeline processing. Section 6.2 shows an efficient implementation.

Step 2.

We calculate the minimum SADs after the�δ-vibration:

mSAD�x�y�u�v� � min
�1�δu�δv�1

SAD�x�y�u�δu�v�δv� (6.6)

where the vibration of the motion vector is limited withinf�1�1g	f�1�1g.
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Each mSAD�x�y�u�v� takes 9 operations (1 assignment and 8 comparisons) in Eq. (6.6).

There are 32	32	22	18 such mSAD�x�y�u�v� in a frame (within 1/30 seconds). There-

fore, this step needs 109	106 operations per second.

Although this step takes less computation than the first step, a conventional pro-

grammable processor still has difficulty in supplying such a high computation demand.

In Section 6.3.2, we will demonstrate how to implement this step on our processing array.

This computation requires a huge memory bandwidth. The second step reads the SAD

array 109	106 times per second. There are also 97	106 read-after-write operations per

second over the partial minimum. Without a good memory flow, the system design could

be impractical (exorbitantly expensive to support a high memory bandwidth). Section 6.3.2

will address the memory flow design.

Step 3.

We calculate the Scores.

Score�x�y�u�v� � SAD�x�y�u�v��w
n

mSAD�x�1�y�u�v��mSAD�x�1�y�u�v�

�mSAD�x�y�1�u�v��mSAD�x�y�1�u�v�
o

(6.7)

where the neighborhood is the nearest four neighboring blocks. For simplicity, we make the

W ��� depend only on the distance between the central block and the neighboring block [20].

Because these four neighbors are equi-distant from the central block, their weightings equal

a constantw.

Each Score�x�y�u�v� takes 5 operations in Eq. (6.7). There are 32	32	22	18 such

Score�x�y�u�v� in a frame (with 1/30 seconds). Therefore, this step needs 61	 106 op-

erations per second. Section 6.3.3 will demonstrate how to implement this step on our

processing array.
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Step 4.

We determine the motion vector by the least Score (cf. Eq. (6.2)):

motion of Bx�y � argmin
�u�v�

fScore�x�y�u�v�g

It takes 32	 32 comparisons for each block. There are 406	 103 comparisons per

frame (1/30 seconds). Hence, this part is less computation-consuming (around 12 MOPS);

it is easily supported by the software solution running on a RISC core.

6.3.2 Implementation of Calculating the mSAD

The 2D DG of calculating the mSAD.

As shown in Eq. (6.6), there are 6 independent indices (x�y�u�v�δu�δv). Therefore,

the DG of calculating the mSAD could be six-dimensional. However, there is no data

dependence between differentx andy. Therefore, the DG of calculating the mSAD is four-

dimensional (u�v�δu�δv). In addition, because there is a high operation reusability in the

Eq. (6.6), this task can be further divided into two sub-steps:

pSAD�x�y�u�v� � min
δu

fSAD�x�y�u�δu�v�g

mSAD�x�y�u�v� � min
δv

fpSAD�x�y�u�v�δv�g

The DGs of the sub-steps are the same and two-dimensional. Figure 6.13 shows the DG,

which is embedded in the 2D (u�δu) index space. Note that�p � u � p and�1� δu � 1.

There are two data-dependence edges in this DG. We use�E1 to denote the read-after-

read data dependence of the SAD�x�y�u�δu�v�. The SAD�x�y�u�δu�v� will be used re-

peatedly for (1) differentu, (2) sameu�δu. Therefore, one possible choice of the�E1 is

�1�1�T . We use�E2 to denote the read-after-write data dependence of the partial minimum.

One possible choice is�0�1�T . The algebraic representation of the 2D DG is shown below:

SAD (�E1) Partial min (�E2)

�1�1�T �0�1�T
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Transform the 2D DG to a 3D DG.

The size of the 2D DG is 32	3 (assumingp � 16). The target architecture is a linear

processing array of 16 PUs. Therefore, it is necessary to partition the DG/SFG and execute

the SFG in a parallel and pipeline manner. After careful evaluation, we decide to apply the

locally sequential globally parallel (LSGP) scheme in this implementation [16].

The first step in applying the LSGP is to transform the 2D DG to a 3D DG whose size

is 2	16	3. Two new indicesa andb are introduced. One unit of theu is one unit of the

a when the dependence edge does not move across different packing segments. (A packing

segment consists of all the computation nodes within two units of sequentialu. That is, the

packing boundary occurs when 2 dividesu.) One unit of theu is 1 unit of theb and -1 unit

of thea when the dependence edge crosses the packing boundary of the transformed DG

one time. It is obvious thatu � a�2b. The 3D DG is shown below:

SAD (�E1) Partial min (�E2)

�1�0�1�T �0�0�1�T

��1�1�1�T

Multiprojecting the 3D DG into a 1D SFG.

We multiproject the 3D DG into a 1D SFG using the following:

�d3 �

�
����

0

0

1

�
���� �s3 �

�
����

0

0

1

�
���� P3 �

�
� 1 0 0

0 1 0

�
�

�d2 �

�
� 1

0

�
� �s2 �

�
� 1

0

�
� P2 �

h
0 1

i

To ensure processor availability,M3 � 2. Therefore, we have the allocation matrix and

scheduling vector as

A � P2P3 � �0�1�0�

ST � �sT
2 P3 �M3�s

T
3 � �1�0�2�
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and the 1D SFG as

SAD (�E1) Partial min (�E2)

0 (D1 � 3) 0 (D1 � 2)

1 (D1 � 1)

Using an extremely small buffer (3 Bytes) with the help of local communication, the SAD

can be used repeatedly without any extra external memory access. It is obvious that the

partial minimum can be used in the same way.

Evaluation of the Implementation.

The allocation matrix and the scheduling vector give us not only the SFG (cf. Fig-

ure 6.14), but also some important features of the implementation:

1. Execution cycles: The computational time of a block is equal to the difference be-

tween the time of the first operation and the time of the last operation, i.e.,

T � max
cx�cy

�
ST �cx� cy�

�
�1

wherecx andcy are two computation nodes in the DG.

In this particular implementation, we have�16� u� 15,u � a�2b, and�1� δu �

1. Hence, we have

0� a � 1

�8� b � 7

�1� δu � 1

In addition, we do not perform any useful computation ifu�δu ��16 oru�δu � 15.

It can be easily shown that this implementation takes 6 cycles by a simple integer

linear programming.
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Note that there are 32	 3 � 96 computation nodes in the DG. If the parallelism

are fully realized on the 16 processors, then the shortest execution time should be

96�16� 6 cycles. That is, our implementation achieves the highest efficiency in

term of computational time.

The computational time is 6 (cycles/line)	 32 (lines/block)� 196 cycles/block for

the first sub-step. The computational time is also 196 cycles/block for the second

sub-step. The total time is 384 (cycles/block)	 22 (blocks/slice)	 18 (slices/frame)

� 152	103 cycles/frame. This step adds 4.6 MOPS for each PU.

2. Memory size: Because we must store the SAD for 3 cycles and the partial minimum

for 2 cycles, the total amount of memory size is 5 bytes.

3. Internal communication per channel: Two PUs exchange 3 bytes using the lo-

cal bus per 6 clock cycles. The internal communication is 76 KB per frame (1/30

seconds). Therefore, this step adds 2.3 MB to the total internal communication per

second.

4. External memory access: There are 32-byte memory reads and 32-byte memory

writes in each sub-step for a fixedu (or a fixedv). There are 64 (operations/line)	

32 (lines/substep)	 2 (substeps/block)� 4096 external memory operations/block.

Hence, this step adds 4096 (Bytes/block)	 22 (blocks/slice)	 18 (slices/frame)

	 30 (frames/sec)� 48 MB/sec external memory access to the requirement of the

external communication bandwidth.

As we mentioned before, without reusing the data, this step will take 206 MB/sec

of external memory access. Because our design has special data flow from this op-

eration placement and scheduling, it needs only 24% of that global communication

bandwidth.
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6.3.3 Implementation of Calculating the Score

The 4D DG of calculating the Score.

Eq. (6.7) can be written as the following:

Score�x�y�u�v� � SAD�x�y�u�v��w
1

∑
δx�0

1

∑
δy�0

mSAD�x�δx�δy �1�y�δx �δy�u�v�

Although there are 6 independent indices (x�y�δx�δy�u�v), there is no data dependence be-

tween differentu andv. Assuming that Score�x�y�u�v� � SAD�x�y�u�v� initially, the DG

of calculating the Score is four-dimensional (x�y�δx�δy). Figure 6.15 shows the core of

the DG, which is embedded in the 4D (x�y�δx�δy) index space. Note that 0� x � 22,

0� y � 18, and 0� δx�δy � 1 (assuming the picture size is 352	288 and block size is

16	16).

There are two data-dependence edges in this DG. We use�E1 to denote the read-after-

read data dependence of the mSAD�x�δx�δy �1�y�δx �δy�u�v�. The mSAD�x�δx�

δy �1�y�δx �δy�u�v� will be used repeatedly for (1) differentx�y, (2) samex�δx�δy �

1, and (3) samey� δx � δy. Therefore,�E1 is a two-dimensional reformable mesh. One

possible choice is�1�1�1�0�T and �1��1�0�1�T . We use�E2 to denote the read-after-write

data dependence of the partial score. It is also a two-dimensional mesh. One possible

choice is�0�0�1�0�T and�0�0�0�1�T . The algebraic representation of the 4D DG is shown

below:

SAD (�E1) Partial sum (�E2)

�1�1�1�0�T �0�0�1�0�T

�1��1�0�1�T �0�0�0�1�T

Transform the 4D DG to a 5D DG.

The size of the 4D DG is 22	18	2	2. The target architecture is a linear processing

array of 16 PUs. Thus, it is necessary to partition the DG/SFG and execute the SFG in a

parallel and pipeline manner. We decide to implement this step on 11 PUs using the LSGP

scheme (cf. Section 6.3.2).
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The first step in applying the LSGP is to transform the 4D DG to a 5D DG whose size

is 2	 11	 18	 2	 2 by introducing two new indicesa andb. One unit of thex is one

unit of thea when the dependence edge does not move across different packing segments.

(A packing segment consists of all the computation nodes within two units of sequentialx.

That is, the packing boundary is when 2 dividesx.) One unit of thex is 1 unit of theb and

-1 unit of thea when the dependence edge crosses the packing boundary of the transformed

DG one time. Note thatx � a�2b. The 5D DG is shown below:

SAD (�E1) Partial sum (�E2)

�1�0�1�1�0�T �0�0�0�1�0�T

��1�1�1�1�0�T �0�0�0�0�1�T

�1�0��1�0�1�T

��1�1��1�0�1�T

Multiprojecting the 5D DG into a 1D SFG.

We multiproject the 5D DG into a 1D SFG using the following:
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0
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0

0
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0

0
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0

0
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����������
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�������
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�������
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0
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�������
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�������
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0

1

0
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�������
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0 1 0 0

0 0 0 1
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����
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�
����

0

0

1
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�
����
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0

1
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���� P3 �
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�
�

�d2 �

�
� 1

0

�
� �s2 �

�
� 1

0

�
� P2 �

h
0 1

i

To ensure processor availability,M5 � 2, M4 � 2, andM3 � 2. The resulted allocation

matrix and scheduling vector will be:

A � P2P3P4P5 � �0�1�0�0�0�

ST � �sT
2 P3P4P5 �M3�s

T
3 P4P5 �M3M4�s

T
4 P5 �M3M4M5�s

T
5 � �1�0�8�4�2�

Therefore, we have

SAD (�E1) Partial sum (�E2)

0 (D1 � 13) 0 (D1 � 4)

1 (D1 � 11) 0 (D1 � 2)

0 (D1 ��5)

1 (D1 ��7)
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Because�E2 is a 2D summation mesh, we apply the summation rule to it (cf. Ap-

pendix A.3) so that all the delays of the�E2 edges are equal to 2.

Because two of the�E1 edges contain negative delays, we apply the redirection rule to

them so as to have positive delays. Moreover, because�E1 is 2D reformable read-after-

read data dependence, we apply the reformation rule to it (cf. Appendix A.3). We let

��1�1�1�1�0�T become��1�1�1�1�0�T � �1�0��1�0�1�T � �0�1�0�1�1�T so that the delay

of the�E1 edge becomes 6. The final SFG becomes the following:

SAD (�E1) Partial sum (�E2)

0 (D1 � 13) 0 (D1 � 2)

1 (D1 � 6) 0 (D1 � 2)

0 (D1 � 5)

�1 (D1 � 7)

Evaluation of the Implementation.

The final SFG (cf. Figure 6.16) gives us some important features of the implementation:

1. Execution cycles: By a simple integer linear programming, the computational time

of fixedu andv is equal to

T � max
cx�cy

�
ST �cx� cy�

�
�1� 144

wherecx andcy are two computation nodes in the DG.

Note that there are 22	 18	 4 � 1584 computation nodes in the DG. If the par-

allelism is fully realized in the 16 PUs, then the shortest execution time should be

1584�16� 99 cycles. That is, our implementation is close to (but not is equal to) the

lowest bound of the computational time because only 11 PUs are used in this design.

Since�16� u�v� 15, the total number of cycles for a frame of picture is 144	32	

32� 147	103 cycles. This step adds 4.4 MOPS for each PU.
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2. Memory size: Because we only need to store the mSAD for 13�5� 18 cycles and

partial minimum for 2 cycles, the total amount of memory size is 20 bytes.

3. Internal communication per channel: Two PUs exchange 1 byte of information

using the local bus per 4 cycles. The internal communication is 37 KB per frame

(1/30 seconds). Therefore, this step adds 1.1 MB internal communication to the total

internal communication.

4. External memory access: Because the local data memory and the local bus are

exploited for data reusability, each of the mSADs and the SADs will be read only

once. There are 32	32	22	18	3� 1�22 MB external memory operations per

frame (including the write-back of the Score). Hence, this step adds 36 MB to the

total external communication.

Without reusing the data, this step will read each of the mSADs four times, read each

SAD once, and write each Score once. That is to say, there will be 73 MB/sec of ex-

ternal memory access. Our design, with the new operation placement and scheduling,

needs only 50% of that global communication bandwidth.

6.4 Summary of the Implementation
Because the multimedia applications are getting more and more computation-

demanding as well as versatile, new multimedia signal processor must have high perfor-

mance and high flexibility. Because more and more multimedia applications are running

mobile and wireless devices, low cost, low power, and efficiency memory usage become

emerging issues in new multimedia system design. Based on the algorithmic features of

the multimedia applications and the available VLSI technology, we observe that the fu-

ture multimedia signal processor will consist of two parts:array processors to be used as

the hardware accelerator andRISC cores to be used as the programmable processor [18].

While some control-intensive functions can be implemented using programmable CPUs,
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Step Implementation MOPS Cache Internal External
on per processor size Communication Communication

1 Processing array 198 8 KB 33 MB/sec 43 MB/sec
2 Processing array 5 80 B 2 MB/sec 48 MB/sec
3 Processing array 4 320 B 1 MB/sec 36 MB/sec
4 RISC core 12 - - 12 MB/sec

Table 6.3: Implementation of the true motion tracking algorithm on the proposed archi-
tectural platform using our operation placement and scheduling scheme (with frame
size is 352�288, p � 16, n � 16, and 16 PUs). The parallelism is almost fully realized.
One of the most prominent features is that the design uses a small external memory
bandwidth by exploiting small caches.

other computation-intensive functions can rely on hardware accelerators.

In order to achieve the maximum performance of the parallel and pipelined architecture,

systematic methodology, like systolic design methods, which can partition and compile

the algorithm is important. Because the gap between the processor speed and memory

speed is getting larger and larger, the memory/communication bandwidth is the bottleneck

in many systems. A sound operation placement and scheduling scheme should reveal an

efficient memory usage. We propose an algebraic multiprojection methodology, capable of

manipulating an algorithm with high-dimensional data dependence, to design the special

data flow for highly reusable data.

The challenge for years has been to develop efficient systems of conventional block-

matching algorithms due to their computational complexities. Because the TMT is even

more computation-demanding and control-intensive than conventional block-matching al-

gorithms, it is a greater challenge to have an effective system design of the TMT. In this

chapter, the proposed TMT algorithm is partitioned into four parts for a high performance

implementation. Table 6.3 gives a brief summary of the implementation of the true motion

tracking algorithm. The first three parts of the TMT are computationally intensive and reg-

ular for the efficient implementation on the processing array. The last part is complex and

less computation-demanding for the easy implementation on the core-processor.
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PU0 PU1 PU2 � � � PUn�1

v=-p send(SAD[u,v]) send(s[i+u,j+v] � � � � � �

u=-p+n v=-p send(SAD[u,v]) � � � � � �

j=0 u=-p+n v=-p � � � � � �
SAD[u,v]=0 j=0 u=-p+n � � � � � �

SAD[u,v]+=abs(s[i+u,j+v]-r[i,j]) get(SAD[u,v]) j=0 � � � � � �

j=1 SAD[u,v]+=abs(s[i+u,j+v]-r[i,j]) get(SAD[u,v]) � � � � � �

SAD[u,v]+=abs(s[i+u,j+v]-r[i,j]) j=1 SAD[u,v]+=� � � � � � � � �
j=2 SAD[u,v]+=abs(s[i+u,j+v]-r[i,j]) j=1 � � � � � �
...

... SAD[u,v]+=� � �
...

...

Figure 6.12: A “source-level” representation of the code assigned to the processor i
(0� i � n) after the cache is filled up. Note that after v � �p, there is no need for
passing s�i�u�j�v� (except the very last one) because the s�i�u�j�v� is already in
the cache. Because the cache is effectively used, there is only one external memory
operation per u loop in total and there are only two local bus transactions per u loop
per processor.
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Figure 6.13: The 2D DG of the second step of the true motion tracker. There are two
data-dependence edges in this DG. �E1 denotes the read-after-read data dependence
of the SAD�x�y�u�δu�v�. The SAD�x�y�u�δu�v� will be used repeatedly for (1) different
u�δu, and (2) same u�δu. Therefore, one possible choice of �E1 is �1�1�T . �E2, �0�1�T ,
denotes the partial minimum data dependence.

SAD

Partial minimum

(2 delays)

(1 delay)

(3 delays)

Figure 6.14: The 1D SFG of the second step of the true motion tracker (from multipro-
jecting 3D DG).
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E1 E2

Partial scoremSAD

Figure 6.15: The 4D DG of the third step of the true motion tracker. There are two
data-dependence edges in this DG. �E1 denotes the read-after-read data dependence
of the mSAD�x�δx�δy �1�y�δx �δy�u�v�. The mSAD�x�δx�δy �1�y�δx �δy�u�v�
will be used repeatedly for (1) different x�y, (2) same x� δx� δy � 1, and (3) same
y�δx�δy. �E1 is a two-dimensional reformable mesh. One possible choice is �1�1�1�0�T

and �1��1�0�1�T . �E2 denotes the read-after-write data dependence of the partial score.
It is a two-dimensional mesh as well. One possible choice is �0�0�1�0�T and �0�0�0�1�T .

mSAD

Partial sum

(2 delays)
(6 delays)

(5 delays, 13 delays)

(7 delays)

Figure 6.16: The 1D SFG of the third step of the true motion tracker (from multipro-
jecting 3D DG).
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Conclusions

This work has explored the theory of true motion tracking in digital video with respect

to its applications. We have examined basic features of true motion estimation algorithms,

and developed a new true motion tracker based on a neighborhood relaxation formulation.

This true motion tracker has a number of advantageous properties when applied to motion

analysis:

1. dependable tracking—the neighborhood helps to single out erroneous motion vectors

2. motion flexibility—the relaxation helps to accommodate non-translation motion

3. high implementation efficiency—99% of the computations are integer additions.

Consequently, it may be used as a cost-effective motion estimation algorithm for video

coding, video interpolation, and video-object analysis. In terms of future research work,

we shall continue on these fronts:

7.1 True Motion Tracker Analysis
Gradient-Based Motion Tracker with the Neighborhood- or Temporal-Constraint.

Matching-based motion trackers with the neighborhood-constraint and the temporal-

constraint have shown great improvement over conventional matching-based techniques.

182
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In the future, applying these two constraints with gradient-based measurement may also

provide great improvement. By combining matching-based or gradient-based measure-

ment with block-constraints, object-constraints, neighborhood-constraints, or temporal-

constraints, we define a variety of motion tracking algorithms. Table 1.2 shows examples of

how the motion estimation algorithms can be categorized. Since a gradient-based motion

tracker with the neighborhood-constraint or the temporal-constraint does not exist, it would

be an intriguing challenge to apply these two constraints with gradient-based measurement

in the future.

Directional Confidence in Spatial-Neighborhood Weighting Factors.

To achieve higher correctness, in the future, spatial-neighborhood weighting factors

should take into account the cross-correlation between vertical/horizontal components of

the motion vector and image features.

Although a great deal of effort has gone into researching true motion tracking, some

of the most noticeable failures of the TMT still occur in several common situations. For

example, we have observed minor tracking errors on points along a long edge (see Fig-

ure 5.5).

A possible solution for avoiding this kind of tracking error is to adopt Anandan’s

scheme [7]: the weighting factor (inW ��� of Eq. (5.2)) takes into account the cross-

correlation between vertical/horizontal components of motion vectors and image features.

The purpose of such a correlation is that the motion of a block that has a low confidence in

vertical movement can be guided by its neighbors that have a higher confidence in vertical

movement.

Zero-Mean SAD.

For higher tracking correctness in non-motion brightness changes, we should consider

removing the mean intensity of the image.
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When there are non-motion brightness changes in images, finding accurate motion vec-

tors becomes difficult. In the fundamental assumption, we assume thatI�xi�t��yi�t�� t� � Ii

andIi is constant across time. However, this assumption could be proved incorrect in real

images. For instance, when the lighting decreases over time (e.g., the sun goes behind a

cloud), all of the intensities in the image will decrease. As another example, when the sur-

face orientation of an object changes relative to the camera, the amount of light reflected

toward the camera alters; and so the intensities will be different (see Figure 3.12). When

the intensity of a pixel is no longer conserved over time,

I�x�t��y�t�� t�� I�x�t �∆t��y�t �∆t�� t �∆t��∆I

This means that the fundamental equation (see Eq. (1.4)) for block-based and gradient-

based measurement is invalid, i.e.,

s��pi��vi� �� 0

Consequently, a motion estimation system that operates under the assumption of image

brightness conservation will produce incorrect answers in these situations.

In order to tackle the problem of non-motion brightness changes, we suggest an

approach—zero-mean SAD—which takes out the mean of the images before applying the

fundamental measurements��pi��vi�.

Probability Motion Vectors.

Instead of describing the motion of a block with a single motion vector, it may be better

to use a probability density function to describe the motion of the block.

Nearly all previous techniques for analyzing motion attempt to compute a single mo-

tion at each point in space and time. However, it is difficult to describe motion fields in

transparency regions using a single motion for each point. For example, a scene viewed

through a piece of dirty glass will exhibit two motions at each location: that of the glass,

and that of the scene behind it. In these situations, there is more than one motion occurring
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within the local region. Such multiple-motion situations are prevalent, and cause problems

for motion algorithms.

In [89], Simoncelli establishes a fundamental shift in the representation of visual mo-

tion. His new method computes probability distributions over the set of all possible image

velocity vectors at a given spatio-temporal location. Viewing the problem probabilistically

has many advantages:

1. It produces useful extensions of the standard quadratic gradient techniques for com-

puting motion flow.

2. It provides 2D confidence information, allowing later stages of processing to tailor

their use of the velocity estimates according to the shape of the distribution.

3. It provides a framework for “sensor fusion,” in which image velocity estimates must

be combined with information derived from other uncertain sources.

So, it seems worthwhile to investigate the probability motion estimation algorithm.

Exploiting Inter-Object Motion Information.

Intra-object and inter-object motion modeling should be considered for more accurate

object motion estimation. In previous object motion estimation and motion-based video-

object segmentation schemes, intra-object information is well exploited. For example, we

always assume that the motion vectors within a single object have a good degree of sim-

ilarity. However, there is also a rich body of inter-object information. For example, a

point belonging to an object would not belong to another object and the motion of different

objects should also be different.
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7.2 Some Promising Application-Domains
True Motion for Error Concealment.

We can also make use of true motion vectors for better error concealment. Error con-

cealment is intended to recover losses due to channel noise (e.g., bit-errors in noisy chan-

nels, cell-loss in ATM networks) by utilizing available picture information. Error conceal-

ment techniques can be categorized two ways according to the roles that the encoder and

decoder play in the underlying approaches. Forward error concealment includes methods

that add redundancy at the source end to enhance the error resilience of coded bit streams.

For example, in MPEG-2, I-picture motion vectors were introduced to improve error con-

cealment. However, syntax changes are required. Error concealment by post-processing

refers to operations at the decoder to recover the damaged areas based on characteristics of

image and video signals.

Our scheme is a post-processing error concealment scheme using motion-based tempo-

ral interpolation for damaged image regions. We use a true motion estimation algorithm

at the encoder. In our work, the syntax is not changed and thus no additional bits are

required. Using true motion vectors for video coding can even optimize the bit rate for

residual and motion information. As shown in Chapter 3, using true motion vectors for

coding offers significant improvement in motion-compensated frame-rate up-conversion

over the minimal-residue BMA. The more accurate the motion estimation, the better the

performance of frame-rate up-conversion. Because the error concealment problem is simi-

lar to the frame-rate up-conversion problem when the error is the whole frame, we believe

that the damaged image regions can be interpolated better with help from true motion vec-

tors [21].

Optimizing Frame-Skipping Mode Decision.

We believe that an optimal frame-skipping mode decision should include another crite-

rion: when there is not enough information inside the frame as compared to the previous
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and the next frames. According to current video coding standards, the macroblock-skipping

mode is used when (1) there is insufficient space in the encoder buffer, and (2) there is

too little information inside the macroblock. On the other hand, in current standards, the

frame-skipping mode is used only when there is inadequate space in the encoder buffer. In

Chapter 3, we demonstrated how to temporally interpolate a frame. When there is no major

movement in the scene, it is easy to interpolate a frame from its previous and next frames.

That is, there is almost no major information in the scene. Using this criterion, we can skip

the frame so that we have more encoder buffer space for future frames.

Reconstruct a High-Resolution Frame from a Low-Resolution Sequence of Frames.

It is natural to extend our true motion tracker to another application—extraction of a

high-resolution frame from video sequences [46, 91]. In Chapter 4, we used one example

to demonstrate that true motion is extremely helpful in motion-based spatio-temporal video

interpolation. In other words, a good motion tracker with a generalized sampling theorem

can successfully combine the information available from multiple time instances. Using the

same principal, we will be able to reconstruct a high-resolution image from a number of

video frames. This technology can be used not only in video processing but also in image

processing. Assume we only have a 300-dpi� (low-resolution) image scanner. If we can

scan the image four times with different known offsets, then, according to the generalized

sampling theorem, we should be able to reconstruct the 600-dpi (high-resolution) image.

Since it is extremely difficult to control the offset less than 1/300 inches, we can first scan

the images four times with unknown offsets and then use the TMT to measure the offsets

afterward.
�dpi: dots per inch.
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Object-Based Video Coding.

Object-based video coding techniques have become more and more important in re-

cent years, e.g., in MPEG-4 [2] and MPEG-7 [4]. Chapter 5 showed that the object mo-

tion can be easily obtained once true motion vectors have been obtained. It is natural to

utilize a global motion compensation scheme to gain further improvements in coding effi-

ciency. Moreover, object-based coding techniques and block-based coding techniques can

be adopted in tandem [19].

7.3 Implementation Considerations
So far, we have focused on the implementation of the TMT on a fixed-scheduling fine-

grain parallel architecture. There are many other possible multimedia processor architec-

tures that are yet to be explored. For example, in an out-of-order execution processor, the

hardware rearranges the instruction execution to reduce the stalls when dependences are

present [83]. Such a scheme can dynamically schedule some instructions whose depen-

dences are unknown at compile time (e.g., they may involve a memory reference), and it

simplifies the compiler. Another example: a simultaneous multithreading processor, an ex-

tension to current VLIW and superscalar processors, permits issues of multiple instructions

from several independent threads [39]. Such effective exploitation of fine-grain instruction-

level parallelism and coarse-grain thread-level parallelism leads to an increasing utilization

of processor resources. Both architectures provide advantages that the fixed-scheduling

fine-grain parallel architecture does not have, and so allow the algorithmic design of the

TMT to use some operations that are not allowed or are less efficient in the fixed-scheduling

fine-grain parallel architecture. For instance, an algorithm that has an effective system

implementation on these kinds of architectures may use more control-intensive but less

computation-demanding operations or use more floating-point operations. In this case, for

better system implementations, the algorithmic design of TMT must be revised.



Appendix A

Systematic Operation Placement and

Scheduling Scheme

In order to achieve the maximum performance of the parallel and pipelined architecture,

systematic methodology that can partition and compile the algorithm is important (like sys-

tolic design methods). Because the gap between the processor speed and memory speed is

growing larger and larger, the memory/communication bandwidth is the bottleneck in many

systems. A sound operation placement and scheduling scheme should reveal an efficient

memory usage. In this appendix, we describe our algebraic multiprojection methodology,

which can manipulate an algorithm with high-dimensional data dependence and can design

the special data flow for highly reusable data.

A.1 Systolic Processor Design Methodology
Several useful transformation techniques have been proposed for mapping the algorithm

into parallel and/or pipeline VLSI architecture [60]. There are 3 stages in common systolic

design methodology: the first is dependence graph (DG) design, the second is mapping the

DG to a signal flow graph (SFG), and the third is designing an array processor based on the

SFG.

More precisely, a DG is a directed graph,G �� V�E �, which shows the dependence

189
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of the computations that occur in an algorithm. Each operation will be represented as one

node,c �V , in the graph. The dependence relation will be shown as an arc,�e � E, between

the corresponding operations. A DG can be also considered as the graphical representation

of a single assignment algorithm. Our approach to the construction of a DG will be based on

the space-time indices in the recursive algorithm: Corresponding to the space-time index

space in the recursive algorithm, there is a natural lattice space (with the same indices)

for the DG, with one node residing on each grid point. Then the data dependencies in

the recursive algorithm may be explicitly expressed by the arcs connecting the interacting

nodes in the DG, while its functional description will be embedded in the nodes. A high-

dimensional looped algorithm will lead to a high-dimensional DG. For example, the BMA

for a single current block is a four-dimensional recursive algorithm [111].

A complete SFG description includes both functional and structural description parts.

The functional description defines the behavior within a node, whereas the structural de-

scription specifies the interconnection (edges and delays) between the nodes. The structural

part of an SFG can be represented by a finite directed graph,G ��V�E�D�E�� since the

SFG expression consists of processing nodes, communicating edges, and delays. In gen-

eral, a node,c � V , represents an arithmetic or logic function performed with zero delay,

such as multiplication or addition. The directed edges�e � E model the interconnections

between the nodes. Each edge�e of E connects an output port of a node to an input port of

some node and is weighted with a delay countD��e�. The delay count is determined by the

timing and is equal to the number of time steps needed for the corresponding arcs. Often,

input and output ports are refereed to as sources and sinks, respectively.

Since a complete SFG description should include both functional description (defines

the behavior within a node) and structural description (specifies the interconnection—edges

and delays—between the nodes), we can easily transform an SFG into a systolic array,

wavefront array, SIMD, or MIMD. Therefore, most research has been on how to transfer a

DG to an SFG in the systolic design methodology.
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There are two basic considerations for mapping from a DG to an SFG:

1. Placement: To which processors should operations be assigned? (A criterion might

be to minimize communication/exchange of data between processors.)

2. Scheduling: In what ordering should the operations be assigned to a processor? (A

criterion might be to minimize total computing time.)

Two steps are involved in mapping a DG to an SFG array. The first step is the processor

assignment. Once the processor assignment is fixed, the second step is the scheduling. The

allowable processor and schedule assignments can be quite general; however, in order to

derive a regular systolic array, linear assignments and scheduling attract more attention.

Processor Assignment.

Processor assignment decides which processor is going to execute which node in the

DG. A processor could carry out the operations of a number of nodes. For example, a pro-

jection method may be applied in which nodes of the DG along a straight line are assigned

to a common processing element (PE). Since the DG of a locally recursive algorithm is reg-

ular, the projection maps the DG onto a lower dimensional lattice of points, known as the

processor space. Mathematically, a linear projection is often represented by a projection

vector�d. The mapping assigns the node activities in the DG to processors. The index set

of nodes of the SFG are represented by the mapping

P : In  In�1

whereIn is the index set of the nodes of the DG, andIn�1 is the Cartesian product of (n-1)

integers. The mapping of a computationci in the DG onto a noden in the SFG is found by:

n�ci� � Pci

wheren��� denotes the mapping function from a node in the DG to a node in the SFG, and

the projection basisP, denoted by an�n�1�	n matrix, is orthogonal to�d. Mathematically,

�dT P � 0
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This projection scheme also maps the arcs of the DG to the edges of the SFG. The set

of edges�m��e� into each node of the SFG is derived from the set of dependence edges�e at

each point in the DG by

�m��ei� � P�ei

where�m��� denotes the mapping function from an edge in the DG to an edge in the SFG.

In this paper, bold face letters (e.g.,P) represent matrices. Overhead arrows represent

ann-dimensional vector, written as ann	1 matrix, e.g.,�ei (a dependency arc in the DG)

and�m��ei� (an SFG dependency edge that comes for the�ei). An n-tuple (a point inn-

dimensional space), written as ann	1 matrix, is represented by underlined letters, e.g.,ci

(a computation node in the DG) andn�ci� (an SFG computation node that comes fromci).

Scheduling.

A projection should be accompanied by a scheduling scheme, which specifies the se-

quence of the operations in all the PEs. A schedule function represents a mapping from the

n-dimensional index space of the DG onto a 1D scheduling time space. A linear schedule is

based on a set of parallel and uniformly spaced hyper-planes in the DG. These hyper-planes

are called equi-temporal hyper-planes—all the nodes on the same hyper-plane must be pro-

cessed at the same time. Mathematically, the schedule can be represented by a schedule

vector (column vector)�s, pointing to the normal direction of the hyper-planes. The schedul-

ing of a computationc in the DG on a noden in the SFG is found by:

T �c� ��sT c

whereT ��� denotes the timing function of a node in the DG to the execution time of the

processor in the SFG.

The delayD��e� on every edge is derived from the set of dependence edges�e at each

point in the DG by

D��ei� ��sT�ei
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whereD��� denotes the timing function of an edge in the DG to the delay of the edge in the

SFG.

Permissible Linear Schedules.

There is a partial ordering among the computations, inherent in the algorithm, as spec-

ified by the DG. For example, if there is a directed path from nodecx to nodecy, then the

computation represented by nodecy must be executed after the computation represented by

nodecx is completed. The feasibility of a schedule is determined by the partial ordering

and the processor assignment scheme.

The necessary and sufficient conditions are stated below:

1. �sT�e� 0, for any dependence arc�e.�sT�e �� 0, for non-broadcast data.

2. �sT �d � 0.

The first condition stands for data availability and states that the precedent computation

must be completed before the succeeding computation starts. Namely, if nodecy depends

on nodecx, then the time step assigned forcy cannot be less than the time step assigned

for cx. The first condition means that the causality should be enforced in a permissible

schedule. But, if a datum is used by many operations in the DG (read-after-read data de-

pendencies), the causality constraint could be a trifle bit different. As popularly adopted,

the same data value is broadcast to all the operation nodes. The data are calledbroadcast

data. In this case, there is no delay required. Alternatively, the same data may be propa-

gated step by step via local arcs without being modified to all the nodes. This kind of data,

which is propagated without being modified, is calledtransmittent data. There should be

at least one delay for transmittent data.

The second condition stands for processor availability, i.e., 2 computation nodes cannot

be executed in the same time if they are mapped into the same processor element. The sec-

ond condition implies that nodes on an equi-temporal hyper-plane should not be projected

to the same PE. In short, the schedule is permissible if and only if (1) all the dependency
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arcs flow in the same direction across the hyper-planes; and (2) the hyper-planes are not

parallel with projection vector�d.

In general, the projection procedure involves the following steps:

1. For any projection direction, a processor space is orthogonal to the projection di-

rection. A processor array may be obtained by projecting the index points to the

processor space.

2. Replace the arcs in the DG with zero or nonzero delay edges between their corre-

sponding processors. The delay on each edge is determined by the timing and is

equal to the number of time steps needed for the corresponding arcs.

3. Since each node has been projected to a PE and each input (or output) data is con-

nected to some nodes, it is now possible to attach the input and output data to their

corresponding processors.

A.1.1 High Dimensional Algorithm

We discuss the concept of high-dimensional algorithms first. An algorithm is said to be

n-dimensional if it hasn-depth recursive loops in nature. For example, a block-matching

algorithm for the whole frame is six-dimensional, as shown in Figure A.1. The indices

x�y�u�v� i� j contribute 6D to the algorithm. As another example, a block-matching algo-

rithm for the single block is four-dimensional, as shown in Figure A.3. The indicesu�v� i� j

contribute 4D to the algorithm.

It is important to respect theread-after-read data dependency. If a datum could be read

time after time by hundreds of operations and those operations are put closely together,

then a small cache can get rid of a large amount of external memory accesses. Since

s�x�n�i�u� y�n�j�v� will be read time after time for differentx�y�u�v� i� j combinations,

this algorithm is 6D.
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One the other hand, if we ignore the read-after-read data dependency, the DG has only

two-dimensionalread-after-write dependency based on variableSAD. Although the DG

would become lower dimensional, it would be harder to track the data reusability and re-

duce the amount of memory accesses.

Transformation to Lower Dimension.

As shown in Figure A.2(a), two loops are folded into one loop to make the algorithm

become less-dimensional [111].

The DG becomes three-dimensional because there are only three loop indices. The

number of projections in multiprojection become less and it is easier to optimize the

scheduling. However, in this modified algorithm, the operation regarding�u�v��� must

be executed directly after the operation regarding�u�v�. It makes the algorithm become

less flexible. Efficient, expandable, and low I/O designs are harder to achieve. Besides,

the folding of 6D DG will make it benefit less from some useful graph transformation, as

shown in Appendix A.3.

Transformation to Higher Dimension.

We can also construct some artificial indices to make a lower-dimensional DG problem

become higher-dimensional DG. For example, the inmost loop of the original algorithm

could be modified as shown in Figure A.2(b).

The indicesx�y�u�v� i� j1� j2 transform this algorithm into a seven-dimensional concept.

This approach is not generally recommended because the number of steps for multipro-

jection increases in order to have the low-dimension design. However, this method pro-

vides an option of execution in the order ofj � f1�N�2� 1�2�N�2� 2� � � �g instead of

j � f1�2� � � � �N�2�N�2� 1� � � �g (simply exchanging the order of thej1 loop and thej2

loop). As we will see later in Appendix A.3.7, LSGP and LPGS partitioning can be carried

out via multiprojection after a DG is transformed into an artificial higher-dimensional DG.



Appendix A: Systematic Operation Placement and Scheduling Scheme 196

A.1.2 The Transformation of DG

In addition to the direction of the projection and the schedule, the choice of a particular

DG for an algorithm can greatly affect the performance of the resulting array. The following

are the two most common transformations of the DG seen in the literature:


 Reindexing:

A useful technique for modifying the DG is to apply a coordinate transformation

to the index space (calledreindexing). Examples for reindexing are plane-by-plane

shifting or circular shifting in the index space. For instance, when there is no per-

missible linear schedule or systolic schedule for the original DG, it is often desirable

to modify the DG so that a permissible schedule may be obtained. The effect of this

method is equivalent to the re-timing method [82].


 Localized dependence graph:

A locally recursive algorithm is an algorithm whose corresponding DG has only local

dependencies—all variables are (directly) dependent upon the variables of neighbor-

ing nodes only. The length of each dependency arc is independent of the problem

size.

On the other hand, a non-localized recursive algorithm has global interconnec-

tions/dependencies. For example, a same datum will be used by many operations,

i.e., the same data value will repeatedly appear in a set of index points in the recur-

sive algorithm or DG. As popularly adopted, the operation nodes receive the datum

by broadcasting. The data are calledbroadcast data and this set is termed a broad-

cast contour. Such a non-localized recursive algorithm, when mapped onto an array

processor, is likely to result in an array with global interconnections.
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In general, global interconnections are more expensive than localized interconnec-

tions. In certain instances, such global arcs can be avoided by using a proper projec-

tion direction in the mapping schemes. To guarantee a locally interconnected array, a

localized recursive algorithm would be derived (and, equivalently, a localized DG). In

many cases, such broadcasting can be avoided and replaced by local communication.

For example, in Figure A.5, the variables�u�i� u�j� andr�i� j� in the inner

three loops of the BMA (cf. Figure A.4) are replaced by local variablesS�u�v�i�j�

andR�u�v�i�j� respectively.

The key point is that instead of broadcasting the (public) data along a global arc, the

same data may be propagated step by step via local arcs without being modified to all

the nodes. This kind of data, which is propagated without being modified, is called

transmittent data.

A.1.3 General Formulation of Optimization Problems

It takes more efforts to find an optimal and permissible linear scheduling than it does

to find a permissible linear scheduling. In this section, we show how to derive an optimal

design.

Optimization Criteria.

Optimization plays an important role in implementing systems. In terms of parallel

processing, there are many ways to evaluate a design: one is to measure by the completion

time (T ), another is to measure by the product of the VLSI chip area and the completion

time (A	T ) [67]. In general, the optimization problems can be categorized into:

1. To find a scheduling that minimizes the execution time, for given constraints on the

number of processing units [115].

2. To minimize the cost (area, power, etc.) under certain given timing constraints [105].
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In either case, such tasks are proved to be NP-hard.In this paper, we focus on how to

find an optimal schedule given an array structure—the timing is an optimization goal, not

a constraint.

Basic Formula.

First, we know that the computation time of a systolic array can be written as

T � max
cx�cy

f�sT �cx� cy�g�1

wherecx andcy are two computation nodes in the DG.

The optimization problem becomes the following min-max formulation:

�sop � arg

�
min
�s

�
max
cx�cy

f�sT �cx� cy�g�1

��

under the following two constraints:�sT �d � 0 and�sT�e � 0, for any dependence arc�e.

The minimal computation time schedule�s can be found by solving the proper integer

liner programming [67, 108, 115] or quadratic programming [116].

A.1.4 Partitioning Methods

As DSP systems grow too complex to be contained in a single chip, partitioning is

used to design a system into multi-chip architectures. In general, the mapping scheme

(including both the node assignment and scheduling) will be much more complicated than

the regular projection methods discussed in the previous sections because it must optimize

chip area while meeting constraints on throughput, input/output timing and latency. The

design takes into consideration I/O pins, inter-chip communication, control overheads, and

tradeoff between external communication and local memory.

For a systematic mapping from the DG onto a systolic array, the DG is regularly par-

titioned into many blocks, each consisting of a cluster of nodes in the DG. As shown in

Figure A.6, there are two methods for mapping the partitioned DG to an array: the locally

sequential globally parallel (LSGP) method and the locally parallel globally sequential

(LPGS) method [60].
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For convenience of presentation, we adopt the following mathematical notations. Sup-

pose that ann-dimensional DG is linear projected to an�n�1�-dimensional SFG array of

sizeL1	L2	�� �	Ln�1. The SFG is partitioned intoM1	M2	�� �	Mn�1 blocks, where

each block is of sizeZ1	Z2	�� �	Zn�1. Zi � Li�Mi for i � f1�2� � � � �n�1g,

Allocation.

1. In the LSGP scheme, one block is mapped to one PE. Each PE sequentially executes

the nodes of the corresponding block. The number of blocks is equal to the number

of PEs in the array, i.e., the array size equals the productM1	M2	�� �	Mn�1.

2. In the LPGS scheme, the block size is chosen to match the array size, i.e., one block

can be mapped to one array. All nodes within one block are processed concurrently,

i.e., locally parallel. One block after another block of node data is loaded into the

array and processed in a sequential manner, i.e., globally sequential.

Scheduling.

In LSGP, after processor allocation, from the processor sharing perspective, there are

Z1	Z2	�� �	Zn�1 nodes in each block in the SFG, which share one PE. An acceptable

(i.e., sufficiently slow) schedule is chosen so that at any instant there is at most one active

PE in each block.

As to the scheduling scheme for the LPGS method, a general rule is to select a (global)

scheduling that does not violate the data dependencies. Note that the LPGS design has

the advantage that blocks can be executed one after another in a natural order. However,

this simple ordering is valid only when there is no reverse data dependence for the chosen

blocks.

Generalized Partitioning Method.

A unified partitioning and scheduling scheme is presented for LPGS and LSGP in [49].

The main contribution includes a unified partitioning model and a systematic two-level
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scheduling scheme. The unified partitioning model can support LPGS and LSGP design

in the same manner. The systematic two-level scheduling scheme can specify the intra-

processor schedule and inter-processor schedule independently. Hence, a greater inter-

processor parallelism can be effectively explored.

A general framework for processing mapping is also proposed in [94, 95].

Optimization for Partitioning.

The problem of finding an optimal (or reasonably small) schedule is an NP-hard prob-

lem. A systematic methodology for optimal partitioning is described in [113].

A.2 Multiprojection—Operation Placement and Schedul-

ing for Cache and Communication Localities
Similar to systolic design approaches (as shown in Appendix A.1), we present a sys-

tematic multimedia signal processing mapping method that can facilitate the design of pro-

cessor arrays for computationally intensive and regular components.

The key to success in a fixed-scheduling media processor (such as VLIW, SIMD) hinges

on the success of the compiler. Similarly, the key components of the proposed implemen-

tation are the platform itself, and a compiler to map applications efficiently on the platform

(especially, on the array processors). In this section, we present an operation placement

and scheduling scheme for the array processors [16, 17]. The key advantages are twofold:

(1) This multiprojection method, which deals with multidimensional parallelism systemat-

ically, can alleviate the burden of the programmer in coding and data partitioning. (2) It

puts a lot of emphasis on cache localities and local communication in order to avoid the

memory/communication bandwidth bottleneck, and can lead to faster program execution.

Conventional single projection can only map ann-dimensional DG directly onto an

�n�1�-dimensional SFG. However, due to current VLSI technology constraint, it is hard

to implement a 3D or 4D systolic array. Because the BMA for a single current block is a
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four-dimensional algorithm (as shown in Appendix A.1.1), it is impossible to get a 2D or

1D system implementation by one projection. One possible approach is to decompose the

BMA into subparts, which (1) are individually defined over index spaces with dimensions

less than or equal to three and (2) are suitable to perform the canonical projection. For

example, one such decomposition is to takeu out first and consider it later as follows:

SAD�v� �
n

∑
i�1

n

∑
j�1

j s�i� j� v�� r�i� j� j �p � v � p

Another possible approach is to map ann-dimensional DG directly onto an�n� k�-

dimensional SFG without DG decomposition and hence a multi-dimensional projection

method is introduced [60, 94, 95, 114]. The projection method, which maps ann-

dimensional DG to an�n�1�-dimensional SFG, can be appliedk times and thus reduces

the dimension of the array ton� k. More elaborately, a similar projection method can be

used to map an�n�1�-dimensional SFG onto an�n�2�-dimensional SFG, and so on. This

scheme is calledmultiprojection.

Many design methods, such as, thefunctional decomposition, index fixing, andslice

and tile [12, 31, 32, 59, 92], are the special cases of the multiprojection. Multiprojection

can not only obtain the DGs and SFGs from functional decomposition but can also obtain

other 3D DGs, 2D SFGs, and other designs that are difficult to obtain from other methods.

A.2.1 Algebraic Formulation of Multiprojection

The process of multiprojection could be written as a number of single projections using

the same algebraic formulation as introduced in Appendix A.1. In this section, we explain

how to project the�n�1�-dimensional SFG to an�n�2�-dimensional SFG. The potential

difficulties of this mapping are (1) the presence of delay edges in the�n�1�-dimensional

SFG, and (2) the delay management of the edges in the�n�2�-dimensional SFG.
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Double-Projection.

For simplicity, we first introduce how to obtain a 2D SFG from a 4D DG by the multi-

projection.

Step 1 We project the 4D DG into a 3D SFG by projection vector�d4 (4	1 column vector),

projection matrixP4 (3	4 matrix), and scheduling vector�s4 (4	1 column vector)

with three constraints: (1)�sT
4
�d4 � 0, (2)P4�d4 � 0, and (3)�sT

4�ei � 0 �i.

The computation nodec (4	1) in 4D DG will be mapped into the 3D SFG by�
� T3�c�

n3�c�

�
��

�
� �sT

4

P4

�
�c

The data dependence edges will be mapped into the 3D SFG by�
� D3��ei�

�m3��ei�

�
��

�
� �sT

4

P4

�
��ei

First, we claim that

D3��ei� �� 0 � �m3��ei� � 0 (A.1)

For �m3��ei� � 0,�ei is proportional to�d4. For example,�ei � α�d4 (α �� 0). The basic constraint

�sT
4
�d4 � 0 impliesα�sT

4
�d4 �� 0; therefore,D3��ei� ��sT

4�ei �� 0.

Step 2 We project the 3D SFG into a 2D SFG by projection vector�d3 (3	1 column vec-

tor), projection matrixP3 (2	 3 matrix), and scheduling vector�s3 (3	 1 column

vector) with three constraints: (1)�sT
3
�d3 � 0, (2) P3�d3 � 0, and (3)�sT

3 �m3��ei� � 0 ��ei

for broadcasting data. Or,�sT
3 �m3��ei�� 0 ��ei for non-broadcasting data.

The computation noden3�c� (3	1) in the 3D SFG, which is mapped fromc (4	1)

in the 4D DG, will be mapped into the 2D SFG by�
� T �

2�c�

n2�c�

�
��

�
� �sT

3

P3

�
�n3�c�
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The data dependence edges in the 3D SFG will further be mapped into the 2D SFG

by �
� D�

2��ei�

�m2��ei�

�
��

�
� �sT

3

P3

�
� �m3��ei�

Step 3 We can combine the results from the previous 2 steps. Let allocation matrixA �

P3P4 and scheduling vectorST ��sT
3 P4�M4�sT

4 . (M4� 1��N4�1��sT
3
�d3 whereN4 is

the maximum number of nodes along the�d3 direction in the 3D SFG.)


 Node mapping: �
� T2�c�

n2�c�

�
��

�
� ST

A

�
�c

wheren2�c� � Ac means where the original computational nodec is mapped.

T2�c� � Sc means when the computation node is to be executed.


 Edge mapping: �
� D2��ei�

�m2��ei�

�
��

�
� ST

A

�
��ei

where �m2��ei� � A�ei means where the original data dependency relationship is

mapped. D2��ei� � ST�ei means how much time delay should be in the edge

�m2��ei�.

Constraints for Data and Processor Availability.

Data Availability Theorem: Every dependent datum comes from previous computation.

To ensure data availability, every edge must have at least one unit of delay if the edge is not

broadcasting some data. D2��ei�� ST�ei � 0 if�ei is for broadcasting data. D2��ei�� ST�ei � 0

if �ei is not for broadcasting data.

Proof:

D2��ei� � ST�ei
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� ��sT
3 P4�M4�s

T
4 ��ei

� �sT
3 P4�ei �M4�s

T
4�ei

� �sT
3 P4�ei

�from the constraint (3) in step 1�

� 0 �or, � 0�

�from the constraint (3) in step 2�

Processor Availability Theorem. Two computational nodes that are mapped into a single

processor could not be executed at the same time. To ensure processor availability, T2�ci� ��

T2�c j� must be satisfied for any ci �� c j and n2�ci� � n2�c j�.

Proof: For anyn2�ci� � n2�c j�, P3n3�ci��P3n3�c j� � 0

� n3�ci��n3�c j� is proportional to�d3.

� n3�ci��n3�c j� � P4�ci� c j� � α�d3

SinceN4 is the maximum number of nodes along the�d3 direction in the 3D SFG,

α � f0��1��2� � � � ���N4�1�g.

T2�ci��T2�c j�

� ST �ci� c j�

� ��sT
3 P4�M4�s

T
4 ��ci� c j�

� �sT
3 P4�ci� c j��M4�s

T
4 �ci� c j�

� α�sT
3
�d3�M4�s

T
4 �ci� c j�

1. If P4ci � P4c j, thenα � 0 and

T2�ci��T2�c j� � M4�s
T
4 �ci� c j�

�� 0 �by Eq. (A.1)�
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2. If P4ci �� P4c j, thenα � f�1� � � � ���N4�1�g

(a) If�sT
4 �ci� c j� � 0, then

T2�ci��T2�c j� � α�sT
3
�d3

�� 0 �by the basic constraint of step 2�

(b) If �sT
4 �ci� c j� �� 0, then by assuming�sT

4 �ci� c j� � 0 without losing generality,

we have

T2�ci��T2�c j�

� α�sT
3
�d3�M4�s

T
4 �ci� c j�

� α�sT
3
�d3��1��N4�1��sT

3
�d3��s

T
4 �ci� c j�

� �α ��N4�1��sT
4 �ci� c j���s

T
3
�d3��sT

4 �ci� c j�

� �α ��N4�1���sT
3
�d3��sT

4 �ci� c j� �because�sT
4 �ci� c j�� 1�

� 0��sT
4 �ci� c j� �becauseα �N4�1� 0�

� 0

If �sT
4 �ci�c j�� 0, then letc�i � c j andc�j � ci. The conditionT2�c�i� �� T2�c�j� for

anyc�i �� c�j andn2�c
�
i� � n2�c

�
j� holds. So, the proof will.

Q.E.D. from 1, 2(a), and 2(b).

Multiprojection n-Dimensional DG into k-Dimensional SFG.

Step 1 Let then-dimensional SFG define as then-dimensional DG. That is,nn�cx� � cx

and the�mn��ei� ��ei.

Step 2 We project thel-dimensional SFG into a�l�1�-dimensional SFG by projection

vector�dl (l	1), projection matrixPl (�l�1�	 l), and scheduling vector�sl (l	1)

with basic constraint�sT
l
�dl � 0, Pl�dl � 0, and�sT

l �ml��ei�� (or�) 0��ei.
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The computation nodeci (l	 1) and the data dependence edge�ml��ei� (l 	 1) in l-

dimensional SFG will be mapped into the�l�1�-dimensional SFG by

nl�1�ci� � Plnl�ci� (A.2)

�ml�1��ei� � Pl�ml��ei� (A.3)

Step 3 After �n� k� projections, the results can be combined. The allocation matrix will

be

A � PkPk�1 � � �Pn (A.4)

The scheduling vector will be

ST � �sT
k�1Pk�2Pk�3 � � �Pn

�Mk�2�s
T
k�2 Pk�3Pk�4 � � �Pn

�Mk�2Mk�3�s
T
k�3 Pk�4Pk�5 � � �Pn

...

�Mk�2Mk�3 � � �Mn�sn (A.5)

whereMl � 1��Nl �1��sT
l�1

�dl�1 andNl is the maximum number of nodes along the

�dl�1 direction in thel-dimensional SFG. Therefore,


 Node mapping will be:�
� Tk�ci�

nk�ci�

�
��

�
� ST

A

�
�ci (A.6)


 Edge mapping will be:�
� Dk��ei�

�mk��ei�

�
��

�
� ST

A

�
��ei (A.7)
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Constraints for Processor and Data Availability.

If no transmittance property is assumed, every edge must have at least one delay be-

cause every dependent data is come from previous computation. It is easy to show that data

availability is satisfied, i.e.,Dk��ei�� 0�i.

One can easily show processor availability is also satisfied., i.e.,Tk�ci� �� Tk�c j� for any

ci �� c j andn2�ci� � n2�cj�.

A.2.2 Optimization in Multiprojection

In this operation placement and scheduling scheme, the first step is to find an allocation

A so that both of the following are satisfied. (1) A node in the SFG corresponds to one

unique processor, i.e.,

nk�ci�� pi �nk�ci� � SFG

(2) The amount of the global communication is minimized, i.e.,

min
A

�max
�ei

fA��ei�g� ��ei � DG

After projection directions are fixed, the structure of the array is determined. The re-

maining part of the design is to find a scheduling that (1) can complete the computation in

minimal time and (2) can use a minimal-size cache under processor and data availability

constraint, i.e.,	  

  �

min
S

�max
cx�cy

fST �cx� cy�g� �cx�cy � DG

min
S
f∑

�ei

ST�eig ��ei � DG

A method using quadratic programming techniques is proposed to tackle the optimiza-

tion problem [116]. However, it takes non-polynomial time to find the optimal solution. A

polynomial-time heuristic approach, which uses the branch-and-bound technique and tries

to solve the problem by linear programming, is also proposed [115].
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Here, we propose another heuristic procedure to find a near optimal scheduling in our

multiprojection method. In each single projection, fromi-dimension to�i�1�-dimension,

find an�si by

�si � argmin
�s

�
max

ni�cx��ni�cy�

n
�sT !ni�cx��ni�cy�

"o�

�cx�cy � DG (A.8)

under the following constraints:

1. �sT
i
�di � 0

2. �sT
i �mi��e j�� 0 � j if �i�1�-dimension is not the final goal.

�sT
i �mi��e j�� 0 � j if �i�1�-dimension is the final goal.

This procedure will find a linear scheduling vector in polynomial time, when the given

processor allocation function is linear. Although we have no proof of optimization yet,

several design examples show our method can provide optimal scheduling when the DG is

shift-invariant and the projections directions are along the axes. (Nevertheless, it will still

be an NP-hard problem for all possible processor allocation and time allocation functions.)

A.3 Equivalent Graph Transformation Rules
In Appendix A.1.1 and Appendix A.1.2, some transformation rules of the DG are in-

troduced. In order to have better designs, we also provide some graph transformation rules

that can help us reduce the number of connections between processors, the size of buffer,

or the power consumption. Table A.1 shows a brief summary of the rules.

A.3.1 Assimilarity Rule

As shown in Figure A.7, the assimilarity rule can save some links without changing the

correctness of the DG. If a datum is transmitted to a set of operation/computation nodes in

the DG/SFG by a 2D (or higher-dimensional) mesh, then there are several possible paths



Appendix A: Systematic Operation Placement and Scheduling Scheme 209

for �x 
 �� x � Nh� x���

for �y 
 �� y � Nv� x���

�

for �u 
 �p� u �
 p� u���

for �v 
 �p� v �
 p� v���

�

SAD 
 ��

for �i 
 �� i �
 n� i���

for �j 
 �� j �
 n� j���

SAD 
 SAD � �s�x�n�i�u� y�n�j�v� � r�x�n�i� y�n�j���

if �Dmin 	 SAD�

�

Dmin 
 SAD�

MV�x� y� 
 �u� v��

�

�

�

Figure A.1: The 6D BMA, where Nv is the number of current blocks in the vertical
direction, Nh is the number of current blocks in the horizontal direction, n is the block
size, and p is the search range. The indices x�y�u�v� i� j contribute 6D to the algorithm.
The inner four loops are exactly those as shown in Figure A.3.

Rules Apply to Function Advantages
Assimilarity 2D transmittent data Keep only one edge and delete Save links

the others in the 2nd dimension

Summation 2D accumulation data Keep only one edge and delete Save links
the others in the 2nd dimension

Degeneration 2D transmittent data Reduce a long buffers Save buffers
to a single register

Reformation 2D transmittent data Reduce a long delay Save buffers
to a shorter one

Redirection Order independent data (e.g., Opposite the edge Save problems on
transmittent or accumulation data) negative edges

Table A.1: Graph transformation rules for equivalent DGs. Note that the transmit-
tent data, which are used repeatedly by many computation nodes in the DG (see
Appendix A.1.2), play a critical role here.
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for �a 
 �� a � Nh � Nv� a���

�

x 
 a div Nv�

y 
 a mod Nv�

for �b 
 �� b � ���p��� � ���p���� b���

�

u 
 b div ���p��� � p�

v 
 b mod ���p��� � p�

for �c 
 �� c � n � n� c���

�

i 
 c div n � ��

j 
 c mod n � ��

�

�

�

�

�

(a)

for �j� 
 �� j� � �� j����

for �j� 
 �� j� �
 n � �� j����

SAD 
 SAD � � s�x�n�i�u� y�n�j��n���j��v� � r�x�n�i� y�n�j��n���j�� ��

(b)

Figure A.2: (a) A 3D BMA that folds two loops in Figure A.1 into one loop. (b) On the
other hand, a 7D BMA (x�y�u�v� i� j1� j2 7-dimension) can be constructed by modifying
the inmost loop index j of the original algorithm into two indices j1 and j2.
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for �u 
 �p� u � p� u���

for �v 
 �p� v � p� v���

�

SAD�u� v� 
 ��

for �i 
 �� i � n� i���

for �j 
 �� j � n� j���

SAD�u� v� 
 SAD�u� v� � �s�i � u� j � v� � r�i� j� ��

�

for �u 
 �p� u � p� u���

for �v 
 �p� v � p� v���

if �Dmin 	 SAD�u� v��

�

Dmin 
 SAD�u� v��

MV 
 �u� v��

�

Figure A.3: The pseudo code of the BMA for a single current block. In the process of
the block-matching motion estimation, the current frame is divided into a number of
non-overlapping current blocks, which are (n pixels) � (n pixels). Each of them will be
compared with 2p�2p different displaced blocks in the search area of the previous
frame. SAD is the sum of the absolute differences between the current block and the
displaced block in the search area. The motion vector is the displacement that carries
the minimal SAD.
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for �u 
 �p� u � p� u���

for �v 
 �p� v � p� v���

�

SAD�u� v� �� n� 
 ��

for �i 
 �� i � n� i���

�

SAD�u� v� i� �� 
 SAD�u� v� i � �� n��

for �j 
 �� j � n� j���

SAD�u� v� i� j� 
 SAD�u� v� i� j��� � �s�i�u� j�v� � r�i� j� ��

�

�

for �u 
 �p� u � p� u���

for �v 
 �p� v � p� v���

if �Dmin 	 SAD�u� v� n� n��

�

Dmin 
 SAD�u� v� n� n��

MV 
 �u� v��

�

Figure A.4: A single assignment code of the BMA for a single current block. This
pseudo code is exactly the same as shown in Figure A.3. Every element in the SAD�u�

v� i� j� array will be assigned a value only once—as the name come from.
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for �i 
 �� i � n� i���

for �j 
 �� j � n� j���

�

R�u� �p��� i� j� 
 r�i� j��

S�u� �p��� i� j� 
 s�u�i� �p���j��

�

for �v 
 �p� v � p� v���

�

SAD�u� v� �� n� 
 ��

for �i 
 �� i � n� i���

�

SAD�u� v� i� �� 
 SAD�u� v� i � �� n��

for �j 
 �� j � n� j���

�

R�u� v� i� j� 
 R�u� v��� i� j��

S�u� v� i� j� 
 S�u� v��� i� j����

SAD�u�v�i�j� 
 SAD�u�v�i�j��� � � S�u�v�i�j� � R�u�v�i�j� ��

�

�

�

Figure A.5: An example of the localized recursive BMA. The variables s�u�i� u�j�

and r�i� j� in the inner three loop of the single assignment code shown in Fig-
ure A.4 are replaced by locally-interconnected array S�u�v�i�j� and R�u�v�i�j� re-
spectively.

LPGS

FIFO

LSGP

Figure A.6: There are two methods for mapping the partitioned DG to an array: locally
parallel globally sequential (LPGS) and locally sequential globally parallel (LSGP).
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Figure A.7: (a) A high-dimensional DG, where a datum is transmitted to a set of nodes
by the solid 2D mesh. (b) There are several paths via which the datum can reach a
certain node. (c) During the multiprojection, the dependencies in different directions
get different delays. (d) Because the data could reach the nodes by two possible
paths, the assimilarity rule is applied to this SFG. Only one of the edges in the second
dimension is kept. Without changing the correctness of the algorithm, a number of
links and buffers are reduced.
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Figure A.8: (a) A datum is the summation of a set of nodes by a 2D mesh in an
SFG. During the multiprojection, the dependencies in different directions get different
delays. (b) Without changing the correctness of the algorithm, only one of the edges
in the second dimension is kept. By the summation rule, a number of links and buffers
are reduced.

via which the datum can reach a certain node. For example, in the BMA, thes�i�u�j�v�

can be passed bys��i�����u	���j�v� via loop i, or bys�i�u��j�����v	��� via loop

j. Keeping only one edge in the second dimension is sufficient for the data to reach every-

where.

The procedure of keeping only one edge for a set of edges can save a great number of

interconnection buffers. Usually, this rule is applied after the final SFG is obtained. In this

way, we can get rid of edges with longer delay and more edges.

One of the major drawbacks of this assimilarity rule is that every node must use the

same set of data before this rule can be applied. It is not true for any algorithm that uses a

2D mesh to transmit the data. Generally speaking, the data set of a node greatly overlaps

with the data set of the other nodes but not identically. In order to reduce the connection

edges, we can make all the nodes process the same set of data artificially (i.e., ask the nodes

to do some useless computations) and then apply this rule.

A.3.2 Summation Rule

As shown in Figure A.8, the summation rule can save some links without changing

the correctness of the DG. Because summation is associative, the order of the summation

can be changed. If output is obtained by aggregating a 2D (or higher-dimensional) mesh
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of computational nodes, we can accumulate the partial sum in one dimension first, then

accumulate the total from the partial sum in the second dimension afterward. For example,

in the BMA, the SAD[u,v] is the 2D summation ofj s�i�u� j� v�� r�i� j� j over 1� i� j �

n. We can accumulate the difference over indexi first, or over indexj first. We should

calculate the data in the direction with fewer buffers first, then rigorously calculate the data

in the other direction later.

A.3.3 Degeneration Rule

The degeneration rule reduces the data link when data are transmitted through a 2D (or

higher-dimensional) mesh when (1) each node has its own data set and (2) the data sets of

two adjacent nodes overlap each other significantly. One way to save the buffer is to let the

overlapping data be transmitted from one dimension thoroughly (like that in the assimilarity

rule) and let the non-overlapping data be transmitted from the other dimension(s) (unlike

that in the assimilarity rule). In the second dimension, it is only necessary to keep non-

overlapping data. Figure A.9 shows that only a register is required because the other data

could be obtained by the other direction.

A.3.4 Reformation Rule

For 2D or higher-dimensional transmittent data, the structure of the mesh is not rigid.

For example, in the BMA, thes�i�u� j�v� can be passed bys��i�k���u	k�� j�v�

via loop i and bys�i�u� �j�k���v	k�� via loop j for 1� k � n. For a differentk, the

structure of the 2D transmittent mesh is different. The final delay in the designed SFG

will be different. As a result, we should choosek, depending on the required buffer size.

Generally speaking, the shorter the delay, the fewer the buffers.

For example, Figure A.10(a) shows a design after applying the assimilarity rule. Only

a long delayed edge was left. Moreover, the data are transmitted to the whole array. So,

we detour the long delayed edge, make use of the delay in the first dimension, and get the
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Figure A.9: (a) When transforming an SFG description to a systolic array, the con-
ventional delay management uses �m�1� registers for m units of delay on the links.
(b) If the data sets of two adjacent nodes overlap each other, the degeneration rule
suggests that only a register is required because the other data could be obtained by
the other direction.
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Figure A.10: (a) A high-dimensional DG, where a datum is transmitted to a set of
nodes by a 2D mesh, is projected onto an SFG. During the multiprojection, the de-
pendencies in different directions get different delays. Because the data could reach
the nodes by more than two possible paths, the assimilarity rule is applied to this
SFG. Only one of the edges in the second dimension is kept. (b) The delay (i.e., the
number of buffers) could be further decreased when the reformation rule transforms
the original 2D mesh into a tilted mesh.
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Figure A.11: (a) Generally speaking, an SFG with a negative delay is not permissible.
(b) However, if the dependencies have no polarization, then we apply the redirection
rule to direct the edges with negative delay to the opposite direction. After that, the
SFG become permissible.

design shown in Figure A.10(b), where the longest delay is much shorter now.

A.3.5 Redirection Rule

Because some operations are associative (e.g., summation data, transmittent data), the

arcs in the DG are reversible. The arcs are reversed to help the design. For example, the

datums��i�����u	��� j�v� is passed tos�i�u� j�v� via loop i in the BMA. After

mapping the DG to a SFG, the delay on the edge is negative. Conventionally, negative

delay is not allowed and we must find another scheduling vector�s. This rule tells us to

move the data in the opposite direction (passing thes�i�u� j�v� to s��i�����u	���

j�v�) instead of re-calculating the scheduling vector (cf. Figure A.11).

A.3.6 Design Optimization vs. Equivalent Transformation Rules

All these rules do not modify the correctness of the implementation, but could accom-

plish some degree of design optimization.

1. The assimilarity rule and the summation rule have no influence on the overall calcula-

tion time. However, these two rules reduce the buffers and links. Generally speaking,

these two rules are applied after the SFG is yielded.
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2. The degeneration rule does not influence the overall calculation time. It is applied

when one would like to transform the SFG into hardware design. It helps the reduc-

tion of the buffers and links. However, extra control logic circuits are required.

3. The reformation rule and the redirection rule will have influence on the scheduling

problem because these two rules can make some prohibited scheduling vectors be-

come permissible.

These rules help the design optimization but also make the optimization process harder.

Sometimes, the optimization process will become a reiterative procedure that consists of

(1) scheduling optimization and (2) equivalent transformation.

A.3.7 Locally Parallel Globally Sequential and Locally Sequential

Globally Parallel Systolic Design by Multiprojection

In Appendix A.1.4, LPGS and LSGP were introduced briefly. In this section, we delin-

eate a unified partitioning and scheduling scheme for LPGS and LSGP into our multipro-

jection method. The advantage of this unified partitioning model is that various partition-

ing methods can be achieved by choosing projection vectors. The systematic scheduling

scheme can explore more inter-processor parallelism.

Equivalent Graph Transformation Rules for Index Folding.

A unified re-indexing method is adopted to fold original DG into a higher-dimensional

DG but with a smaller size in a chosen dimension. Then, our multiprojection approach

is applied to obtain the LPGS or LSGP designs. The only difference between LPGS and

LSGP under our uniform approaches is the order of the projection. Our approach is even

better in deciding the scheduling because our scheduling is automatically inherited from

multiprojection scheduling instead of hierarchical scheduling.
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Index Folding.

In order to map an algorithm into a systolic array by LPGS or LSGP, we propose a

re-indexing method for the computational nodes into a higher-dimensional DG problem.

An example is shown in Figure A.12. We want to map a 2	6 DG into a smaller 2D

systolic array. Letu�v be the indices (0� u� 1, 0� v� 5) of the DG.

First, we will re-index all the computational nodes�u�v� into �u�a�b�. The 2D DG

becomes a 3D DG (2	2	3) where ana means 3 units ofv, a b means 1 unit ofv, and

0� a � 1, 0� b � 2. Then, a node at�u�a�b� in the 3D DG is equivalent to the node at

�u��3a�b�� in the original 2D DG.

After this, by multiprojection, we can have the following two partitioning methods:

1. LPGS

If we project the 3D DG along thea direction, then the nodes that are close to each

other in thev direction will be mapped into the different nodes. That is, the compu-

tation nodes are going to be executed in parallel. This is an LPGS partitioning.

2. LSGP

If we project the 3D DG alongb, then the nodes that are close to each other in the

v direction will be mapped into the same node. That is, the computation nodes are

going to be executed in a sequential order. This is an LSGP partitioning.

Note that we must be careful about the data dependency after transformation. One unit

of original v will be 0 unit of a and 1 unit ofb when the dependence edge does not move

across different packing segments. (In the example, a packing segment consists of all the

computation nodes within three units of sequentialv. That is, the packing boundary is when

3 dividesv.) One unit of thev is 1 unit of thea and -2 unit of theb when the dependence

edge crosses the packing boundary of the transformed DG one time.
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Figure A.12: (a) shows a 2�6 DG. (b) shows an equivalent 2�3�2 DG after index
folding. (c) an LPGS partitioning when we project the 3D DG along the a direction.
(d) an LSGP partitioning when we project the 3D DG along the b direction.



Bibliography

[1] “H.263 Test Sequence.”ftp
��bonde�nta�no�pub�tmn�qcif source.

[2] “MPEG-4 Requirements Document.” ISO/IEC JTC1/SC29/WG11 Coding of Mov-

ing Pictures and Associated Audio MPEG98/W2194, Mar. 1998.

[3] “MPEG-4 Video Verification Model V7.0.” ISO/IEC JTC1/SC29/WG11 Coding of

Moving Pictures and Associated Audio MPEG97/N1642, Apr. 1997.

[4] “MPEG-7 Requirements Document.” ISO/IEC JTC1/SC29/WG11 Coding of Mov-

ing Pictures and Associated Audio MPEG98/N2208, Mar. 1998.

[5] Proc. of Int’l Solid-State Circuits Conference, Feb 1997.

[6] “Will HDTV Be Must-See?” Time, p. 41., April 13 1998.

[7] P. Anandan, “A Computational Framework and an Algorithm for the Measurement

of Visual Motion,” International Journal of Computer Vision, vol. 2, no. 3, pp. 283–

310, 1989.

[8] J. L. Barron, D. J. Fleet, and S. S. Beacuchemin, “Systems and Experiment Per-

formance of Optical Flow Techniques,”International Journal of Computer Vision,

vol. 13, no. 1, pp. 43–77, 1994.

[9] M. Bierling, “Displacement Estimation by Hierarchical Block Matching,” inProc. of

SPIE Visual Communication and Image Processing, vol. 1001, pp. 942–951, 1988.

222



BIBLIOGRAPHY 223

[10] R. Castagno, P. Haavisto, and G. Ramponi, “A Method for Motion Adaptive Frame

Rate Up-conversion,”IEEE Trans. on Circuits and Systems for Video Technology,

vol. 6, no. 5, pp. 436–446, Oct. 1996.

[11] J. Chalidabhongse and C.-C. J. Kuo, “Fast Motion Vector Estimation Using

Multiresolution-Spatio-Temporal Correlations,”IEEE Trans. on Circuits and Sys-

tems for Video Technology, vol. 7, no. 3, pp. 477–488, June 1997.

[12] S. Chang, J.-H. Hwang, and C.-W. Jen, “Scalable Array Architecture Design for Full

Search Block Matching,”IEEE Trans. on Circuits and Systems for Video Technology,

vol. 5, no. 4, pp. 332–343, Aug. 1995.

[13] F. Chen, J. D. Villasenor, and D. S. Park, “A Low-Complexity Rate-Distortion Model

for Motion Estimation in H.263,” inProc. of IEEE Int’l Conf. on Image Processing,

vol. II, pp. 517–520, Sept. 1996.

[14] M. C. Chen and A. N. Willson, Jr., “Rate-Distortion Optimal Motion Estimation

Algorithm for Video Coding,” inProc. of IEEE Int’l Conf. on Acoustics, Speech,

and Signal Processing, vol. IV, pp. 2098–2111, May 1996.

[15] Y.-K. Chen and S. Y. Kung, “A Multi-Module Minimization Neural Network for

Motion-Based Scene Segmentation,” inProc. of IEEE Workshop on Neural Net-

works for Signal Processing, (Kyoto, Japan), Sept. 1996.

[16] Y.-K. Chen and S. Y. Kung, “A Systolic Design Methodology with Application to

Full-Search Block-Matching Architectures,”Journal of VLSI Signal Processing Sys-

tems, vol. 19, no. 1, pp. 51–77, 1998.

[17] Y.-K. Chen and S. Y. Kung, “An Operation Placement and Scheduling Scheme for

Cache and Communication Localities in Fine-Grain Parallel Architectures,” inProc.



BIBLIOGRAPHY 224

of Int’l Symposium on Parallel Architectures, Algorithms and Networks, (Taipei,

Taiwan), pp. 390–396, Dec. 1997.

[18] Y.-K. Chen and S. Y. Kung, “Multimedia Signal Processors: An Architectural Plat-

form with Algorithmic Compilation,”Journal of VLSI Signal Processing Systems,

vol. 20, no. 1/2, Oct. 1998.

[19] Y.-K. Chen and S. Y. Kung, “Rate Optimization by True Motion Estimation,” in

Proc. of IEEE Workshop on Multimedia Signal Processing, (Princeton, NJ), pp. 187–

194, June 1997.

[20] Y.-K. Chen, Y.-T. Lin, and S. Y. Kung, “A Feature Tracking Algorithm Using Neigh-

borhood Relaxation with Multi-Candidate Pre-Screening,” inProc. of IEEE Int’l

Conf. on Image Processing, vol. II, (Lausanne, Switzerland), pp. 513–516, Sept.

1996.

[21] Y.-K. Chen, H. Sun, A. Vetro, and S. Y. Kung, “True Motion Vectors for Robust

Video Transmission,” inProc. of SPIE Visual Communications and Image Process-

ing, Jan. 1999.

[22] Y.-K. Chen, A. Vetro, H. Sun, and S. Y. Kung, “Frame Rate Up-Conversion and

Interlaced-to-Progressive Scan Conversion Using Transmitted True Motion,” sub-

mitted to1998 Workshop on Multimedia Signal Processing, Dec. 1998.

[23] Y.-K. Chen, A. Vetro, H. Sun, and S. Y. Kung, “Optimizing INTRA/INTER Cod-

ing Mode Decisions,”ISO/IEC JTC/SC29/WG11 (Coding of Moving Pictures and

Associated Audio) M2884, Oct. 1997.

[24] Y.-K. Chen, A. Vetro, H. Sun, and S. Y. Kung, “Rate Optimization Based on True

Motion,” ISO/IEC JTC/SC29/WG11 (Coding of Moving Pictures and Associated Au-

dio) M2235, July 1997.



BIBLIOGRAPHY 225

[25] L. Chol, H.-B. Lim, and P.-C. Yew, “Techniques for Compiler-Directed Cache Co-

herence,”IEEE Parallel and Distributed Technology, vol. 4, no. 4, pp. 23–34, Winter

1996.

[26] Chromatic Research, “Mpact 2 Media Processor Data Sheet.”http
��

www�mpact�com�tech�mpact�pdf, Feb. 1998.

[27] K.-W. Chun and J.-B. Ra, “An Improved Block Matching Algorithm Based on Suc-

cessive Refinement of Motion Vector Candidates,”Signal Processing: Image Com-

munication, no. 6, pp. 115–122, 1994.

[28] G. de Haan and E. B. Bellers, “De-interlacing of video data,”IEEE Trans. on Con-

sumer Electronics, vol. 43, no. 3, pp. 819–824, Aug. 1997.

[29] G. de Haan, P. W. A. C. Biezen, H. Huijgen, and O. A. Ojo, “True-Motion Estimation

with 3-D Recursive Search Block Matching,”IEEE Trans. on Circuits and Systems

for Video Technology, vol. 3, no. 5, pp. 368–379, Oct. 1993.

[30] G. de Haan and P. W. Biezen, “Sub-Pixel Motion Estimation with 3-D Recursive

Search Block-Matching,”Signal Processing: Image Communication, vol. 6, no. 3,

pp. 229–239, Jun 1994.

[31] L. De Vos, “VLSI-Architectures for the Hierarchical Block-Matching Algorithm for

HDTV Applications,” inProc. of SPIE Visual Communications and Image Process-

ing, vol. 1360, pp. 398–409, 1990.

[32] L. De Vos and M. Stegherr, “Parameterizable VLSI Architectures for Full-Search

Block-Matching Algorithm,”IEEE Trans. on Circuits and Systems, vol. 36, no. 10,

pp. 1309–1316, Oct. 1989.



BIBLIOGRAPHY 226

[33] G. Demos, “MPEG-2 Video Adjustments For Advanced Layered Coding.”

ISO/IEC JTC1/SC29/WG11 Coding of Moving Pictures and Associated Audio

MPEG98/M2975, Feb. 1998.

[34] L. Dreschler and H.-H. Nagel, “Volumetric Model and 3D Trajectory of a Moving

Car Derived from Monocular TV Frame Sequences of a Street Scene,”Computer

Graphics and Image Processing, no. 20, pp. 199–228, 1982.

[35] F. Dufaux and M. Kunt, “Multigrid Block Matching Motion Estimation With an

Adaptive Local Mesh Refinement,” inProc. of SPIE Visual Communication and

Image Processing, vol. 1818, pp. 97–109, 1992.

[36] F. Dufaux and F. Moscheni, “Motion Estimation Techniques for Digital TV: A Re-

view and a New Contribution,”Proceedings of the IEEE, vol. 83, no. 6, pp. 858–876,

June 1995.

[37] J.-L. Dugelay and H. Sanson, “Differential Methods for the Identification for 2D

and 3D Motion Models in Image Sequences,”Signal Processing: Image Communi-

cation, vol. 7, no. 1, pp. 105–127, Mar. 1995.

[38] S. Dutta, A. Wolfe, W. Wolf, and K. J. O’Connor, “Design Issues for Very-Long-

Instruction-Word VLSI,” in VLSI Signal Processing (W. Burleson, K. Konstan-

tinides, and T. Meng, eds.), vol. IX, pp. 95–104, 1996.

[39] S. J. Eggers, J. S. Emer, H. M. Levy, J. L. Lo, R. L. Stamm, and D. M. Tullsen,

“Simultaneous Multithreading: A Platform for Next-Generation Processors,”IEEE

Micro, vol. 17, no. 5, pp. 12–19, Sept./Oct. 1997.

[40] C. Fan, N. Namazi, and P. Penafiel, “New Image Motion Estimation Algorithm

Based on the EM Technique,”IEEE Trans. on the Pattern Analysis and Machine

Intelligence, vol. 18, no. 3, pp. 348–352, Mar. 1996.



BIBLIOGRAPHY 227

[41] Federal Communications Commission, “Final Report and Recommendation of the

Federal Communications Commision Advisory Committee on Advanced Television

Service.”http
��www�atsc�org�finalrpt�html, Nov. 1995.

[42] P. J. S. G. Ferreira, “Incomplete Sampling Series and the Recovery of Missing Sam-

ples from Oversampled Band-Limited Signals,”IEEE Trans. on Signal Processing,

vol. 40, no. 1, pp. 225–227, Jan. 1992.

[43] E. Francois, J.-F. Vial, and B. Chupeau, “Coding Algorithm with Region-Based Mo-

tion Compensation,”IEEE Trans. on Circuits and Systems for Video Technology,

vol. 7, no. 1, pp. 97–108, Feb. 1997.

[44] K. Gaedke, H. Jeschke, and P. Pirsch, “A VLSI Based MIMD Architecture of a

Multiprocessor System for Real-Time Video Processing Applications,”Journal of

VLSI Signal Processing, vol. 5, no. 2-3, pp. 159–169, Apr 1993.

[45] D. L. Gall, “MPEG: A Video Compression Standard for Multimedia Applications,”

Communications of the ACM, vol. 34, no. 4, Apr. 1991.

[46] W. Gao and X. Chen, “Stochastic Approach for Blurred Image Restoration and Opti-

cal Flow Computation on Field Image Sequence,”Journal of Computer Science and

Technology, vol. 12, no. 5, pp. 385–399, Sept. 1997.

[47] S.-C. Han and J. W. Woods, “Frame-rate Up-conversion Using Transmitted Motion

and Segmentation Fields for Very Low Bir-rate Video Coding,” inProc. of IEEE

Int’l Conf. on Image Processing, vol. II, pp. 747–750, Oct. 1997.

[48] A. R. Hurson, K. M. Kavi, B. Shirazi, and B. Lee, “Cache Memories for Data Sys-

tems,” IEEE Parallel and Distributed Technology, vol. 4, no. 4, pp. 50–64, Winter

1996.



BIBLIOGRAPHY 228

[49] Y.-T. Hwang and Y.-H. Hu, “A Unified Partitioning and Scheduling Scheme for

Mapping Multi-Stage Regular Iterative Algorithms onto Processor Arrays,”Journal

of VLSI Signal Processing Applications, vol. 11, pp. 133–150, Oct. 1995.

[50] Intel, “Intel MMX Technology–Developer’s Guide.” http
��

developer�intel�com�drg�mmx�manuals�dg�devguide�htm, 1997.

[51] ITU Telecommunication Standardization Sector, “ITU-T Recommendation H.263

Video Coding for Low Bitrate Communication.”ftp
��ftp�std�com�vendors�

PictureTel�h���, May 1996.

[52] J. C.-H. Ju, Y.-K. Chen, and S. Y. Kung, “A Fast Algorithm for Rate Optimized Mo-

tion Estimation,” inProc. of Int’l Symposium on Multimedia Information Processing,

(Taipei, Taiwan), pp. 472–477, Dec. 1997.

[53] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active Contour Models,”Inter-

national Journal of Computer Vision, vol. 1, no. 4, pp. 321–331, 1988.

[54] K. Kawaguchi and S. K. Mitra, “Frame Rate Up-Conversion Considering Multiple

Motion,” in Proc. of IEEE Int’l Conf. on Image Processing, vol. I, pp. 727–730,

1997.

[55] J. Kim and J. W. Woods, “3-D Kalman Filter for Image Motion Estimation,”IEEE

Trans. on Image Processing, vol. 7, no. 1, pp. 42–52, Jan. 1998.
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