
SEWASIE
Semantic Webs and AgentS in Integrated Economies
IST-2001-34825

WP3
Task T3.2
Deliverable D3.2.A

Techniques for query reformulation, query
merging, and information reconciliation – Part
A

(FINAL , 22/05/2003)

Abstract – The purpose of this document is to define a general technique
for query reformulation and query processing within one SIN-
ode in Sewasie. The structure of one SINode and the process
of query reformulation is based on the idea that an SINode
in Sewasie is considered as a data integration system frame-
work with a global schema with key and foreign key constraints.
Queries are posed in terms of the global schema, in particular
as unions of conjunctive queries. Query processing is consti-
tuted by several steps. The first step is realized through an
algorithm for expanding the query according the integrity con-
straints in the global schema. The second step materializes
the global classes that are relevant for the query, based on the
data stored in the local classes. The third step materializes the
corresponding local classes, by accessing the relevant external
sources. Finally, the fourth step evaluates the expanded query
over the materialized global classes.

Zoran Majkić
UNIROMA



SEWASIE project — IST FP5 Programme — IST-2001-34825

Document information

Document ID code D3.2.A
Keywords Query Expander, Query reformulation, Single-class atoms
Classification FINAL Date of reference 22/05/2003
Distribution level Sewasie Partners of the Sewasie consortium, and EU commission

Editor Zoran Majkić UNIROMA
Authors Maurizio Lenzerini UNIROMA

Zoran Majkić UNIROMA
Domenico Beneventano UNIMO
Federica Mandreoli UNIMO

Reviewer Maurizio Vincini UNIMO

Version history
Date Version Description
01/05/2003 1 Draft version
05/05/2003 2 Draft version
10/05/2003 3 Draft version
22/05/2003 4 Final

Copyright notices

c© 2002 SEWASIE Consortium. All rights reserved. This document is a project document of the
SEWASIE project. All contents are reserved by default and may not be disclosed to third parties
without the written consent of the SEWASIE partners, except as mandated by the European
Commission contract IST-2001-34825 for reviewing and dissemination purposes.

All trademarks and other rights on third party products mentioned in this document are ac-
knowledged as owned by the respective holders.

Page 2 of 22 Techniques for query reformulation, query merging, and information reconciliation – Part A 22/05/2003

FINAL



SEWASIE project — IST FP5 Programme — IST-2001-34825

Contents

1 Executive summary 4

2 Query management in the context of SEWASIE 5

3 Query processing within one SINode: The general approach 5
3.1 The structure of an SINode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Semantics of an SINode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3 Queries posed to one SINode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.4 Query processing: overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Query expansion 9
4.1 Preliminary definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2 The algorithm FKrewrite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.3 Soundness and completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5 Global class materialization 13
5.1 Full Disjunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.2 Single Class Query Rewriting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

6 Local class materialization 20

7 Evaluation of the expanded query 20

8 Conclusions 20

22/05/2003

FINAL

Techniques for query reformulation, query merging, and information reconciliation – Part A Page 3 of 22



SEWASIE project — IST FP5 Programme — IST-2001-34825

1 Executive summary

This document is the first part (Part A) of the deliverable D3.2: “Techniques for query reformula-
tion, query merging, and information reconciliation”.

The goal of the document is to illustrate the basic startegy to answer queries posed to an SIN-
ode in the Sewasie architecture. The rest of the document is organized in 7 sections. In Section
2 we present a general description of query management in the context of Sewasie. Section 3
presents both the structure of an SINode, and the general overview of query processing within
an SINode. The remaining sections illustrate the characteristics of the various steps of query
processing. In particular, Section 4 describes the algorithm for expanding the query according
the integrity constraints in the global schema, Section 5 and 6 illustrate the process of materializ-
ing the global classes, and the local classes, respectively, and Section 7 presents the method for
evaluating th expanded query based on the materialized global classes.

While the present document concentrates on the task of query answering within one SINode,
there are several aspects of query processing in Sewasie that are left out in the present analysis.
These aspects will be the subject of the second part (part B) of this deliverable.

Page 4 of 22 Techniques for query reformulation, query merging, and information reconciliation – Part A 22/05/2003

FINAL



SEWASIE project — IST FP5 Programme — IST-2001-34825

2 Query management in the context of SEWASIE

As we illustrated in [6], in Sewasie, the query agent is the carrier of the user query from the user
interface to the SINodes, where concrete data are located. One basic task of the query agent is to
interact with the brokering agents, in order to solve the query. Starting from a specified brokering
agent, the query agent initiates a process constituted by a series of interactions with the various
brokering agents, with the goal of getting information on the matter of interest from the SINodes
managed by these brokering agents (see Section 6 of [4]).

A typical interaction between a query agent and a brokering agent may imply that the bro-
kering agent will provide directions to relevant SINodes and information on SINode contents, or
reference the query agent to other brokering agents. The query agent will then move to such
SINodes and query them, or may move on to the other brokering agents to ask them for direc-
tions again. During this process, the query agent is informed by the brokering agents about which
SINodes contain relevant data, so that the query agent may access such SINodes, collect partial
answers and integrate them. It follows that the query agent should be able to:

1. interact with relevant brokering agents,

2. ask the various SINodes the right information, according to a specific query plan.

The problem of designing techniques to be used by the query agent in order to decide which
brokering agents to contact (item 1 above), and how to interact with them, will be addressed in
the second part (part B) of this deliverable. Such second part will be produced later on in the
project, in particular at month 25, when the second release of the prototype will be delivered.

As for item (2) above, it is essential that the query asked to the SINode is answered correctly
and completely by the SINode itself. This task is accomplished by the Query manager of the
SINode. In this part (part A) of the deliverable, we will concentrate only on this task. In other
words, in the rest of this document, we deal with the problem of answering a query posed to
an SINode. As we said before, this task is carried out by the query manager of the SINnode of
interest, and is characterized as follows: Given a query posed in terms of the virtual global view
associated to the SINode, derive a query plan that is able to correctly access the data sources
under the control of that SINode, and execute the query according to this plan.

3 Query processing within one SINode: The general approach

A query issued to an SINode is managed by the query manager associated to such SINode. The
Query Manager of an SINode is the coordinated set of functions which take an incoming query,
define a decomposition of the query according with the mapping of the global virtual view of the
SINode onto the specific data sources available and relevant for the query, sends the queries to
the wrappers in charge of the data sources, collects their answers, performs any residual filtering
as necessary, and finally delivers whatever is left to the requesting query agent.

For all the issues regarding the structure of the SINodes, especially those related to the repre-
sentation of the ontology managed by SINodes, we refer the reader to [5]. In the next subsection,
we provide an overview of the most important features related to query processing. We then
specify the formal semantics of an SINode, and the notion of query posed to an SINode. Finally,
we provide an overview of query processing within one SINode.

3.1 The structure of an SINode

We conceive a single SINode as a data integration system based on a so-called global schema.
In other words, each SINode combines the data residing at different sources, and provide the
external user with a unified view of these data. Such a unified view is represented by the global
schema (also called Global Virtual View), and provides a reconciled view of all data, which can

22/05/2003

FINAL

Techniques for query reformulation, query merging, and information reconciliation – Part A Page 5 of 22



SEWASIE project — IST FP5 Programme — IST-2001-34825

be queried by the user. Obviously, one of the main task in the design of an SINode is to establish
the mapping between the sources and the global schema. Such a mapping should be suitably
taken into account in formalizing the notion of SINode.

It follows that, from the perspective of the query manager, the main components of an SINode
are the global schema, the sources, and the mapping. Therefore, we formalize a SINode as
follows.

Definition 1 An SINode I is a triple 〈G,S,M〉, where

• G is the global schema, expressed in a language LG over an alphabet AG .

• S is the source schema, expressed in a language LS over an alphabet AS . The alphabet
AS includes a symbol for each source accessible by the SINode.

• M is the mapping between G and S.

Next, we discuss how the three components are specialized in the context of Sewasie.

Global schema The global schema is expressed in terms of an object-oriented data model.
However, such schema is translated into the relational model. Therefore, the language LG
in our context is the relational model, and the alphabet AG is the set of global class names,
with the obvious correspondence of one relation for each global class. More precisely,
the language LG in our context is constituted by the relational model with two kinds of
constraints:

• Key constraints: given a relation r in the schema, a key constraint over r is expressed
in the form key(r) = A, where A is a set of attributes of r. Such a constraint is satisfied
in a database DB if for each t1, t2 ∈ extrDB, with t1 �= t2, we have t1[A] �= t2[A], where
t[A] is the projection of the tuple t over A. In the following, we assume that every
relation in the global schema has one and only one key. Also, we assume without
loss of generality, that the attributes constituting the key of a relation r are the first h
attributes, i.e., key(r) = {1, . . . , h}, for an h ≤ arity(r).

• Foreign key constraints: a foreign key constraint is a statement of the form r1[A] ⊆
r2[B], where r1, r2 are relations, A is a sequence of distinct attributes of r1, and B
is key(r2), i.e., the sequence [1, . . . , h] constituting the key of r2. Such a constraint
is satisfied in a database DB if for each tuple t1 in extr1DB there exists a tuple t2 in
extr2DB such that t1[A] = t2[B].

Source schema The source schema is again expressed in terms of the relational model. There-
fore, the language LS in our context is the relational model, and the alphabet AS is the set
of local class name, with the obvious correspondence of one relation for each local class.
It is important to note that local classes are internal entities representing external sources,
in the sense that each local class has a link with a corresponding external source, where
external data are loacted. The correspondence between local classes and external sources
is realized by means of a further layer (that we can call the wrapping layer ), that associates
to each local class a query over the external sources. In this part (part A) of the deliverable,
we will not delve into the details of the wrapping layer. We will simply assume in the follow-
ing that the wrapping layer is able to specify how to extract the data from the sources, so
as to correctly populate the local classes. A more detailed description of the wrapping layer
will be presented in the second part (part B) of this deliverable.

Mapping In Sewasie, the various SINodes follow the Global-as-view (GAV) approach. In the
GAV approach, the mapping M associates to each element g in G a query qS over S. The
following properties further characterize how the mapping is specified in Sewasie.

• To every global class C a set of local classes is associated. Only data coming from
such local classes will be used to get instances for the class C.

Page 6 of 22 Techniques for query reformulation, query merging, and information reconciliation – Part A 22/05/2003

FINAL



SEWASIE project — IST FP5 Programme — IST-2001-34825

• Sources are considered sound, which implies that the global classes may have more
instances than those retrieved from the data of the local sources, according to the
mapping.

• The query associated to C retrieves the data ensuring that, in every instance of the
global schema, no two objects with the same value of the key of C exist. This property
is particularly important, because it implies that the mapping incorporates data clean-
ing/transformation functions, that are activated when data are loaded into the global
classes.

3.2 Semantics of an SINode

As for the semantics of an SINode, a database (DB) for a schema G is simply a collection of sets
of objects, one set for each global class in the alphabet of G. Note that, since every global class
has a key, there is an obvious correspondence between objects of a global class C and tuples of
the relation represented by C: indeed, there is one object for every value of the key.

In order to assign semantics to an SINode I = 〈G,S,M〉, we start by considering a local
database for I, i.e., a database D that conforms to the local classes of S. Based on D, we now
specify which is the information content of the global schema G. We call global database for I
any database for G.

Definition 2 A global database B for I is said to be legal with respect to D, if:

• B is legal with respect to G, i.e., B satisfies all the constraints of G;

• B satisfies the mapping M with respect to D.

The notion of B satisfying the mapping M with respect to D depends on the approach adopted
for assigning meaning to the mapping. In the GAV approach, the one adopted in our context, the
mapping M associates to each element g in G a query qS over S. Therefore, a GAV mapping is
a set of assertions, one for each element g of G, of the form

qS � g

Definition 3 A database B satisfies the assertion qS � g with respect to a local database D if

qDS ⊆ gB

where qDS is the result of evaluating the query qS over the source database D.

Roughly speaking, the logical characterization of GAV is therefore through the first order as-
sertions

∀x qS(x) → g(x)

It is interesting to observe that the implicit assumption in many GAV proposals is the one
of exact views. Indeed, in a setting where all the views are exact, there are no constraints in
the global schema, and a first order query language is used as LM,S , a GAV data integration
system enjoys what we can call the “single database property”, i.e., it is characterized by a single
database, namely the global database that is obtained by associating to each element the set of
tuples computed by the corresponding view over the sources. This motivates the widely shared
intuition that query processing in GAV is easier than in LAV. However, it should be pointed out
that the single database property only holds in such a restricted setting.

In particular, the possibility of specifying constraints in G greatly enhances the modeling power
of GAV systems, especially in those situations where the global schema is intended to be ex-
pressed in terms of a conceptual data model, or in terms of an ontology [1]. In these cases,
the language LG is in fact sufficiently powerful to allow for specifying, either implicitly or explicitly,
various forms of integrity constraints on the global database.

22/05/2003

FINAL

Techniques for query reformulation, query merging, and information reconciliation – Part A Page 7 of 22



SEWASIE project — IST FP5 Programme — IST-2001-34825

3.3 Queries posed to one SINode

Queries to I are posed in terms of the global schema G, and are expressed in a query language
LQ over the alphabet AG . A query is intended to provide the specification of which data to extract
from the virtual database represented by the SINode. We will restrict our attention to unions of
conjunctive queries. In other words, the language LQ in the context of Sewasie is the language
of unions of conjunctive queries. Formally, a conjunctive query q of arity n is written in the rule-
based form

q(x1, . . . , xn) ←− body(x1, . . . , xn, y1, . . . , ym)
where:

• q belongs to a new alphabet Q (the alphabet of queries),

• body(x1, . . . , xn, y1, . . . , ym) is a conjunction of atoms involving the variables x1, . . . , xn, y1, . . . , ym,
and a set of constants from Γ, and

• the predicate symbols of the atoms are in G.

Note that, since all variables x1, . . . , xn in the head appear also in the body, we are dealing with
safe conjunctive queries.

We now specify the semantics of queries posed to an SINode. As we said before, such
queries are expressed in terms of the symbols in the global schema of I.

Definition 4 If q is a query of arity n and DB is a database, we denote with qDB the set of tuples
(of arity n) in DB that satisfy q.

Definition 5 Given a local database D for I, the answer qI,D to a query q with respect to I and
D, is the set of tuples t such that t ∈ qB for every global database B that is legal for I with respect
to D, i.e. such that t is an answer to q over every database B that is legal for I with respect to D.
The set qI,D is called the set of certain answers to q in with respect to I and D.

Note that, from the point of view of logic, finding certain answers is a logical implication problem:
check whether it logically follows from the information on the sources that t satisfies the query.

The answer to a conjunctive query q of arity n over a database B for G, denoted qB, is the set
of n-tuples of constants (c1, . . . , cn), such that, when substituting each ci for xi, the formula

∃(y1, . . . , yn).body(x1, . . . , xn, y1, . . . , ym)

evaluates to true in DB. Note that the answer to q over B is a relation whose arity is equal to the
arity of the query q. Finally, the answer to a union of conjunctive queries over a database B for G
is the union of the answers to the component conjunctive queries.

3.4 Query processing: overview

Query processing within one SINode is constituted by the following phases:

1. Query Expansion : the query is expanded to take into account the integrity constraints in
the global schema.

2. Global class materialization : the atoms in the expanded query are materialized by taking
into account the mapping to the local classes.

3. Local class materialization : in order to materialize the global classes, another material-
ization step is required, namely the one that retrieves the data from the external sources,
and stores them into the local classes.

4. Evaluation of the expanded query : when all the global classes that are relevant for the
query are materialized, the expanded query is submitted to the SQL Engine to obtain the
answer of the original query.

The following sections are devoted to explaining the main features of the above described
steps of our query processing strategy.

Page 8 of 22 Techniques for query reformulation, query merging, and information reconciliation – Part A 22/05/2003

FINAL



SEWASIE project — IST FP5 Programme — IST-2001-34825

4 Query expansion

Query expansion amounts to rewriting the query Q posed to a global schema G into a new query
Q′, in such a way that all the knowledge about the constraints in G has been “compiled” into Q′.
The goal of the rewriting step in our approach is made explicit in the following definition. The
definition makes use of the notion of retrieved global database.

Definition 6 If D is a local database for the data integration system I = 〈G,S,M〉, then the re-
trieved global database M(D) is the global database obtained by computing, for every element
of G, the query associated to it by M over the local database D.

We remind the reader that, according to what we said before, we assume that, for every D,
the retrieved global database M(D) satisfies all key constraints in G.

Definition 7 Let I = 〈G,S,M〉 be a data integration system of an SINode, and let Q be a query
(union of conjunctive queries) over G. Then Q1 is called a perfect rewriting of Q wrt I if, for
every local database D, QI,D = Q

M(D)
1 .

In this section we briefly recall from [2, 3] the main properties of an algorithm that computes
a perfect rewriting of a query Q wrt I, or, simply, wrt to a global schema G. The above definition
states that the algorithm rewrites a query expressed over the global schema of an SINnode into
a new query in such a way that the result of the expanded query over a schema obtained by
the original global schema by ignoring the integrity constraints, is the same as the result of the
original query over the original global schema. The algorithm is described in more detail in [3].

As we said before, we assume that the mapping is defined in such a way that no key constraint
is violated when we load data from the local classes to the global classes. It follows that key
constraints are are taken into account by the global class materializer, in particular through the
cleaning strategy it implements. It follows that the only integrity constraints we should consider in
the following are only the foreign key constraints.

4.1 Preliminary definitions

Given a conjunctive query q, we say that a variable X is unbound in q if it occurs only once in q,
otherwise we say that X is bound in q. Notice that variables occurring in the head of the query
are necessarily bound, since each of them must also occur in the query body. A bound term is
either a bound variable or a constant.

Following the standard notation used in deductive databases, we adopt a special symbol for
all unbound variables in the query q: specifically, we use the special term “ξ” for such variables
(deductive database systems use the symbol “ ” to this purpose).

Definition 8 Given an atom g = s(X1, . . . , Xn) and a foreign key constraint (FK) I = r[i1, . . . , ik] ⊆
s[j1, . . . , jk], we say that I is applicable to g if the following conditions hold:

1. for each � such that 1 ≤ � ≤ n, if X� �= ξ then there exists h such that jh = �;
2. there exists a variable substitution σ such that σ(s[jh]) = σ(s[jh′ ]) for each h, h′ such that

ih = ih′ . If such a σ exists, we denote with σg,I the most general substitution that verifies
this condition.

Moreover, if I is applicable to g, we denote with gr(g, I) the atom r(Y1, . . . , Ym) (m is the arity
of r in Ψ) where for each � such that 1 ≤ � ≤ m, Y� = σg,I(Xjh

) if there exists h such that ih = �,
otherwise Y� = ξ.

Roughly speaking, a FK I is applicable to an atom g if the relation symbol of g corresponds to
the symbol in the right-hand side of I and if all the attributes for which bound terms appear in g
are propagated by the FK I (condition 1 of the above definition). Moreover, if the left-hand side of
the FK contains repeated attributes, then the FK is applicable only if the corresponding terms in

22/05/2003

FINAL

Techniques for query reformulation, query merging, and information reconciliation – Part A Page 9 of 22



SEWASIE project — IST FP5 Programme — IST-2001-34825

g unify (condition 2 of the above definition). When I is applicable to g, gr(g, I) denotes the atom
obtained from g by using I as a rewriting rule, whose direction is right-to-left.

For instance, let I = r[1, 2] ⊆ s[1, 3], g = s(X, ξ, c) and let r be of arity 4. I is applicable to
g, since the attributes of s which contain bound terms (i.e., attributes 1 and 3) are propagated
by the FK, and gr(g, I) = r(X, c, ξ, ξ). As another example, consider now I = r[1, 1] ⊆ s[1, 3],
g = s(X, ξ, c) and let r be of arity 4. I is applicable to g since the terms X and c unify and
σg,I = {X → c}. Therefore, gr(g, I) = r(c, c, ξ, ξ).

Definition 9 Given an atom g1 = r(X1, . . . , Xn) and an atom g2 = r(Y1, . . . , Yn), we say that g1

and g2 unify if there exists a variable substitution σ such that σ(g1) = σ(g2). Each such a σ is
called unifier. Moreover, if g1 and g2 unify, we denote as U(g1, g2) a most general unifier (mgu) of
g1 and g2 (we recall that σ is a mgu if for every unifier σ′ of g1 and g2 there exists a substitution γ
such that σ′ = γσ).

Informally, two atoms unify if they can be made equal through a substitution of the variable
symbols with other terms (either variables or constants) occurring in the atoms. We recall that
each occurrence of ξ in the two atoms actually represents a different, new variable symbol, there-
fore each occurrence of ξ in g1 and g2 can be assigned to a different term.

For example, let g1 = r(X, ξ, c, ξ) and an atom g2 = r(ξ, Y, Z, ξ). Actually, g1 and g2 correspond
to g1 = r(X, ξ1, c, ξ2), g2 = r(ξ3, Y, Z, ξ4). Then, g1 and g2 unify, and U(g1, g2) = {ξ3 → X, ξ1 →
Y, Z → c, ξ2 → ξ4}.

4.2 The algorithm FKrewrite

In Figure 1 we define the algorithm FKrewrite that computes the rewriting of a UCQ Q with respect
to a set of foreign keys. In the algorithm, it is assumed that unbound variables in the input query Q
are represented by the symbol ξ. Also, given a global schema G, we denote with Ψ the schemas
of relations in G, and with ΣI the foreign key constraints in G.

Specifically, the algorithm generates a set of conjunctive queries that constitute a perfect
rewriting of Q, by computing the closure of the set Q with respect to the following two rules:

1. if there exists a conjunctive query q ∈ Q such that q contains two atoms g1 and g2 that unify,
then the algorithm adds to Q the conjunctive query reduce(q, g1, g2) obtained from q by the
following algorithm:

Algorithm reduce(q, g1, g2)
Input: conjunctive query q, atoms g1, g2 ∈ body(q) such that g1 and g2 unify
Output: reduced conjunctive query q′

q′ = q;
σ ← U(g1, g2);
body(q′) ← body(q′) − {g2};
q′ ← σ(q′);
q′ ← τ(q′);
return q′

Informally, the above algorithm reduce starts by eliminating g2 from the query body; then,
the substitution U(g1, g2) is applied to the whole query (both the head and the body), and
finally the function τ is applied. Such a function replaces with ξ each variable symbol X
such that there is a single occurrence of X in the query. The use of τ is necessary in order
to guarantee that, in the generated query, each unbound variable is represented by the
symbol ξ.

2. if there exists a FK I and a conjunctive query q ∈ Q containing an atom g such that I
is applicable to g, then the algorithm adds to Q the query obtained from q by replacing g

Page 10 of 22 Techniques for query reformulation, query merging, and information reconciliation – Part A 22/05/2003

FINAL



SEWASIE project — IST FP5 Programme — IST-2001-34825

Algorithm FKrewrite(Ψ, ΣI , Q)
Input: global schema G with relational schema Ψ, and foreign key dependencies ΣI , UCQ Q
Output: perfect rewriting of Q
Q′ ← Q;
repeat

Qaux ← Q′;
for each q ∈ Qaux do
(a) for each g1, g2 ∈ body(q) do

if g1 and g2 unify
then Q′ ← Q′ ∪ {reduce(q, g1, g2)};

(b) for each g ∈ body(q) do
for each I ∈ ΣI do

if I is applicable to g
then Q′ ← Q′ ∪ {atom-rewrite(q, g, I)}

until Qaux = Q′;
return Q′

Figure 1: Algorithm FKrewrite

with gr(g, I) and by applying the substitution σg,I to q. Namely, this step adds new queries
obtained by applying FKs as rewriting rules (applied from right to left), through the following
algorithm atom-rewrite:

Algorithm atom-rewrite(q, g, I)
Input: conjunctive query q, atom g ∈ body(q), FK I such that I is applicable to g
Output: rewritten conjunctive query q′

q′ = q;
body(q′) ← body(q′) − {g};
q′ ← σg,I(q′);
body(q′) ← body(q′) ∪ {gr(g, I)};
return q′

The above two rules correspond respectively to steps (a) and (b) of the algorithm.
Termination of the algorithm is immediately implied by the fact that the number of conjunctive

queries that can be generated by the algorithm is finite, since the maximum length (i.e., the
number of atoms) of a generated query is equal to the maximum length of the queries in Q, and
the number of different atoms that can be generated by the algorithm is finite, since the alphabet
of relation symbols used is finite (and corresponds to the relation symbols occurring in Q and in
ΣI ), as well as the set of terms used (corresponding to the set of variable names occurring in the
query Q plus the symbol ξ).

4.3 Soundness and completeness

The correctness (soundness and completeness of the algorithm FKrewrite is sanctioned by the
following theorem.

Theorem 10 Let I = 〈G,S,M〉 be a data integration system of an SINode, let Q be a query
(union of conjunctive queries) over G, and let Ψ the relational schema of G, and ΣI the foreign
key constraints of G. Then FKrewrite(Ψ, ΣI , Q) is a perfect rewriting Q wrt I.

What the above theorem says is that evaluating the original query over the retrieved global
database, taking into account the foreign key dependencies in the global schema, is equivalent
to evaluating the expanded query over the same database without considering the foreign key
dependencies.

22/05/2003

FINAL

Techniques for query reformulation, query merging, and information reconciliation – Part A Page 11 of 22



SEWASIE project — IST FP5 Programme — IST-2001-34825

4.4 Example

We present an example of query expansion. We first describe the global schema in the relational
form. Such a schema results from the tanslation of a corresponding object-oriented schema. The
relational schema is the following (in the expression of a foreign key constraint, numbers indicate
the positions of the attributes):

Category(CatCode,Description,Sector)
Enterprise(Name,Description,Address,PhoneNo,Email,Web,Contact)
BusinessOrganization(Name,Province,BuiltYear,NoEmployees,Turnover)
BusinessOrganizationCat(Name,CatCode)
Manufacturer(Name,Owners,WorkingHours)

KeyConstraint(Category,1)
KeyConstraint(Enterprise,1)
KeyConstraint(BusinessOrganization,1)
ForeingKey(BusinessOrganization,1,Enterprise,1)
KeyConstraint(BusinessOrganizationCat,1)
ForeignKey(BusinessOrganizationCat,1,BusinessOrganization,1)
ForeignKey(BusinessOrganizationCat,2,Category,1)
KeyConstraint(Manufacturer,1)
ForeignKeyInclusion(Manufacturer,1,BusinessOrganizationCat,1)

The input query aims at retrieving name and addresses of enterprises whose category has a
sector named “IT” (information technology). The SQL version of the query is:

SELECT e.Name, e.Address
FROM Enterprise e, BusinessOrganization b, BusinessOrganizationCat c, Category d
WHERE e.Name=b.Name and e.Name=c.Name and b.Name=c.Name and c.CatCode=d.CatCode

and d.Sector=’IT’;

The Datalog version is:

Q(X13,X3):-BusinessOrganization(X13,X9,X10,X11,X12),
BusinessOrganizationCat(X13,X15),
Category(X15,X16,"IT"),Enterprise(X13,X2,X3,X4,X5,X6,X7).

The result of the expansion of the query is the following Datalog query:

Q(X13,X3):-BusinessOrganization(X13,_,_,_,_),BusinessOrganizationCat(X13,X15),
Category(X15,_,"IT"),Enterprise(X13,_,X3,_,_,_,_).

Q(X13,X3):-BusinessOrganizationCat(X13,X15),BusinessOrganizationCat(X13,_),
Category(X15,_,"IT"),Enterprise(X13,_,X3,_,_,_,_).

Q(X13,X3):-BusinessOrganizationCat(X13,X15),Category(X15,_,"IT"),
Enterprise(X13,_,X3,_,_,_,_),Manufacturer(X13,_,_).

Q(X13,X3):-BusinessOrganizationCat(X13,X15),Category(X15,_,"IT"),
Enterprise(X13,_,X3,_,_,_,_).

It should be noted how the query expansion step has “compiled” all the foreign key constraints
in the new query. As we said before, the expanded query can now be processed by ignoring the
constraints in the schema. The result on the correctness of the expansion process ensures us
that we do not loose any information by doing so.

Page 12 of 22 Techniques for query reformulation, query merging, and information reconciliation – Part A 22/05/2003

FINAL



SEWASIE project — IST FP5 Programme — IST-2001-34825

5 Global class materialization

As we said in Section 3, the expanded query is processed in order to single out the global classes
that need to be materialized in order to answer the query. This task is simple, and we do not
discuss it in any detail. We simply assume in the following that the list of global classes to be
materialized is available, and we illustrate the process in the case of the example reported in the
previous section. In such example, the global classes to be materialized, together with the query
to be issued on such classes for the materialization, is shown in the following (each query is given
a name to be used in the final process of query evaluation):

Global Class Query OurRelation_00:
SELECT R.Name, R.Province, R.BuiltYear, R.NoEmployees, R.Turnover
FROM BusinessOrganization R;

Global Class Query OurRelation_01:
SELECT R.Name, R.CatCode
FROM BusinessOrganizationCat R;

Global Class Query OurRelation_02:
SELECT R.CatCode, R.Description, R.Sector
FROM Category R
WHERE (R.Sector = "IT");

Global Class Query OurRelation_03:
SELECT R.Name, R.Description, R.Address, R.PhoneNo, R.Email, R.Web, R.Contact
FROM Enterprise R;

Global Class Query OurRelation_20:
SELECT R.Name, R.Owners, R.WorkingHours
FROM Manufacturer R;

In the rest of this section, we concentrate on the issue of materializing the global classes
of interest. In particular, we illustrate how we materialize the global classes that are necessary
for answering the query. The global class materialization is a sort of mediator whose goal is to
retrieve the data satisfying the global class, base don the data stored in the local class. Such
mediator assumes that the relevant local classes are already materialized (see the section on the
local materializer).

We denote with G a global class with schema S(G), with L the set of local classes of G and with
L ∈ L a local class. Each local class schema, denoted by S(L), is the set of information available
in the class L, represented as a set of attributes. Finally, we introduce M as the mapping between
the global schema and local schemata: M[A, L] denotes the mapping of information A ∈ S(G)
in the local class L with value null if A is not mapped in L 1. The mapping satisfies the GAV
approach: for each A ∈ S(G) exists at least one L ∈ L such that M [A, L] �= null. Given the local
class L ∈ L, we define the schema of L w.r.t. G, denoted by SG(L), as SG(L) = {A ∈ S(G) |
M[A, L] is not null}.

An SINode represents the available knowledge about the real world objects instantiated in the
local sources. We denote with O the set of real world objects (objects in the following) available
at mediator level and we introduce a function E , named extension (E : L → 2O), associating each
local class L in L with the subset of O represented in L.

We investigate our techniques by adopting as reference data model for schema and query
specification the relational model. Thus, each local class L is a relation name with schema S(L)

1We introduce no limitation about the global class mapping mechanism. We only require that it is always possible to
state if M[A, L] is null or not.

22/05/2003

FINAL

Techniques for query reformulation, query merging, and information reconciliation – Part A Page 13 of 22



SEWASIE project — IST FP5 Programme — IST-2001-34825

and � denotes a local relation. Given an extension E , we say that � is legal w.r.t. E iff it exists a
bijective function tL : E(L) → �. Thus, each object o instantiated in L is represented by the tuple
tL(o) and � corresponds to {tL(o) | o ∈ E(L)}.

For each local class L, we consider an unary operator (r)GL, that, given a relation � with
schema S(L) produces a relation �G = (r)GL with schema SG(L) obtained by2

1. (Schema Translation) renaming the attributes of r into attributes of G by means of the map-
ping M (for example, in Figure 2: firstn and lastn to Name);

2. (Data conversion) converting the tuples of r into tuple of rG by suitable functions such as
string concatenation (for example, in Figure 2: ’Rita’ + ’Verde’ to ’Rita Verde’).

A tuple of �G will be denote with tGL(o). Then, given the local class set L = {L1, . . . , Ln}, we
introduce the notion of sources database legal w.r.t. E as db = 〈�G1 , . . . , �Gn〉.

Example 11 As an example, let us consider two relation L1, L1 with schema

S(L1) = (firstn, lastn, year, e mail)
S(L2) = (name, e mail, dept code, s code)

and the global class G with the following mapping table:

Name E mail Section Year Dept
L1 firstn and lastn e mail null year null
L2 name e mail s code null dept code

S(G) = (Name, E mail, Section, Year, Dept)
SG(L1) = (Name, E mail, Year)
SG(L2) = (Name, E mail, Dept, Section)

Figure 2 shows an extension E , E(L1) = {o, o1} , E(L2) = {o, o2}, and the related instances
�1 and �2. By applying the operator (r)GL to these instances, we obtain �G1 and �G2 .

As far as different instantiations of the same object is concerned, we do not address the prob-
lem of resolving conflicts that arise when grouping together information about the same real world
object [14, 9, 12]. We suppose local classes to satisfy the semantic homogeneity property stat-
ing that tuples referring to the same object instantiated in different local classes never mismatch.
More formally, given an extension E , we say that a sources database db = 〈�G1 , . . . , �Gn〉 legal w.r.t.
E is semantically homogeneous if for all class pairs (L1, L2), for each o ∈ E(L1) ∩ E(L2) and for
each A ∈ SG(L1) ∩ SG(L2), it follows that

tGL1
(o)[A] = tGL2

(o)[A]

As to the global class G, we consider G as a relation name with schema S(G). Given an
extension E and a semantically homogeneous sources database db = 〈�G1 , . . . , �Gn〉 legal w.r.t. E ,
we derive the global relation g in the following way: g = {tG(o) | o ∈ O} where tG(o) is obtained
by applying the semantic homogeneity property:

∀A ∈ S(G) : tG(o)[A] =

{
tGL(o)[A] if ∃L ∈ L : A ∈ SG(L), o ∈ E(L)
null otherwise

(1)

Such a global relation g will be called legal w.r.t. E . For instance, the global relation g related to
the example of Figure2, is shown in Figure 3.

An important task of a mediator is to perform object fusion, that is grouping together informa-
tion about the same real- object stored in different data sources. We assume that there exists a

2From a functional point of view, the transformation (r)GL is implemented in the wrapper related to the source L.

Page 14 of 22 Techniques for query reformulation, query merging, and information reconciliation – Part A 22/05/2003

FINAL



SEWASIE project — IST FP5 Programme — IST-2001-34825

Figure 2: An example of sources database

Name E mail Year Dept Section
Rita Verde pv@i.it 2 null null
Ada Rossi ra@i.it 1 Dept1 12345

Ugo Po up@i.it null Dept1 2345

Figure 3: An example of global relation

join condition between each pair of overlapping relations in order to identify tuples corresponding
to the same object and fuse them. The join condition is defined on S(G) by the designer. As an ex-
ample, let us suppose that the Join Map between the classes L1 and L2 is L1.Name=L2.Name;
given oi ∈ E(L1) and oj ∈ E(L1) we have tGL1

(oi)[Name] = tGL2
(oj)[Name] if and only if oi and oj

are the same real- object: oi ≡ oj .

Definition 12 [Join Condition] Let G a global class and L its set of local classes. A join condition
between L1, L2 ∈ L is a condition φ expressed on SG(L1) ∪ SG(L2) such that ∀E , ∀t1 ∈ �G1 ,
∀t2 ∈ �G2 , φ(t1t2) is true iff ∃o ∈ E(L1) ∩ E(L2) such that t1 = tL1(o) and t2 = tL2(o).

The set of join conditions for all pairs of local classes of the global class G, called Join Map, is
denoted with JM ; a join condition between L1, L2 ∈ L will be denoted with JM(L1, L2).
Given a local class L, the set of attributes in SG(L) used to express the join conditions for L is
called Join Attribute Set and it is denoted with JA(L).

In the following we discuss how to compute the global relation g starting from a sources
database db = 〈�G1 , . . . , �Gn〉. This problem is related to that of computing the natural outerjoin
of many relations in a way that preserves all possible connections among facts [13]. Such a
computation has been termed a “full disjunction” by Galindo Legaria [10].

22/05/2003

FINAL

Techniques for query reformulation, query merging, and information reconciliation – Part A Page 15 of 22



SEWASIE project — IST FP5 Programme — IST-2001-34825

5.1 Full Disjunction

In this section we consider the definition of Full Disjunction given in [10], sections 1.2 Basic
Definitions and 2.1 Join disjunctive queries ; the final version of this deliverable we will include
these sections.

Definition 13 [Full Disjunction] The full disjunction of a query graph G is given by the join dis-
junctive query Q = {V ′ | G |V ′ is connected}.

A full disjunction delivers all tuples of the base relations, combining them as a single tuple
whenever they match; full disjunctions capture the requirements of data merging queries.

Now, we apply this definition in our context. Let G be a global class with schema S(G), L
the set of local classes of G and JM a Join Map of G. Given an extension E and a semantically
homogeneous sources database db = 〈�G1 , . . . , �Gn〉 legal w.r.t. E , we define the query graph of G
as QG = (V, E), where G = {�G1 , . . . , �Gn}, i.e., the nodes are the relations of the sources database,
and E = JM , i.e., the edge are the join conditions between local classes. Then, we consider the
full disjunction, denoted with fd, of QG .

From the definition of full disjunction, it follows that the schema of the relation fd is
SG(L1) × SG(L2) × . . . × SG(Ln). On the basis of the semantic homogeneity property we have
that:

∀t ∈ fd, ∀A ∈ SG(Li) ∩ SG(Lj) if t[Li.A] �= null ∧ t[Lj .A] �= null then t[Li.A] = t[Lj.A].

It can be shown that this property holds for each Join Map JM of G.
Then we derive from fd a relation with schema S(G), which will be called global full disjunction

and will be denote by GFD(�G1 , . . . , �Gn) as follows:
∀t ∈ fd, a tuple t′ of GFD(�G1 , . . . , �Gn) is defined by:

∀A ∈ S(G), t′[A] =

{
t[L.A] if ∃L ∈ L : A ∈ SG(L) ∧ t[Lj .A] �= null

null otherwise
(2)

It can be shown that
g = GFD(�G1 , . . . , �Gn)

where g is the global relation legal w.r.t. E as defined by equation 1.
In [13, 10] is discussed when a full disjunction can be computed by some sequence of outer-

joins. The answer to this question is: there is a outerjoin sequence producing the full disjunction
if and only if the set of relation schemas forms a connected, γ-acyclic hypergraph [8].

It can be shown [11] that, in the general case, a global class with n local classes, n > 2
corresponds to a γ-cyclic hypergraph; then, we can’t directly apply the methods proposed in
[13, 10] in order to compute the Full Disjunction. In the following, we show these results by some
examples.

For example, with n = 3, the query graph QG of the global class G with L = {L1, L2, L3 }, is
the following:

Intuitively, this QG is cyclic. We obtain an acyclic query graph if one or more join condition is
false; for example, if JM(L3, L2) is equal to false, we have:

Page 16 of 22 Techniques for query reformulation, query merging, and information reconciliation – Part A 22/05/2003

FINAL



SEWASIE project — IST FP5 Programme — IST-2001-34825

The join condition between two local classes Li and Lj is false iff the that local classes Li

and Lj are extensionally disjoint, that is they share no real world object. In [7] we discussed how
the introduction of extensional knowledge as an additional mapping knowledge allowing semantic
optimization during the query planning phase.

Then, in the general case, we need to develop new methods to compute Full Disjunction. The
proposed method to compute the full disjunction of n local classes L1, L2, . . . , Ln of a global class
G, is still based on outerjoin:

select *
from (L1 outer join L2 on JM(L1,L2))

outer join L3 on (JM(L1,L3)) OR JM(L2,L3))
...
outer join Ln on (JM(L1,Ln)) OR JM(L2,Ln) OR ... JM(Ln-1,Ln))

This query computes the full disjunction of L1, L2, . . . , Ln, independently by the order of the
relations used in the from clause. For example, with n = 3:

select *
from (L1 outer join L2 on JM(L1,L2))

outer join L3 on (JM(L1,L3)) OR JM(L2,L3))

The main problem/limitation of this method is the execution cost of the SQL query: in fact, the
selectivity factor of the outer join conditions are low since in these condition we have the logical
OR of one or more clauses; modifications and extensions to this method will be investigated in
the project.

5.2 Single Class Query Rewriting

We assume a global SQL-like query expression over the global schema G having the form

select AL from G where Q (3)

where AL ⊆ S(G) is an attribute list and Q is query condition specified as a boolean expression
of positive atomic predicate having the form (A op value) or (A op A′), with A, A′ ∈ S(G).

For example, by considering the following query:

select Name from G
where Name like ’P*’ and (Year=’1’ or Dept=’Dept1)

we have AL = {Name} and Q = Name like ’P*’ and (Year=’1’ or Dept=’Dept1).
Given an extension E , a semantically homogeneous sources database db = 〈�G1 , . . . , �Gn〉 legal

w.r.t. E , and a global relation g legal w.r.t. E , we define the answer to a query expression having
the form of 3 w.r.t. a global relation g as

πAL(σQ(g))

22/05/2003

FINAL

Techniques for query reformulation, query merging, and information reconciliation – Part A Page 17 of 22



SEWASIE project — IST FP5 Programme — IST-2001-34825

Since g = GFD(�G1 , . . . , �Gn) we can write

πAL(σQ(GFD(�G1 , . . . , �Gn))

In our context, the query rewriting problem consists into rewrite this expression into an equivalent
form

πAL(σQr (GFD((lq1)G
L1

, . . . , (lqn)G
Ln

)

where

• lqi = πALi(σLQi(�i)) is the answer to the local query for the local class Li

• Qr is the residual condition.

Since a SINode is not the owner of the data, the local queries are sent and execute on local
sources; then, in order to reduce the size of the the local query answer lqi, it is important: (1)
to maximize the selectivity of the local query condition LQi and (2) to minimize the cardinality of
the local query select-list ALi. For the query rewriting method shown in the following, both these
properties hold.

The steps to compute LQi, 1 ≤ i ≤ n, and Qr are the following:

1. Query normalization

The first step is to convert Q into a Disjunctive Normal Form (DNF) query Qd where the
predicates are atomic. The DNF query will be of the form Qd = C1 ∨ C2 ∨ . . . ∨ Cm,
where each conjunction term Ci has the form P1 ∧ P2 ∧ . . . ∧ Pn, i.e., conjunction of atomic
predicates.

In the example, we have:
Qd = (Name like ’P*’ and Year=’1’) or (Name like ’P*’ and Dept=’Dept1’)

2. Local Query condition LQi

In this step, each atomic predicate P in Qd is rewritten into one that can be supported by
the local class L.

An atomic predicate P is searchable in the local class L if the global attributes used in P
are present in the local class L, i.e., the global attributes are mapped into L with a non null
mapping.

We make the hypothesis that each atomic predicate P searchable in L is fully express-
ible/supported in L, i.e., it exists a query condition QP

L expressed w.r.t. the local class
schema S(L) such that, for each �, if �′ is the relation obtained as answer to the evaluation
of QP

L on �, then
(�′)GL = P (�G)

An atomic predicate P in Qd is rewritten into PL w.r.t. L as follows

• if P is searchable in L: PL = QP
L ,

• if P is not searchable in L: PL = true

In the example, we consider the following predicate rewriting:

Name like ’P*’ Year=’1’ Dept=’Dept1’
L1 lastn like ’P*’ year=’1’ true
L2 name like ’P*’ true dept code=’Dept1’

The computation of the local query condition LQi is obtained by rewriting each atomic
predicate P in Qd into PLi w.r.t. Li. In the example, we have:
LQ1 = (lastn like ’P*’ and year=’1’)

LQ2 = (name like ’P*’ and dept code= ’Dept1’)

Page 18 of 22 Techniques for query reformulation, query merging, and information reconciliation – Part A 22/05/2003

FINAL



SEWASIE project — IST FP5 Programme — IST-2001-34825

3. Residual Condition Qr

The computation of Qr is performed by the following three steps:

(a) Transform Q into a Conjunctive Normal Form (CNF) query Qc, the logical AND of
clauses C which are the logical OR of atomic predicate P. In the example, we have:
Qc = Name like ’P*’ and (Year=’1’ or Dept=’Dept1)

(b) Any clause C of Qc containing not searchable (in one or more local classes) atomic
predicates is a residual clause; in the example, we have:

• Dept=’Dept1’ is not searchable in L1 then (Year=’1’ or Dept=’Dept1’)
is a residual condition for L1

• Year=’1’ is not searchable in L2 then (Year=’1’ or Dept=’Dept1’) is a
residual condition for L2

(c) Residual Condition Qr is equal to the logical AND of residual clauses. in the example,
we have:
Qr = (Year=’1’ or Dept=’Dept1’)

4. Select list of a local query LQ

The select list of the query LQ for the local class L, denoted with LAL, is obtained by
considering the union of the following sets of attributes:

(a) attributes of the global select list, AL

(b) Join Attribute Set for the local class L, JA(L)

(c) attributes in the Residual Condition, Ar

and by transforming these attributes on the basis of the Mapping Table:

LAL = {A ∈ S(L)|∃ AG ∈ AL ∪ JA(L) ∪ Ar, A ∈ M [AG][L]}

In the example, we have:
Ar = { Year,Dept }
AL = { Name }
JA(L1) = { Name}
JA(L2) = { Name}
then:
LAL1 = {lastn,lastn,year}
LAL2 = {name,dept code}

In conclusion, we have the following local queries, LQ1 and LQ2:

select lastn,firstn,year
from L1
where (firstn like ’P*’ and year=’1’)

select name,dept_code
from L2
where (name like ’P*’ and dept_code= ’Dept1’)

The local query LQi is sent to the source related to the local class Li; its answer, qi, is
transformed by the operator (.)Li

G and the result is stored in a temporary relation Ti, defined
by equation 2 and the residual condition Q2. Now, we first compute the full disjunction of the
temporary tables Ti and, then, we obtain the global query answer by applying the transformation
defined by equation 2.

22/05/2003

FINAL

Techniques for query reformulation, query merging, and information reconciliation – Part A Page 19 of 22



SEWASIE project — IST FP5 Programme — IST-2001-34825

6 Local class materialization

As we said before, one of the task of the global class materializer is to single out the local classes
that are relevant for the evaluation of the expanded query (queries LQi in the previous section).
Since we are following the Global-as-views approach, this task is straightforward: in order to sin-
gle out the local classes that are relevant for the evaluation of the expanded query, it is sufficient
to look at the mapping from the global classes mentioned in the expanded query to the local
classes.

Thus, the mapping tells us which are the relevant local classes for the evaluation of the query:
such local classes should now be materialized, by accessing the corresponding sources. We call
local database the set of instances of the various relevant local classes. As we said before, the
local database is used by the global class materializer, according to what stated in the previous
section.

We remind the reader that, associated to each local classes, there is a corresponding query
over the external sources of the SINode. A notable case is when such an external source is
expressed in XML. In this case, the associated query is expressed in an XML-based query lan-
guage, such as Xquery.

In this part (part A) of the deliverable, we will not delve into the details of the local class
materializer. We will simply assume in the following that the relevant data are loaded from the
external sources, and the corresponding instances are inserted into the local classes. A detailed
description of the local materializer will be presented in the second part (part B) of this deliverable.

7 Evaluation of the expanded query

The expanded query (union of conjunctive queries) is expressed in SQL, and is then evaluated
over the global database computed by the global class materializer. This expanded query is
submitted to the SQL Engine, and the resulting tuples are given as result of the overall process
of query evaluation within the SINode.

Referring to the example presented in Sections 4 and 5, the final query is the following (note
that the names of the global class queries are used in the definition of the query):

SELECT R1.Name, R4.Address
FROM OurRelation_00 R1, OurRelation_01 R2, OurRelation_02 R3, OurRelation_03 R4
WHERE (R1.Name = R2.Name) and (R2.Name = R4.Name) and (R2.CatCode = R3.CatCode)
UNION
SELECT R1.Name, R4.Address
FROM OurRelation_01 R1, OurRelation_01 R2, OurRelation_02 R3, OurRelation_03 R4
WHERE (R1.Name = R2.Name) and (R2.Name = R4.Name) and (R2.CatCode = R3.CatCode)
UNION
SELECT R1.Name, R4.Address
FROM OurRelation_20 R1, OurRelation_01 R2, OurRelation_02 R3, OurRelation_03 R4
WHERE (R1.Name = R2.Name) and (R2.Name = R4.Name) and (R2.CatCode = R3.CatCode)
UNION
SELECT R1.Name, R3.Address
FROM OurRelation_01 R1, OurRelation_02 R2, OurRelation_03 R3
WHERE (R1.Name = R3.Name) and (R1.CatCode = R2.CatCode)

8 Conclusions

In this part (part A) of the deliverable, we have described the basic steps of the process that
answers a query posed to an SINode. We conclude this document by pointing out the aspects
that we deliberately left out from the present work, and that will be addressed in the second part

Page 20 of 22 Techniques for query reformulation, query merging, and information reconciliation – Part A 22/05/2003

FINAL



SEWASIE project — IST FP5 Programme — IST-2001-34825

(part B) of the deliverable. Part B of the deliverable will be produced later on in the project, in
particular at month 25, when the second release of the prototype will be delivered.

• We remind the reader that, when processing a query, the query agent in Sewasie should
be able to:

1. interact with relevant brokering agents,

2. ask the various SINodes the right information, according to a specific query plan.

While we have studied item (2) in this document, the problem of designing techniques to be
used by the query agent in order to decide which brokering agents to contact (item 1 above),
and how to interact with them, will be addressed in the second part of this deliverable.

• In this part of the deliverable, we did not delve into the details of the local class materializer.
We have simply assumed in the following that the relevant data are loaded from the external
sources, and the corresponding instances are inserted into the local classes. A detailed
description of the local materializer will be presented in the second part of this deliverable.

• Currently, data reconciliation is only partially addressed by the global class materializer. In
the second part of the deliverable we will deal with this issue in a more comprehensive way.

• Finally, techniques for handling in an ad-hoc way sets of queries posed to the same SINode
will be addressed in the second part of the deliverable.

References

[1] Andrea Calı̀, Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini. Accessing
data integration systems through conceptual schemas. In Proc. of the 20th Int. Conf. on
Conceptual Modeling (ER 2001), pages 270–284, 2001.

[2] Andrea Calı̀, Domenico Lembo, and Riccardo Rosati. On the decidability and complexity of
query answering over inconsistent and incomplete databases. 2003. To appear.

[3] Andrea Calı̀, Domenico Lembo, and Riccardo Rosati. Query rewriting and answering under
constraints in data integration systems. 2003. To appear.

[4] The Sewasie Consortium. Specification of the architecture of the brokering agent. Sewasie,
Deliverable D.4.1.a, Final Version, Feb. 2003.

[5] University of Modena e Reggio Emilia. Specification of the general framework for the multilin-
gual semantic enrichment processes and of the semantically emriched data stores. Sewasie,
Deliverable D.2.1, Final Version, Feb. 2003.

[6] University of Rome “La Sapienza”. General framework for query reformulation. Sewasie,
Deliverable D.3.1, Final Version, Feb. 2003.

[7] D. Beneventano, S. Bergamaschi, and F. Mandreoli. Extensional Knowledge for semantic
query optimization in a mediator based system. In Proc. of FMII, 2001.

[8] Ronald Fagin. Degrees of acyclicity for hypergraphs and relational database schemes. J.
ACM, 30:3, pp 514-550, 1983.

[9] H. Galhardas, D. Florescu, D. Shasha, E. Simon, and C.-A. Saita. Declarative Data Cleaning:
Language, Model, and Algorithms. In Proc. of VLDB, pages 371–380, 2001.

[10] C. Glaindo-Legaria. Outerjoins as disjunctions. CWI, 1993.

22/05/2003

FINAL

Techniques for query reformulation, query merging, and information reconciliation – Part A Page 21 of 22



SEWASIE project — IST FP5 Programme — IST-2001-34825

[11] Konstantin Eugeniev Kostenarov. Elaborazione di interrogazioni in un sistema multi-
database. Tesi di laurea, Università di Modena e Reggio Emilia, Facoltà di Ingegneria, corso
di laurea in Ingegneria Informatica, 2001-2002.

[12] D. Lembo, M. Lenzerini, and R. Rosati. Source inconsistency and incompleteness in data
integration. In Proc. of KRDB, 2002.

[13] Anand Rajaraman and Jeffrey D. Ullman. Integration information by outerjoins and full dis-
junction. ACME, 1997.

[14] L.-L. Yan and M. T. Özsu. Conflict Tolerant Queries in AURORA. In Proc. of CoopIS, pages
279–290, 1999.

Page 22 of 22 Techniques for query reformulation, query merging, and information reconciliation – Part A 22/05/2003

FINAL


