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Abstract

We propose a family of intuitionistic bilattices with full truth-knowledge dual-
ity (D-bilattices) for a logic programming. The first family of perfect D-bilattices is
composed by Boolean algebras with even number of atoms: the simplest of them,
based on intuitionistic truth-functionally complete extension of Belnap’s 4-valued
bilattice, can be used in paraconsistent programming, that is, for knowledge bases
with incomplete and inconsistent information. The other two families are useful
for a probability theory where the uncertainty in the knowledge about a piece of in-
formation is in the form of belief types: as an interval (lower and upper boundary)
probability or as a confidence level. Such programs can be parameterized by differ-
ent kinds of probabilistic conjunctive/disjunctive strategies for their rules, based on
intuitionistic implication. Such a framework offers a clear semantics for the sat-
isfaction relation, and allows the extension of logic languages with intuitionistic
implications also in the body of rules. From a theoretical point of view we intro-
duce also a duality in higher-order bilatices, as in Temporal Probabilistic Logic,
constructed as functional spaces over ordinary dual bilattices. Then we show the
full truth-knowledge duality for a fixpoint semantics of logic programs based on
dual bilattices. Finally we develop also an autoreferential version of Stone’s Rep-
resentation Theorem for the dual bilattices.

1 Introduction
In the past few decades, many classical as well as non-classical techniques for modeling
the reasoning of intelligent systems have been proposed. Several frameworks, based
on a many-valued logic with truth/knowledge partial orders (and lattices), for manipu-
lating uncertainty, incompleteness, and inconsistency have been proposed in the form
of particular extensions of classical logic programming and deductive databases.
Such truth/knowledge ordered lattices can be integrated into a unique structure called
bilattice [26, 17, 18, 20, 23], and Ginsberg has shown that the same theorem prover
can be used to simulate reasoning in first order logic, default logic, prioritized default
logic and assumption truth maintenance system.
In this paper we will consider different belief truth structures (types) for knowledge
systems: the simplest 4-valued bilattice, belief probability intervals [24, 32, 36, 1]
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with the lower and upper probability boundary and confidence-level quantified data
[34, 35] also, where the belief and doubt are considered separately for each fact.
Because of that we will present three levels of Heyting algebras over bilattices, built
from the elements of the most simple algebras where belief is expressed by a single
probability value (considered also as a truth value in this many-valued logics).
In our first contribution we will extend this research by introduction of a new modal
operator for bilattices: for Belnap’s 4-valued bilattice it corresponds to Fitting’s confla-
tion (knowledge negation) operator. It is well known that the modal operators are used
in a variety of ways in knowledge systems, including reasoning about knowledge and
belief, about time, with applications to nonmonotonic inference (in [33, 31, 15], and
others). Ginsberg [25] has shown that Moore’s and Kripke’s ideas can be unified into
a single approach if we view modal operators not in terms of possible worlds, but as
mappings on the truth values assigned to various sentences: this is the way that we will
use to define the semantics based on bilattices for our modal operator. This is a known
fact about the algebraization of logics: a propositional logic becomes a Boolean alge-
bra, the modal logics become the modal algebras by adding also an additional operator
to Boolean algebra, in order to interpret an universal modal operator of these modal
logics; in the case of S4 modal logics we obtain the closure algebras (known as topo-
logical Boolean algebras also) [11, 12], while in the case of the S5 modal logics used
for auto-epistemic logic, we obtain the monadic algebras (or one-dimensional cylindric
algebras) [16, 28].
This new modal operator plays a fundamental role in the truth/knowledge bilattice’s
duality, in logic programs and their least-fixpoint semantics: the existence of the truth/
knowledge duality is not a mathematical triviality, but such a perfect symmetry of two
orderings is a very particular property for only strict subset of distributive bilattices,
and the investigation of the general properties is one of the main issues of this paper.
Usually, the authors characterize their programs with a model theoretical semantics,
where a minimum model is guaranteed to exist, and a corresponding monotonic fix-
point operator too. A lot of work was dedicated to different many-valued conjunc-
tive/disjunctive probabilistic strategies used to define the different correlation types
(independence, ignorance, mutual-exclusiveness, etc..) between simple facts (events).
But a very little consideration is dedicated to the many-valued logical implication op-
erator, used in logic programming rules. Often in the bilattice-based logic programs
[18] are used only 2-valued implications, without any explanation why there is such
asymmetry with all other logic connectives (usually, also the negation when used is
many-valued).
There is a close relationship between logic programming and inductive definitions
which are forms of constructive knowledge [7, 22]. Constructive information defines
a collection of facts through a constructive process of iterating a recursive recipe. This
recipe defines new instances of this collection in terms of presence (and sometimes the
absence) of other facts of the collection. In the context of mathematics, constructive
information appears by excellence in inductive definitions. Not a coincidence, induc-
tive definitions have been studied in constructive mathematics and intuitionistic logic,
in particular in the sub-areas of Inductive and Definition logics, Iterated Inductive Def-
inition logics and Fixpoint logics.
We follow the implication-based approach to logic programming, and we adopt the
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idea of using relative pseudo complements as implications, which has been proposed in
the literature several times and is nowadays well understood, for distributive bilattices
also. In fact, the use of relative pseudo-complements is adopted in the fuzzy, multi-
adjoint and residuated logic programming and allows also the assignment of weights to
rules. Consequently, as a second contribution, here one particular family of intuition-
istc bilattices, that is, distributive bilattices extended by logic implication ⇒, defined
as a relative pseudo complement x ⇒ y =

∨{z|z ∧ x ≤ y} (here ∧ is the meet
operation, ≤ is the ordering of each of two lattices of a bilattice and

∨
is the l.u.b).

It has nice mathematical properties. Semantically, the basic notion is that of relative
pseudo complement from the algebraic semantics of intuitionistic logic [9]. More over,
such an implication can be used for nested implications in bodies of rules, in order to
extend the expressive power of logic programming (see, for example, in [4]), but such
possibility needs further investigation and is not the subject of this work.
Another contribution is given by a family of parameterized bilattice operators, for dif-
ferent probabilistic strategies in a belief and confidence-level based logic programming.
The particular attention is given to the 4-valued Belnap’s bilattice, which is the small-
est non-trivial billatice which satisfies the perfect truth/knowledge symmetry. It can
be used as a ’minimal’ many-valued structure for logic programming and databases
with incomplete and inconsistent information, thus with a relevant application impact
in web data integration. Consequently, a number of new concepts developed in this
paper will be exemplified for the case of Belnap’s bilattice, and the last contribution of
this paper is given by a new representation theorem for it.

The plan of this paper is the following: after a brief introduction to Heyting algebras
and bilattices, in Section 2 we present the family of intuitionistic D-bilatices with full
truth-knowledge duality: Boolean algebras with even number of atoms (the simplest
case is the 4-valued Belnap’s bilattice), and the belief and confidence-level bilattices
parameterized with a number of possible probabilistic conjunctive strategies. In Sec-
tion 3 we extend the D-bilattices with functional higher-order bilattices and show how
they can be applied for Temporal Probabilistic Logic Programs. In Section 4 we show
the full duality for the least fixpoint semantics of logic programs based on D-bilattices.
Finally, in Section 4, we develop a version of Autoreferential Representation Theorem
for D-bilattices.

1.1 Introduction to modal Heyting algebras
Heyting algebras are algebraic structures that play in relation to intuitionistic logic a
role analogous to that played by Boolean algebras in relation to classical logic. They
are most simple defined as a certain type of lattice. A lattice is a partially ordered set
(L,≤), in which every pair of elements x, y ∈ L has a least upper bound, or join, de-
noted by x ∨ y, and a greatest lower bound, or meet, denoted by x ∧ y. A top (bottom)
element of a lattice L is an element, denoted by 1 (0), such that x ≤ 1 (0 ≤ x) for all
x ∈ L.
Now a Heyting algebra is defined to be a lattice (L,≤), possessing distinct top and bot-
tom elements, such that, for any pair of elements x, y ∈ L, the set of z ∈ L satisfying
z ∧ x ≤ y has a largest element. This element, which is uniquely determined by x
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and y, is denoted by x ⇒ y: thus, x ⇒ y is characterized by the following condition
(Galois connection): for all z ∈ L, z ≤ x ⇒ y iff (if and only if) z ∧ x ≤ y.
This binary operation ⇒ is the relative pseudo-complement for x and y and is called
intuitionistic implication, that is, the well known Godel’s t-norm (relative pseudo-
complement), such that x ⇒ y =

∨{z|z ∧ x ≤ y} = 1, if x ≤ y, y otherwise.
The operation which sends each element x to the element ¬x = x ⇒ 0 is called intu-
itionistic negation (pseudo-complement): we note that the latter operation satisfies
z ≤ ¬x iff z ∧ x = 0 iff x ≤ ¬z.
It is not difficult to show that any Heyting algebra is a distributive lattice, so that hold:
x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z), x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z). In such complete
distributive lattices we have that for any x, x ∧ ¬x = 0, but generally x ∨ ¬x 6= 1.
A function l : X → Y between posets X, Y is monotone if x ≤ x′ implies l(x) ≤ l(x′)
for all x, x′ ∈ X .
Such a function l : X → Y is said to have right (or upper) adjoint if there is a func-
tion r : Y → X in the reverse direction such that l(x) ≤ y iff x ≤ r(y) for
all x ∈ X, y ∈ Y . Such a situation forms a Galois connection and will often be
denoted by l a r. Then l is called left (or lover) adjoint of r. If X, Y are com-
plete lattices (posets) then l : X → Y has a right adjoint iff l preserves all joins
(it is additive, i.e., l(x ∨ y) = l(x) ∨ l(y) and l(0X) = 0Y where 0X , 0Y are bot-
tom elements in complete lattices X and Y respectively). The right adjoint is then
r(y) =

∨{z ∈ X | l(z) ≤ y}. Similarly, a monotone function r : Y → X is a right
adjoint (it is multiplicative, i.e., has a left adjoint) iff r preserves all meets; the left
adjoint is then l(x) =

∧{z ∈ Y | x ≤ r(z)}. The selfadjoint modal operator l a l is
both multiplicative and additive.
Each monotone function l : X → Y on a complete lattice (poset) X has both a least
fixed point µl ∈ X and greatest fixed point νl ∈ X . these can be described explicitly
as: µl =

∧{x ∈ X | l(x) ≤ x} and νl =
∨{x ∈ X | x ≤ l(x)}.

In what follows we denote by y < x iff y ≤ x and not x ≤ y, and we denote by
x ./ y two unrelated elements in X (so that not (x ≤ y or y ≤ x)). An element in a
lattice x 6= 0 is join-irreducible element iff x = a ∨ b implies x = a or x = b for any
a, b ∈ X . An element in a lattice x ∈ X is an atom iff x > 0 and @y.(x > y > 0).
The modal Heyting algebras are standard Heyting algebras extended by unary adjoint
operators.

1.2 Introduction to Bilattices
Bilattice theory is a ramification of multi-valued logic by considering both truth≤t and
knowledge ≤k partial orderings. Given two truth values x and y, if x ≤t y then y is at
least as true as x, i.e., x ≤t y iff x <t y or x = y. The two operations corresponding to
this ordering (t-lattice) are the meet (greatest lower bound) ∧ and the join (least upper
bound) ∨.
For the knowledge (or precision in probabilistic theory) ordering x ≤k y means that
y is more precise than x, i.e., x ≤k y iff x <k y or x = y . The operations ⊗ and
⊕ correspond to the greatest lower bound and least upper bound respectively in the
knowledge ordering (k-lattice). The negation operation for these two orderings are
defined as the involution operators which satisfy De Morgan law between the join and
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meet operations.

Definition 1 (Ginsberg [23]) A bilattice B is defined as a sextuple (B,∧,∨,⊗,⊕,¬),
such that:
1. The t-lattice (B,≤t,∧,∨) and the k-lattice (B,≤k,⊗,⊕) are both complete lattices.
2. ¬ : B → B is an involution (¬¬ is the identity) mapping such that:
¬ is lattice homomorphism from (B,∧,∨) to (B,∨,∧) and (B,⊗,⊕) to itself.

Notice that from this definition, the negation ¬ is an antitonic operator w.r.t. the ≤t,
with ¬1t = 0t, ¬0t = 1t (where 0t, 1t are the bottom and the top elements w.r.t the
≤t respectively), but monotonic w.r.t. the ≤k. This homomorphism ¬ inverts the truth
partial ordering, that is, if x ≤t y then ¬x ≥t ¬y, while it preserves the knowledge
preordering, that is, if x ≤k y then ¬x ≤k ¬y. The last property is very important for
the fixpoint semantics of logic programs based on a bilattice of algebraic truth values,
because we can use the monotonicity w.r.t. the ≤k ordering. That is the reason that in
the case of the distributive lattices we will not use directly the pseudo-complement as
negation operator ¬, because it generally does not satisfy this property. As a result, the
distributive lattices which are Boolean algebras w.r.t. the pseudo-complement negation
operator, will not be Boolean algebras w.r.t this bilattice negation, and in such distribu-
tive lattices will not be satisfied condition x ∧ ¬x = 0. Because of that generally
the bilattice negation ¬, differently from the pseudo-complement, is a paraconsistent
negation.
We can see such (bi)lattice structures as two algebras, denoted (B,≤t, αt) and (B,≤k

, αk) , with a carrier set B of algebraic truth values and the set αt = {∧,∨}, αk =
{⊗,⊕} of n-ary operations, f :

∏B → B, g :
∏B → B , where f ∈ αt, g ∈ αk

and
∏B = B × B is the cartesian product.

Any homomorphism h : (B, α) → (B, β) of algebras is a mapping such that for any
term f(a1, .., an), where f ∈ αt is a n-ary operation of the first algebra and ai ∈ B,
h(f(a1, .., an)) = h(f)(h(a1), .., h(an)), where h(f) ∈ αk is the correspondent n-ary
operation of the second algebra.
For example for h = ¬ : (B, αt) → (B, β), where β = {∨,∧} , we have that, from
the antitonic property of ¬ w.r.t. the ≤t, ¬(∧(a, b)) (that is, ¬(a ∧ b)) is equal to
¬(∧)(¬(a),¬(b)) = ¬a ∨ ¬b, where ¬(∧) = ∨, that is, this homomorphism corre-
sponds to De Morgan law.
The smallest bilattice is the trivial bilattice, in which B consists of a single value, so
that it is useless.
In any bilattice with the top and bottom truth values 1t and 0t w.r.t. the≤t respectively,
we have that ¬1t = 0t , ¬0t = 1t, while in any nontrivial bilattice (where ≤t 6=≤k)
they are k-incomparable, i.e., 1t ./t 0t.

1.2.1 Belnap’s bilattice

The smallest nontrivial bilattice is Belnap’s 4-valued bilattice [26] B4 = {t, f,⊥,>}
where t = 1t is true, f = 0t is false, > = 1k is inconsistent (both true and false) or
possible , and ⊥ = 0k is unknown. As Belnap observed, these values can be given
two natural orders: truth order, ≤t, and knowledge order, ≤k, such that f ≤t > ≤t t,
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Figure 1: Belnap’s bilattice

f ≤t ⊥ ≤t t, and ⊥ ≤k f ≤k >, ⊥ ≤k t ≤k >. and b ≤k a). Thus any two
members α, β in a bilattice are equal, α = β, if and only if (shortly ’iff’ ) α =t β
and α =k β. Meet and join operators under ≤t are denoted ∧ and ∨; they are natural
generalizations of the usual conjunction and disjunction notions. Meet and join under
≤k are denoted ⊗ (consensus, because it produces the most information that two truth
values can agree on) and ⊕ (gullibility, it accepts anything it’s told), such that hold:
f ⊗ t = ⊥, f ⊕ t = >, > ∧⊥ = f and > ∨⊥ = t.
There is a natural notion of truth negation, denoted ¬, (reverses the ≤t ordering, while
preserving the ≤k ordering): switching f and t, leaving ⊥ and >, and corresponding
knowledge negation (conflation) [18], denoted ∼, (reverses the ≤k ordering, while
preserving the ≤t ordering), switching ⊥ and >, leaving f and t. These two kinds of
negation commute: ∼ ¬x = ¬ ∼ x for every member x of a bilattice.
It turns out that the operations ∧,∨ and ¬, restricted to {f, t,⊥} are exactly those
of Kleene’s strong 3-valued logic. A more general information about this smallest
bilattice may be found in [18].

1.3 Introduction to probabilistic conjunctive/disjunctive strategies
The aim of this introduction is to give an overview of the most known conjunctive/disjunctive
strategies. The underling lattices and the algebraic properties of these strategies will
be investigated in what follows (Propositions 9,10) , where we will demonstrate that
defined parameterized bilattices addopt these strategies.
In temporal-probabilistic databases the precise probability of compound event (con-
junction or disjunction of events) depends upon the known relationships (eg. indepen-
dence, mutual exclusion, ignorance of any relationship, etc..) between the primitive
events that constitute the compound event. The query answering in such temporal-
probabilistic databases [3, 35] can be parameterized by user in order to take in consid-
eration such different interdependencies of events of a database.
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In the case when the probability of a compound event belongs to an interval [x, y],
x, y ∈ [0, 1], rather than a point, such strategies for conjunctions are defined as follows
(mutually exclusive strategy is slightly different from that in [35]):
1. Positive correlation strategy, [x, y] ∧pc [x1, y1] = [min{x, x1},min{y, y1}],
2. Ignorance strategy, [x, y] ∧ig [x1, y1] = [max{0, x + x1 − 1},min{y, y1}],
3. Negative correlation strategy,
[x, y] ∧nc [x1, y1] = [max{0, x + x1 − 1},max{0, y + y1 − 1}],
4. Independence strategy, [x, y] ∧in [x1, y1] = [x · x1, y · y1].
5. Mutually-exclusive strategy, [x, y] ∧ex [x1, y1] = [0, 0].
For disjunctions we have that
1. [x, y] ∨pc [x1, y1] = [max{x, x1},max{y, y1}],
2. [x, y] ∨ig [x1, y1] = [max{x, x1},min{1, y + y1}],
3. [x, y] ∨nc [x1, y1] = [min{1, x + x1},min{1, y + y1}],
4. [x, y] ∨in [x1, y1] = [x + x1 − x · x1, y + y1 − y · y1],
5. [x, y] ∨ex [x1, y1] = [1, 1].
Notice that only in the case of ignorance strategy such compositions correspond to the
possible-worlds based semantics of probabilistic programs; other strategies are rather
approximations for such pure probabilistic logic.
In the case when the probability of a compound event is a confidence level, that is a
couple of a belief [x, y] and a doubt [z, v], which we associate to the facts of our uncer-
tain and incomplete knowledge base, rather than a point, such probabilistic strategies
are defined as follows [34, 35]: Let α = ([x, y], [z, v]), β = ([x1, y1], [z1, v1]), then,
conjunction strategises are defined by: α ∧ β =
1. Positive correlation strategy,
= ([min{x, x1},min{y, y1}], [max{z, z1},max{v, v1}]),
2. Ignorance strategy conjunction,
= ([max{0, x + x1 − 1},min{y, y1}], [max{z, z1},min{1, v + v1}]),
3. Negative correlation strategy conjunction,
= ([max{0, x + x1 − 1},max{0, y + y1 − 1}], [min{1, z + z1},min{1, v + v1}]),
4. Independence strategy conjunction,
= ([x · x1, y · y1], [z + z1 − z · z1, v + v1 − v · v1]),
5. Mutually-exclusive strategy conjunction, = ([0, 0], [1, 1]).
The disjunction strategises are defined by: α ∨ β =
1. Positive correlation strategy (join operation),
= ([max{x, x1},max{y, y1}], [min{z, z1},min{v, v1}]),
2. Ignorance strategy conjunction,
= ([max{x, x1},min{1, y + y1}], [max{0, z + z1 − 1},min{v, v1}]),
3. Negative correlation strategy conjunction,
= ([min{1, x + x1},min{1, y + y1}], [max{0, z + z1 − 1},max{0, v + v1 − 1}]),
4. Independence strategy conjunction,
= ([x + x1 − x · x1, y + y1 − y · y1], [z · z1, v · v1]),
5. Mutually-exclusive strategy conjunction, = ([1, 1], [0, 0]).
In [3] are introduced hybrid probabilistic logic programs which define general prop-
erties that conjunctive and disjunctive strategies should obey. The ones described in
this paper are some important examples which we will use in order to parameterize
D-bilatices for belief and confidence level logic programs, as will be shown in the
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subsections 2.1 and 2.2.

2 Family of bilattices with truth-knowledge duality
In this section we will introduce a particular family of bilattices, denominated D-
bilattices, with intuitionistic implication and with a perfect duality between its truth
and knowledge lattices, denominated t-lattice and k-lattice respectively.

Lemma 1 In each bilattice (B,∧,∨,⊗,⊕,¬), given by Definition 1, the bilattice nega-
tion involution operator ¬ is selfadjoint modal operator w.r.t. the ≤k.

Proof: The operator ¬ is surjective: suppose that there exists y ∈ B such that @x ∈
B.y = ¬x; but for x = ¬y we have that ¬x = ¬¬y = y (from the involution of ¬)
which is a contradiction.
From the homomorphism ¬ : (B,≤k,⊗,⊕) → (B,≤k,⊗,⊕) we have that if x ≤k y,
i.e., x = x⊗ y, then ¬x = ¬(x⊗ y) = ¬x⊗ ¬y, i.e., ¬x ≤k ¬y, thus ¬ is monotone
w.r.t. ≤k. From the fact that for every x ∈ B, ¬x = ¬(x ⊗ 1k) = ¬x ⊗ ¬1k,
i.e. ∀x ∈ B.¬x ≤k ¬1k, thus, from the surjective property of ¬ must hold that ¬1k

is the top element in the k-lattice, i.e., ¬1k = 1k, and from homomorphic property
¬(x ⊗ y) = ¬x ⊗ ¬y, we conclude that ¬ is multiplicative modal operator for the
k-lattice.
Analogously, from from the fact that for every x ∈ B, ¬x = ¬(x⊕ 0k) = ¬x⊕ ¬0k,
i.e. ∀x ∈ B.¬x ≥k ¬0k, thus, from the surjective property of ¬ must hold that ¬0k

is the bottom element in the k-lattice, i.e., ¬0k = 0k, and from homomorphic property
¬(x⊕ y) = ¬x⊕ ¬y, we conclude that ¬ is additive modal operator for the k-lattice.
Consequently, ¬ is a selfadjoint modal operator for the k-lattice.
¤
The intuitive meaning for the D-bilattices is that any property defined over the truth
ordering (t-lattice) can be equivalently defined over the knowledge ordering (k-lattice),
and viceversa. That is, they are perfect dual images.

Definition 2 A D-bilattice B is a distributive bilattice (B,∧,∨,⊗,⊕,¬) with the iso-
morphism of truth-knowledge lattices ∂ : (B,≤t) ' (B,≤k), which is an involution.
Let us define the unary operator∼=def ∂¬∂ : B → B. Then we say that a D-lattice is
perfect if two truth negations, the intuitionistic negation ¬t (pseudo complement),
such that ¬tx =

∨{z|z ∧ x = 0t}, and the bilattice negation ¬, are correlated by
¬ = ¬t ∼.

From this isomorphism we have that the involution duality operator ∂, with the identity
∂∂ = idB (the bijective mapping ∂ is equal to its inverse), preserves the ordering, that
is, for any two x, y ∈ B, we have that x ≤t y iff ∂x ≤k ∂y, i.e., x ≤k y iff ∂x ≤t ∂y,
and ∂(x ∧ y) = ∂x⊗ ∂y. Thus, ∂1t = 1k and ∂0t = 0k, where 1k and 0k are the top
and the bottom values w.r.t. ≤k.
Both truth negations are antitonic w.r.t. ≤t, thus hold the De Morgan laws ¬(x ∧ y) =
¬x ∨ ¬y and ¬t(x ∧ y) = ¬tx ∨ ¬ty, with ¬1t = ¬t1t = 0t, and ¬0t = ¬t0t = 1t.
Notice that ¬ is monotonic w.r.t. ≤k, while for ¬t it is not generally valid.
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Proposition 1 In each D-bilattice (B,∧,∨,⊗,⊕,¬), the operator ∼ is selfadjoint
modal operator w.r.t. the ≤t, and the bilattice negation operator for k-lattice satisfy
∼ 1k = 0k, ∼ 0k = 1k, while ∼ 1t = 1t, ∼ 0t = 0t with 1k ./t 0k.

Proof: The operator ∼ is an involution (∼∼= (∂¬∂)(∂¬∂) = (∂(¬(∂∂)¬)∂) = idB)
thus, surjective: suppose that there exists y ∈ B such that @x ∈ B.y =∼ x; but
for x =∼ y we have that ∼ x =∼∼ y = y (from the involution of ∼) which is a
contradiction.
If x ≤t y then ∂x ≤k ∂y and ¬∂x ≤k ¬∂y, thus ∂¬∂x ≤t ∂¬∂y, i.e., ∼ x ≤t∼ y,
that is, ∼ is monotonic for the t-lattice. We have, based on Lemma 1, that ∼ 1t =
∂¬∂1t = ∂¬1k = ∂1k = 1t and ∼ (x ∧ y) = ∂¬∂(x ∧ y) = ∂¬(∂x ⊗ ∂y) =
∂(¬∂x⊗ ¬∂y) = (∂¬∂x) ∧ (∂¬∂y) =∼ x∧ ∼ y, so that ∼ is a multiplicative modal
operator.
Also, ∼ 0t = ∂¬∂0t = ∂¬0k = ∂0k = 0t and ∼ (x ∨ y) = ∂¬∂(x ∨ y) =
∂¬(∂x ⊕ ∂y) = ∂(¬∂x ⊕ ¬∂y) = (∂¬∂x) ∨ (∂¬∂y) =∼ x∨ ∼ y, so that ∼ is also
additive modal operator, and, consequently, it is a selfadjoint involution modal operator
for the t-lattice.
If x ≤k y then ∂x ≤t ∂y and ¬∂x ≥t ¬∂y. Thus, ∂¬∂x ≥k ∂¬∂y, i.e., ∼ x ≥k∼ y,
that is, ∼ is antitonic for the k-lattice. From the fact that for every x, ∼ x =∼ (x ⊗
1k) = ∂¬∂(x⊗ 1k) = ∂¬(∂x ∧ ∂1k) = ∂(¬∂x ∨ ¬∂1k) = (∂¬∂x)⊕ (∂¬∂1k) =∼
x⊕ ∼ 1k, i.e. ∀x ∈ B. ∼ x ≥k∼ 1k. Thus, from the surjective property of ∼ must
hold that ∼ 1k is the bottom element in the k-lattice, i.e., ∼ 1k = 0k.
Analogously, from from the fact that for every x, ∼ x =∼ (x ⊕ 0k) = ∂¬∂(x ⊕
0k) = ∂¬(∂x ∨ ∂0k) = ∂(¬∂x ∧ ¬∂0k) = (∂¬∂x) ⊗ (∂¬∂0k) =∼ x⊗ ∼ 0k, i.e.
∀x ∈ B. ∼ x ≤k∼ 0k. Thus, from the surjective property of ∼ must hold that ∼ 0k is
the top element in the k-lattice, i.e.,∼ 0k = 1k. Consequently,∼ is a bilattice negation
operator for the k-lattice.
In any bilattice [23] we have that 1t ./k 0t. Let us show that in D-bilattices holds
also that 1k ./t 0k: suppose that 1k ≤t 0k then ∂1k = 1t ≤k ∂0k = 0t which is a
contradiction (the same holds if we suppose that 1k ≥t 0k).
¤
From this point of view, the D-lattices are Heyting algebras w.r.t. ≤t ordering, enriched
by the modal selfadjoint operator ∼.

Corollary 1 For any D-bilattice B the duality operator ∂ can be extended to the fol-
lowing isomorphism of modal Heyting algebras ∂ : (B,≤t, αt) ' (B,≤k, αk), with
αt = {∧,⇀,∼}, αk = {⊗,⇁,¬}, where ⇀ and ⇁ are the intuitionistic implications
(the relative pseudo-complements) w.r.t. the ≤t and ≤k respectively.

Proof: Let us prove that ∂ is a homomorphism also for relative pseudo-complements,
that is, ∂(x ⇀ y) = ∂(

∨{z|z ∧ x ≤t y}) = ⊕{∂z|z ∧ x ≤t y} =(from homomorphic
property of ∂ w.r.t. ∨ operator) = ⊕{∂z|z ∧ x ≤t y} =(from homomorphic property
of ∂ w.r.t. ∧ operator) = ⊕{∂z|∂z ⊗ ∂x ≤k ∂y)} = ∂x ⇁ ∂y. That is, ∂ ⇀=⇁ ∂.
Thus, we have that ∂¬t = ¬k∂ (from ¬tx = x ⇀ 0t, ¬kx = x ⇁ 0k, and 0k = ∂0t).
The operator ∼ is a selfadjoint modal operator for the t-lattice, while ¬ is a selfadjoint
modal operator for the k-lattice. Consequently ∂ is an isomorphism between modal
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truth/knowledge Heyting algebras.
¤
Notice that important point of the Definition 2 above is that it introduces two modal
selfadjoint operators ∼ and ¬. In the case of perfect D-lattices the modal operator ∼ is
the belief operator which models the S5 autoepistemic modal logic. They are very im-
portant in the case when, from the fact the intuitionistic negation operators ¬t,¬k are
non monotonic for both orderings, they can not be used in order to define the fixpoint
semantics for logic programs (as, for example in Belnap’s bilattice): in that case, for
example ¬ = ¬t ∼ is not monotonic w.r.t. the truth ordering, but is monotonic w.r.t.
the knowledge ordering, and the normal 3-valued logic programs can use it as default
(or epistemic) negation with fixpoint semantics computed w.r.t. knowledge ordering.
For example, consider the clause A ← B1,¬B2, where ¬ is the epistemic (default)
negation in logic programs, such that ¬ = ¬t ∼ , where ∼ is a modal belief operator
and ¬t ’classical’ (i.e., intuitionistic) negation operator in αt (i.e., the standard way to
represent normal (3-valued) logic programs as autoepistemic logic programs).
We will show that such a family of D-bilattices is very important for applications in
logic, and that the simplest non trivial bilattice is also a member of this family. More-
over, every Boolean algebra (distributive lattice) with even number of atoms is a D-
bilattice. The fact that such an isomorphism preserves the ordering is very important,
so that if we define a fixpoint semantics for logic programs w.r.t. some truth-ordering
monotonic operator, we are able to define also the semantics w.r.t. the correspondent
knowledge-ordering monotonic operator, and viceversa.

Lemma 2 Let 2 = ({0, 1},≤, ·,max,− ) denote the classic 2-valued Boolean algebra
and (2n,≤t) denote the the Boolean algebra, obtained as the n-times cartesian product
of 2, such that 〈a1, ..., an〉 ≤t 〈b1, ..., bn〉 iff aj ≤ bj , aj , bj ∈ 2 for all 1 ≤ j ≤ 2n.
Then, given a set S of |S| = n, n ≥ 1 elements with an enumeration mN : {1, 2, ..., n} →
S, the mapping iB : P(S) → 2n, (where P(S) is the powerset of S, such that for any
X ∈ P(S), iB(X) = 〈a1, ..., an〉 with aj = 1 if mN (j) ∈ X; 0 otherwise), is
also the following isomorphism of the Powerset Boolean algebra and the tuple-based
Boolean algebra iB : (P(S),⊆,

⋂
,
⋃

,−) ' (2n,≤t,∧,∨,− ).

Proof: It is easy to show that the inverse mapping i−1
B if defined by i−1

B (〈a1, ..., an〉) =
{mN (j) | if 1 ≤ j ≤ n and aj = 1}. The top element in the tuple based lattice
is 1t = 〈1, ..., 1〉, while the bottom element is 0t = 〈0, ..., 0〉. In the tuple-based
Boolean algebra the operators are defined by, for any two X = i−1

B (〈a1, ..., an〉),
Y = i−1

B (〈b1, ..., bn〉), by
iB(−X) = 〈a1, ..., an〉 = 〈a1, ..., an〉, where 0 = 1, and 1 = 0,
iB(X

⋂
Y ) = 〈a1, ..., an〉 ∧ 〈b1, ..., bn〉 = 〈a1 · b1, ..., an · bn〉, where · is a multipli-

cation, iB(X
⋃

Y ) = 〈a1, ..., an〉 ∨ 〈b1, ..., bn〉 = 〈max(a1, b1), ...,max(an, bn)〉.
¤
We will use these tuple-based Boolean algebras for the proof of the following proposi-
tion (the D-bilattices which are not Boolean will be presented in last two subsections):

Proposition 2 Boolean algebras with even number of atoms are perfect D-bilattices.
Other Boolean algebras are not bilattices, thus are not D-bilattices.
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Proof: Each Boolean algebra with even number of atoms is isomorphic to the pow-
erset Boolean algebra (P(S),⊆,

⋂
,
⋃

,−) with |S| = 2n, n ≥ 1 of atoms, and, con-
sequently, to the tuple-based Boolean algebra (22n,≤t,∧,∨,− ). Let us define the
knowledge ordering in this Boolean lattice by:
〈a1, ..., an〉 ≤k 〈b1, ..., bn〉 iff aj ≤ bj , 1 ≤ j ≤ n and aj ≥ bj , n + 1 ≤ j ≤ 2n,
with the top 1k = 〈a1, ..., a2n〉 and the bottom element 0k = 〈a1, ..., a2n〉 respectively,
such that aj = 1, for 1 ≤ j ≤ n and aj = 0, for n+1 ≤ j ≤ 2n. Then this tuple-based
Boolean algebra is also the bilattice (22n,∧,∨,⊗,⊗,¬) with the meet and join opera-
tors defined by 〈a1, ..., a2n〉⊕〈b1, ..., b2n〉 = 〈max(a1, b1), ...,max(an, bn), an+1 ·
bn+1, ..., a2n · b2n〉,
〈a1, ..., a2n〉⊗〈b1, ..., b2n〉 = 〈a1·b1, ..., an·bn,max(an+1, bn+1), ..., max(a2n, b2n)〉.
Let us define the bilattice negation ¬ and the duality operator ∂ as follows:
¬〈a1, ..., a2n〉 =def 〈an+1, ..., a2n, a1, an〉,
so that ¬¬ is an identity, and ¬ is an antitonic negation operator for the ≤t, with
¬1t = 0t and ¬0t = 1t. It is monotonic w.r.t. ≤k, and
∂〈a1, ..., a2n〉 =def 〈a1, ..., an, an+1, a2n〉.
It is easy to show that ∂∂ is an identity and that is valid the following isomorphism:
∂ : (22n,≤t,∧,∨,∼) ' (22n,≤k,⊗,⊕,¬), where ∼=def ∂¬∂ is a selfadjoint modal
operator w.r.t. ≤t, while ¬ is a selfadjoint modal operator w.r.t. ≤k.
In any Boolean algebra (a distributive lattice with complements) The pseudo-complement
¬t coincides with Boolean negation, thus in this tuple based Boolean algebra we have
that ¬t is equal to −, as follows:
¬t〈a1, ..., a2n〉 =

∨{〈c1, ..., c2n〉 | 〈c1, ..., c2n〉 ∧ 〈a1, ..., a2n〉 = 〈0, ..., 0〉} =
=

∨{〈c1, ..., c2n〉 | ci · ai = 0, 1 ≤ i ≤ 2n} = 〈a1, ..., a2n〉 = 〈a1, ..., a2n〉.
Thus, we have that ¬t ∼ 〈a1, ..., a2n〉 = ¬t〈an+1, ..., a2n, a1, ..., an〉 =
= 〈an+1, ..., a2n, a1, ..., an〉 = ¬〈a1, ..., a2n〉.
Consequently, the tuple-based Boolean algebra (22n,≤t,∧,∨,− ) and, based on the
isomorphism iB of the Lemma 2, the original Boolean algebra with even number of
atoms, are the perfect D-lattices.
Let us show that any Boolean algebra P(S),⊆,

⋂
,
⋃

,−) with |S| = 2n + 1, n ≥ 1
atoms can not be a D-lattice. It is enough to consider the, isomorphic to it, tuple-based
Boolean algebra: in such algebra every maximal chain 0t ≤t ...,≤t 1k ≤t ... ≤t 1t

has 2n + 2 elements. Let us consider the subset C of such chains which contain the
top knowledge element 1k. For every chain in C, the number of elements strictly lower
than 1k is greater (in the following we consider this case: other case, when it is lower
is similar) then the number of elements that are strictly greater than 1k. From the anti-
tonic and bijective property (involution) of the bilattice negation ¬ we have that there
exists some element a <t 1k in some chain in C for which we can not define ¬a: sup-
pose that for all elements greater that 1k we defined correspondent negative elements
(for any b >t 1k and ¬b 6= a, ¬b is in a chain with ¬¬b = b). If it is D-bilattice
than ¬1k = 1k, so that from a <t 1k must hold (from the antitonic property of ¬)
that ¬a >t ¬1k = 1k, but this element a′ = ¬a is greater than 1k so that already has
some different element b from a with ¬a = ¬b , i.e., a = ¬¬a = ¬¬b = b what is
a contradiction. Thus for such Boolean algebras we are not able to define the bilattice
negation ¬, and such algebras can not be bilattices.
¤
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2.1 The smallest nontrivial D-bilattice
The smallest non trivial bilattice is a 4-valued Belnap’s bilattice, particularly important
for the knowledge systems with incomplete and inconsistent information. It can be
seen as the minimal many-valued logic system where we are able to deal with incom-
plete and inconsistent information: in [37] is presented an autoepistemic logic pro-
gramming, with the Moore’s modal operator, where an intuitive and natural approach
is used to resolve inconsistency, with the simple monotonic (w.r.t. the knowledge or-
dering) ”immediate consequence operator” for the least-fixpoint computation of their
Herbrand models.
The following propositions show that Belnap’s bilattice has the perfect duality proper-
ties and that the duality extension of the original Belnap’s bilattice is truth-functionally
complete.

Proposition 3 Belnap’s bilattice B4 is a perfect D-bilattice.

Proof: The intuitionistic implications (relative pseudo-complements) are the following
[40]:

⇀ t ⊥ f > ⇁ t ⊥ f >
t t ⊥ f > > f f >
⊥ t t > > > > > >
f t t t t t t > >
> t ⊥ ⊥ t t ⊥ f >

We define the modal dual operation ∂ as follows:
∂t = >, ∂> = t, ∂f = ⊥, and ∂⊥ = f , with ¬tx =def x ⇀ f = ¬∂¬∂x.
It is easy to verify that it is an involution, ∂∂ = id, and that hold
∂(x ∧ y) = ∂x⊗ ∂y, ∂(x ⇀ y) = ∂x ⇁ ∂y, and ∂ ∼ x = ¬∂x, and
∂(x⊗ y) = ∂x ∧ ∂y, ∂(x ⇁ y) = ∂x ⇀ ∂y, and ∂¬x =∼ ∂x.
It is perfect D-lattice because holds that ¬ = ¬t ∼.
Alternatively, we can show that Belnap’s bilattice is the Boolean algebra w.r.t. the
negation ¬t (holds that ¬t¬t is an identity, and ¬tx ∨ x = t, ¬tx ∧ x = f ) with the
even number of atoms {⊥,>}, thus by Proposition 2 it is perfect D-lattice.
2

Just because of this isomorphism ∂, the t-lattice (or equivalently, k-lattice) completely
defines the D-bilattice.
We can se that the conflation (knowledge negation) operator ∼ is the epistemic belief
operator ” it is believed that” for a bilattice, which extends the 2-valued belief of the
autoepistemic logic as follows:

• if A is true than ”it is believed that A”, i.e., ∼ A, is true.

• if A is false than ”it is believed that A”, i.e., ∼ A, is false.

• if A is unknown than ”it is believed that A”, i.e., ∼ A, is inconsistent: it is really
inconsistent to believe in something that is unknown.
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• if A is inconsistent (that is, both true and false) than ”it is believed that A”, i.e.,
∼ A, is unknown: really, we can not tell nothing about believing in something
that is inconsistent.

Notice that in this 4-valued framework by assigning to some inconsistent fact the value
> we avoid the explosive inconsistency; it is a good feature of Belnap’s based autoepis-
temic logic, where x ∧ ¬x 6= f (for example, > ∧ ¬> = > 6= f ), differently from the
classic 2-valued logic. That is the reason that we are able to use it in the cases where
mutually-inconsistent information can happen, as, for example in data integration of
different data sources [27, 37]. So, as in the 2-valued case, the epistemic negation ¬ is
the (intuitionistic) negation of the belief, that is ¬ = ¬t ∼. Dually, for the knowledge
ordered lattice, holds that the (epistemic) knowledge negation is the negation of the
knowledge-belief, that is ∼= ¬k¬.
While Belnap’s bilattice is Boolean algebra w.r.t. the intuitionistic negation ¬t (where
x ∧ ¬tx = f , x ∨ ¬tx = t and x ⇀ y = ¬tx ∨ y), it is easy to verify that, w.r.t. the
bilattice epistemic negation ¬ = ¬t ∼ the x ⇀ y is different from ¬x ∨ y, and the
more strong requirement holds:

Proposition 4 The implication operator ⇀ and the duality operator ∂ on the bilat-
tice B4 cannot be written in terms of the existing bilattice functions ∧,∨,⊗,⊕ and ¬
defined on B4.

Proof: The intuitionistic negation ¬t is defined by ¬tx = x ⇀ f . Let us show
that it cannot be written in terms of ∧,∨,⊗,⊕ and ¬. We have that all functions in
∧,∨,⊗,⊕ and ¬ distribute with respect to the operation ⊗, so that if κ is any modal
operator constructed from them we will have κ(⊥) = κ(f ⊗ t) = κ(f) ⊗ k(t) (see
Proposition 4.1 in [25]). However, ¬t⊥ = >, while ¬tf ⊗ ¬tt = t⊗ f = ⊥ 6= >.
Also, ∂⊥ = f , while ∂f ⊗ ∂t =⊥ ⊗> = ⊥ 6= f .
2

We are able to define other modal operators over D-bilattices, as, for example, Moore’s
[31] modal operator M , where Mx is intended to capture the notion of ”I know that
x”. In the 4-valued framework this is related to the following unary mapping on the
bilattice B4 (in [25]): M(x) = t, if x ∈ {t,>}; f otherwise.

Proposition 5 In Belnap’s bilattice Moore’s modal operator is defined by
M(x) = ∂((> ⇀ x) ∧ ¬∂(> ⇀ x)).

Now we will prove the truth-functionally completeness.

Proposition 6 Every modal operator on the bilattice B4 can be written as a combina-
tion of the operators ∧,⇀,¬, ∂ and the constant function ⊥.

Proof: For the truth-functionality completeness we have that: the Moore’s modal oper-
ator is defined by M(x) = ∂((∂¬∂⊥ ⇀ x)∧¬∂(∂¬∂⊥ ⇀ x)), while the consensus
is defined by x ⊕ y = ∂(¬(¬x ∧ ¬y)), thus, from Proposition 4.2 [25] this proof is
concluded.
2
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The upshot of this proposition is that no additional operators are needed, that is, the set
of operators in this D-bilattice is truth-complete. That is, for any logic program ( also
with Moore’s or other modal operators) it is enough to use the conjunction, epistemic
negation, intuitionistic implication and duality operator.

2.2 Duality in world-based bilattices
Ginsberg [23] defined a world-based bilattices, considering a collection of worlds W ,
where by world we mean some possible way of how things might be:

Definition 3 [23] A pair [U, V ] ∈ P(W ) × P(W ) of subsets of W (here P(W )
denotes the powerset of the set W ) express the truth of a sentence p, with ≤t,≤k truth
and knowledge preorders relatively, as follows:
1. U is a set of worlds where p is true, V is a set of worlds where p is false, P = U

⋂
V

is a set where p is inconsistent (both true and false), and W − (U
⋃

V ) where p is
unknown.
2. [U, V ] ≤t [U1, V1] iff U ⊆ U1 and V1 ⊆ V
3. [U, V ] ≤k [U1, V1] iff U ⊆ U1 and V ⊆ V1.
The bilattice operations associated with ≤t and ≤k are:
4. [U, V ]∧ [U1, V1] = [U

⋂
U1, V

⋃
V1] , [U, V ]∨ [U1, V1] = [U

⋃
U1, V

⋂
V1]

5. [U, V ]⊗ [U1, V1] = [U
⋂

U1, V
⋂

V1] , [U, V ]⊕ [U1, V1] = [U
⋃

U1, V
⋃

V1]
6. ¬[U, V ] = [V,U ].
Let us denote by BW the set P(W )× P(W ), then (BW ,∧,∨,⊗,⊕,¬) is a bilattice.

If we take that W is equal to Herbrand base HP of a logic program P , then a member
[U, V ] ∈ BW , where U is the subset of true ground atoms and V the subset of false
ground atoms w.r.t some Herbrand interpretation I = vB : HP → B4, then this mem-
ber is a set-based representation of this Herbrand interpretation, and BW is isomorphic
(that is, equivalent) to the functional space BHP

4 . Let us show that this functional space
BHP , that is, the world-based bilattice BW is a D-bilattice.

Proposition 7 The world-based bilattice is a perfect D-bilattice composed by two lat-
tices, a t-lattice (BW , αt), with αt = {∧,⇀,∼}, and a k-lattice (BW , αk), with
αk = {⊗,⇁,¬}, such that:
1. Intuitionistic implication: [U, V ] ⇀ [U1, V1] = [U

⋃
U1, V

⋂
V1] .

2. Duality operation: ∂[U, V ] = [U, V ].
3. Knowledge negation (modal belief operator): ∼ [U, V ] = [V , U ],
where S = W − S is the set complement of S.

Proof: For intuitionistic implication holds that:
[U, V ] ⇀ [U1, V1] =

∨{[U2, V2] | [U2, V2] ∧ [U, V ] ≤t [U1, V1]}
=

∨{[U2, V2] | U2

⋂
U ⊆ U1 and V2

⋃
V ⊇ V1} = [max{U2 | U2

⋂
U ⊆

U1},min{V2 | V2

⋃
V ⊇ V1}] = [U

⋃
U1, V

⋂
V1] . It is easy to verify that ∂ is an

involution and an isomorphism between (BW , αt) and (BW , αk). So, ∼ [U, V ] =
∂¬∂[U, V ] = [V , U ], and holds ¬ = ¬t ∼, or ¬t = ¬ ∼= ¬∂¬∂.
Alternatively, we can show that the world-based bilattice is the Boolean algebra w.r.t.
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the negation ¬t[U, V ] = [U, V ] (holds that ¬t¬t is an identity, and ¬t[U, V ]∨ [U, V ] =
[W, ∅] = 1t, ¬t[U, V ] ∧ [U, V ] = [∅,W ] = 0t) with the even number of atoms |W 2|,
thus by Proposition 2 it is a perfect D-lattice.
2

In Section 3 we will generalize the world-based bilattices to any higher-order many-
valued D-bilattice.
Differently from these first two examples, the next two examples of D-latices, the belief
and the confidence-level based logics, are not Boolean algebras.

2.3 Duality in belief based logic
In what follows we will use the Heyting algebra (L, 0, 1,∧,⇒,¬w) where L = [0, 1] is
the interval of real numbers between zero and 1, with new negation ¬w, which reverses
the truth ordering, ¬wx = 1 − x, (here ’−’ is the mathematical substraction for real
numbers) and satisfies De Morgan laws for join and meet operators.
Suppose we are attempting to assign, not classical truth values, but probability esti-
mates to formulae, that is, the closed intervals [x, y] ⊆ [0, 1]. We introduce the follow-
ing truth and knowledge orderings for this interval-based bilattice:
1. Knowledge ordering: Sandewall, in [6], suggested that such truth values should be
ordered by set inclusion (inverse to knowledge ordering), thus we set [x, y] ≤k [z, w]
if x ≤ z and w ≤ y, that is, [z, w] ⊆ [x, y] (if we consider that [z, w] is empty set if
z > w), with the bottom element 0K = [0, 1] and the top element 1K = [1, 0].
2. Truth ordering: Scott suggested, in [5], that such generalized truth values should be
partially ordered by degree of truth, that is [x, y] ≤t [z, w] if x ≤ z and y ≤ w, with
the bottom element 0T = [0, 0] and the top element 1T = [1, 1].
Thus we obtain the interval-based bilattice with set of truth values LB = {[x, y] | 0 ≤
x, y ≤ 1}. Differently from Fitting, in [19], and Ginsberg, in [23], we will consider
all values in LB (also ’inconsistent’ values [x, y] with x > y).
It corresponds to a simple way of constructing bilattices, due to Ginsberg, that is, to
the structure < L1 × L2,≤t,≤k>, in the case when L1 = L2 is a complete lattice of
reals from 0 to 1, with classic orderings ≤ of real numbers. Thus, this structure is an
extended Heyting algebra (L, 0, 1,∧,⇒,¬w). Think of L1 as the lattice of values used
to measure the lower boundary degree of belief we have in a sentence; probabilities,
weighted opinions of experts, etc., and of L2 as the lattice of values used to measure the
upper boundary degree of belief. Then a member of L1 × L2 embodies an assessment
of belief degree. The ordering ≤t intuitively says that degree of truth increases if both
belief boundaries increase (in [35] for example). Likewise ≤k intuitively says degree
of knowledge increases if the precision goes up, in the case of ’consistent’ intervals
(used in [32]).

Proposition 8 Let (L, 0, 1,∧,⇒,¬w) be the interval-based extended Heyting alge-
bra with L = [0, 1]. The interval-based bilattice is a D-bilattice composed by two
lattices, a t-lattice (LB , αt), with αt = {∧,⇀,∼}, and a k-lattice (LB , αk), with
αk = {⊗,⇁,¬}, such that:
1. Meet operation for ≤t ordering is the positive correlation probability strategy con-
junction [x, y] ∧ [x1, y1] = [x ∧ x1, y ∧ y1] = [min{x, x1},min{y, y1}] .
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2. Intuitionistic implication: [x, y] ⇀ [x1, y1] = [x ⇒ x1, y ⇒ y1] .
3. Truth negation: ¬[x, y] = [¬wy,¬wx] = [1− y, 1− x],
4. Knowledge negation: ∼ [x, y] = [y, x].
5. Duality operation: ∂[x, y] = [x,¬wy] = [x, 1− y].

Proof: Easy to verify. Notice that it is not perfect, that is ¬ 6= ¬t ∼.
2

The meet and join operation in this D-bilattice correspond to the positive conjunc-
tion/disjunction probabilistic strategies. We can extend the duality principle (that ∂
is the isomorphism between truth and knowledge lattices, such that, for example,
for any conjunctive strategy ∧p holds ∂(x ∧p y) = ∂x ⊗p ∂y)) also for other con-
junction/disjunction strategies, as ignorance, negative correlation, independence and
mutually-exclusive probabilistic strategies. What is important is that we maintain only
one negation operator (which satisfies De Morgan laws for each of these conjunc-
tive/disjunctive strategies). For generality we will introduce also the parameterized im-
plications (relative pseudo-complement for given set of parameterized conjunctions)-
in practice for Logic programming we can use only the intuitionistic implication of
Heyting algebra based on the meet operation (which can be seen as the ’principal’ con-
junction strategy). But we can in future consider also the cases when to each logic rule
of a logic program is associated a particular conjunctive/disjunctive strategy: in that
case we can interpret the implication of this rule as a parameterized implication for
this particular rule-adopted strategy. In the same way that we may consider the con-
junctive/disjunctive strategies as kind of approximations of meet/join operators, also
parameterized implications can be seen as approximations of the intuitionistic impli-
cation. The aim of this paper is not to adopt pro/contro statements about such possi-
bilities: we simply consider that if the conjunctive/disjunctive probabilistic strategies
are sensible operations, then also the implication probabilistic strategies (derived from
the conjunctive strategies by means of the relative pseudo-complement) are sensible
operations.
As first step we will define this family for the most simple case of uncertainty type,
when we associate to any knowledge fact a single probability value from the set L =
[0, 1].

Definition 4 We define the parameterized Heyting algebra by the following extension
of the Heyting algebra [38], (L, 0, 1,¬w, {∧p | p ∈ Par}, {∨p | p ∈ Par}, {⇒p | p ∈
Par}), where Par = {w, s,m, e} are the parameters, such that for any pair x, y ∈ L
(which can be considered as probabilities of two given events), the probability for the
composed event is one of the following cases:
1. weak conjunction (meet operator), x ∧w y = min{x, y}
2. strong conjunction, x ∧s y = max{0, x + y − 1}
3. multiplicative conjunction, x ∧m y = x · y
4. mutually exclusive conjunction, x ∧e y = 0.
The parametric disjunctions are defined by de Morgan laws x ∨p y = ¬w(¬wx ∧p

¬wy), p ∈ Par, and the parametric implications by relative pseudo complements
(only the ⇒w is an intuitionistic implication, other can be seen as its approximations)
x ⇒p y = max{z ∈ L | z ∧p x ≤ y}, for any p ∈ Par.
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Notice that the first three ”conjunctions” are well known t-norms, while the last express
the fact that if two events are mutually exclusive, the probability for their contemporary
appearance is zero. The (L, 0, 1,¬w, {∧p | p ∈ Par}, {∨p | p ∈ Par}, {⇒p | p ∈
Par}) is not a lattice except for weak conjunction. It is similar to multi-adjoint lattice
[14] used for logic programming with continuous semantics. For a given parameterized
Heyting algebra over single probability values in L = [0, 1], we are able to define
the belief-based logic, parameterized by a number of possible probabilistic strategies,
over probability-interval based bilattice LB defined in precedence, with two orderings
≤t,≤k (obviously, holds that LB = L× L).

Proposition 9 The interval-based parameterized bilattice is a p-D-bilattice (parame-
terized D-bilattice extended by set of other conjunctions different from meet (positive
correlation) operator) composed by two p-lattices, a p-t-lattice (LB , αt), with αt =
{{∧p, ⇀p | p ∈ ParB},∼}, and a p-k-lattice (LB , αk), with αk = {{⊗p,⇁p | p ∈
ParB},¬}, where ParB = {pc, ig, nc, in, ex} are parameters, such that for any pair
[x, y], [x1, y1] ∈ LB the following hold
1. Positive correlation strategy conjunction (meet operation), [x, y] ∧pc [x1, y1] =
[x ∧w x1, y ∧w y1]
2. Ignorance strategy conjunction, [x, y] ∧ig [x1, y1] = [x ∧s x1, y ∧w y1]
3. Negative correlation strategy conjunction, [x, y]∧nc [x1, y1] = [x∧s x1, y ∧s y1]
4. Independence strategy conjunction, [x, y] ∧in [x1, y1] = [x ∧m x1, y ∧m y1]
5. Mutually-exclusive strategy conjunction, [x, y]∧ex [x1, y1] = [x∧e x1, y∧e y1] =
0T

6. The parametric disjunctions are defined by de Morgan laws [x, y] ∨p [x1, y1] =
¬(¬[x, y] ∧p ¬[x1, y1]), for any p ∈ ParB , and the parametric implications by rela-
tive pseudo complements
[x, y] ⇀p [x1, y1] = max{[z, w] ∈ LB | [x, y] ∧p [z, w] ≤t [x1, y1]}.
7. The knowledge conjunction/disjunction strategies and implications are defined by
[x, y]⊗p [x1, y1] = ∂(∂[x, y]∧p∂[x1, y1]), [x, y]⊕p [x1, y1] = ∂(∂[x, y]∨p∂[x1, y1]),
[x, y] ⇁p [x1, y1] = ∂(∂[x, y] ⇀p ∂[x1, y1]), for each p ∈ ParB .

Proof: It is easy to verify, based on proofs of precedent propositions. We obtain that
for any pair [x, y], [x1, y1] ∈ LB hold, for example:
[x, y]∧pc [x1, y1] = [x∧w x1, y ∧w y1] = [min{x, x1},min{y, y1}], that is, the posi-
tive correlation strategy (see subsection 1.3).
Analogously we can verify that all other conjunction strategies correspond to the defi-
nitions in subsection 1.3. Moreover we have that for parameterized implications hold:
1. Positive correlation implication, [x, y] ⇀pc [x1, y1] = [x ⇒w x1, y ⇒w y1].
2. Ignorance strategy implication, [x, y] ⇀ig [x1, y1] = [x ⇒s x1, y ⇒w y1].
3. Negative correlation implication, [x, y] ⇀nc [x1, y1] = [x ⇒s x1, y ⇒s y1].
4. Independence strategy implication, [x, y] ⇀in [x1, y1] = [x ⇒m x1, y ⇒m y1].
5. Mutually-exclusive implication, [x, y] ⇀ex [x1, y1] = [x ⇒e x1, y ⇒e y1] = 1T .
Let us verify that knowledge conjunctions/disjunctions satisfy De Morgan laws w.r.t.
the∼ (knowledge negation). First, notice that holds¬ = ∂ ∼ ∂, thus for any p ∈ ParB

∼ (∼ [x, y]⊗p ∼ [x1, y1]) =∼ ([y, x]⊗p [y1, x1]) =∼ ∂(∂[y, x] ∧p ∂[y1, x1])
= ∂¬(∂[y, x] ∧p ∂[y1, x1]) = ∂(¬∂[y, x] ∨p ¬∂[y1, x1]) = ∂(∂ ∼ [y, x] ∨p ∂ ∼
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[y1, x1]) = ∂(∂[x, y] ∨p ∂[x1, y1]) = [x, y]⊕p [x1, y1]. 2

From this proposition it is easy to find all parameterized knowledge-dimension opera-
tions. For instance, for the ignorance strategy we have that
[x, y]⊗ig [x1, y1] = ∂(∂[x, y] ∧ig ∂[x1, y1]) = ∂([x,¬wy] ∧ig [x1,¬wy1])
= ∂[x ∧s x1,¬wy ∧w ¬wy1] = [x ∧s x1,¬w(¬wy ∧w ¬wy1)] = [x ∧s x1, y ∨w y1],
[x, y]⊕ig [x1, y1] =∼ (∼ [x, y]⊗ig ∼ [x1, y1]) =∼ ([y, x]⊗ig [y1, x1])
=∼ [y ∧s y1,¬w(¬wx ∧w ¬wx1)] = [x ∨w x1), y ∧s y1], and
[x, y] ⇁ig [x1, y1] = ∂(∂[x, y] ⇀ig ∂[x1, y1]) = ∂([x,¬wy] ⇀ig [x1,¬wy1])
= ∂[x ⇒s x1,¬wy ⇒w ¬wy1] = [x ⇒s x1,¬w(¬wy ⇒w ¬wy1)].
For the interval-probability logic programming, the parameterized implications can be
used for definitions of satisfaction relation for rules of such probabilistic logic pro-
grams: each of them preserves the principle of truth conservation from body into the
head of rules, so that can be used in each fixed point algorithm for computation of
models for these logic programs.
It is interesting that the strong intuitionistic negation ¬nc[x, y] = [x, y] ⇒nc [0, 0] =
[1 − x, 1 − y], such that ¬nc = ¬ ∼, plays a central role as default negation oper-
ator in Paraconsistent logic programming [10], able to deal with both uncertain and
contradiction information.

2.4 Duality in confidence-level based logic
Let us consider now the case when we are dealing with incomplete knowledge, where
different evidence may contradict one other, so that is convenient to explicitly repre-
senting both belief and doubt (differently from interval based valuations, where the
doubt is just equal to the epistemic negation (complement) of the belief), as it was ar-
gued in [13, 24].
In this case our lattice is the set of pairs of intervals, that is, a cartesian product
LC = LB × LB , so that each of its members ([x, y], [z, v]) ∈ LC is a confidence
level, that is a couple of a belief [x, y] and a doubt [z, v], which we associate to the
facts of our uncertain and incomplete knowledge base. Such confidence level is con-
sistent [35] if x + z ≤ 1.
In this lattice the truth ordering ≤C

t which increases the belief and decreases the doubt
of facts is used to define the monotonic fixpoint operator for model theoretic character-
ization of confidence level logic programs (see [23, 35] for more details), that is
([x, y], [z, v]) ≤C

t ([x1, y1], [z1, v1]) iff [x, y] ≤t [x1, y1] and [z1, v1] ≤t [z, v].
The meet operation (conjunction) and the join operation (disjunction) for this truth or-
dering ≤C

t and the epistemic negation ¬C , which reverses this truth ordering, of this
lattice LC are defined by Ginsberg [23], with ¬C([x, y], [z, v]) = ([z, v], [x, y]).
The bottom and the top truth members of this lattice LC are 0C

T = ([0, 0], [1, 1]), and
1C

T = ([1, 1], [0, 0]) = ¬C0C
T . The knowledge ordering ≤C

k in LC is defined by
([x, y], [z, v]) ≤C

k ([x1, y1], [z1, v1]) iff [x, y] ≤t [x1, y1] and [z, v] ≤t [z1, v1].
The meet operation (conjunction) and the join operation (disjunction) for this knowl-
edge ordering ≤C

k and the knowledge negation ∼C , which reverses this knowledge
ordering, are defined by ∼C ([x, y], [z, v]) = (¬[z, v],¬[x, y]) = ([1 − v, 1 −
z], [1 − y, 1 − x]. The bottom and the top knowledge members of this lattice LC are
0C

K = ([0, 0], [0, 0]), and 1C
K = ([1, 1], [1, 1]) =∼C 0C

K .
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Proposition 10 The confidence-level parameterized bilattice is a p-D-bilattice com-
posed by two p-lattices, a p-t-lattice (LC , αt), with αt = {{∧C

p ,⇀C
p | p ∈ ParB},∼C

}, and a p-k-lattice (LC , αk), with αk = {{⊗C
p ,⇁C

p | p ∈ ParB},¬C}, where
ParB = {pc, ig, nc, in, ex} are parameters, such that for any pair
([x, y], [z, v]), ([x1, y1], [z1, v1]) ∈ LC , p ∈ ParB :
1. The parametric conjunctions (positive correlation is the meet operator) are defined
by ([x, y], [z, v]) ∧C

p ([x1, y1], [z1, v1]) = ([x, y] ∧p [x1, y1], [z, v] ∨p [z1, v1]),
2. The parametric disjunctions are defined by de Morgan laws
([x, y], [z, v]) ∨C

p ([x1, y1], [z1, v1]) = ¬C(¬C([x, y], [z, v]) ∧C
p ¬C([x1, y1], [z1, v1]))

= ([x, y] ∨p [x1, y1], [z, v] ∧p [z1, v1]),
3. The parametric implications by relative pseudo complements
([x, y], [z, v]) ⇀C

p ([x1, y1], [z1, v1])
= max{([a, b], [c, d]) ∈ LC | ([x, y], [z, v]) ∧C

p ([a, b], [c, d]) ≤C
t ([x1, y1], [z1, v1])}

= ([x, y] ⇀p [x1, y1], ¬(¬[z, v] ⇀p ¬[z1, v1])).
4. Duality operation: ∂C([x, y], [z, v]) = ([x, y],¬[z, v]).
7. The knowledge conjunction/disjunction strategies and implications are defined by
([x, y], [z, v])⊗C

p ([x1, y1], [z1, v1]) = ∂C(∂C([x, y], [z, v]) ∧C
p ∂C([x1, y1], [z1, v1])),

([x, y], [z, v])⊕C
p ([x1, y1], [z1, v1]) = ∂C(∂C([x, y], [z, v]) ∨C

p ∂C([x1, y1], [z1, v1])),
([x, y], [z, v]) ⇁C

p ([x1, y1], [z1, v1]) = ∂C(∂C([x, y], [z, v]) ⇀C
p ∂C([x1, y1], [z1, v1])),

for each p ∈ ParB .

Proof: It is easy to verify. In fact, given α = ([x, y], [z, v]), β = ([x1, y1], [z1, v1]),
then, for conjunctions (and disjunctions) the proof is equal to the Th.4.1 in [35], that
is α ∧C

p β =
1. Positive correlation (meet operation),
([min{x, x1},min{y, y1}], [max{z, z1},max{v, v1}]),
2. Ignorance, ([max{0, x + x1 − 1},min{y, y1}], [max{z, z1}, min{1, v + v1}]),
3. Negative correlation strategy conjunction,
([max{0, x + x1 − 1},max{0, y + y1 − 1}], [min{1, z + z1},min{1, v + v1}]),
4. Independence, ([x · x1, y · y1], [z + z1 − z · z1, v + v1 − v · v1]),
5. 0C

T , for mutually-exclusive strategy conjunction;
While for implication we have that α ⇀C

p β =
1. Positive correlation, ([x ⇒w x1, y ⇒w y1], [¬(¬z ⇒w ¬z1),¬(¬v ⇒w ¬v1))
2. Ignorance strategy, ([x ⇒s x1, y ⇒w y1], [¬(¬z ⇒w ¬z1),¬(¬v ⇒s ¬v1))
3. Negative correlation, ([x ⇒s x1, y ⇒s y1], [¬(¬z ⇒s ¬z1),¬(¬v ⇒s ¬v1))
4. Independence strategy, ([x ⇒m x1, y ⇒m y1], [¬(¬z ⇒m ¬z1),¬(¬v ⇒m ¬v1))
5. 1C

T , for mutually-exclusive strategy implication.
For the knowledge conjunctions/disjunctions and implications we obtain (p ∈ ParB)
α⊗C

p β = ([x, y]∧p [x1, y1], [v, z]∧p [v1, z1]), α⊕C
p β = ([x, y]∨p [x1, y1], [v, z]∨p

[v1, z1]), and α ⇁C
p β = ([x, y] ⇀p [x1, y1], [v, z] ⇀p [v1, z1]). 2

As in the case of the interval-probability logic programming, also for confidence level
probability logic programming, the parameterized truth implications can be used for
definitions of satisfaction relation for rules of such programs: each of them preserves
the principle of truth conservation from body into the head of rules, so that can be used
in each fixed point algorithm for computation of models for these logic programs.
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3 Duality in Higher-order bilattices
Higher-order bilattices are bilattices whose elements are functions instead of constants.
They appear in logic programs with higher-order Herbrand interpretations [39].
In the last part of this section we wil present an example for the Probabilistic Temporal
Programs (databases).
First we will define the canonical higher-order D-bilattice, obtained from the basic D-
bilattices, which are distributive lattices.
From the Birkhoff’s representation theorem [8] for distributive lattices, every finite
(thus complete) distributive lattice is isomorphic to the lattice of lower sets of the poset
of join-irreducible elements. In what follows we denote by ↓ x the downward closed
set {y | y ≤ x}, will denote by A ⇒ B, or BA, the set of all functions from A to B,
and by im the mapping isomorphism im : 2X ' P(X), such that for any function
f ∈ 2X , imf = {x ∈ X|f(x) = 1} ⊆ X .

Proposition 11 [8] 0-LIFTED BIRKHOFF ISOMORPHISM: Let X be a complete dis-
tributive lattice, then we define the following mapping ↓+: X → P(X): for any
x ∈ X ,
↓+ x = ↓ x

⋂
X̂ , where X̂ = {y | y ∈ X and y is join-irriducible } ⋃ {0}.

We define the set X+ = {↓+ x |x ∈ X } ⊆ P(X), so that ↓+ ∨
= idX+ : X+ → X+

and
∨ ↓+= idX : X → X . Thus, the operator ↓+ is inverse of the supremum op-

eration
∨

: X+ → X . The set (X+,⊆) is a complete lattice, such that there is the
following 0-lifted Birkhoff isomorphism ↓+: (X,≤,∧,∨) ' (X+,⊆,

⋂
,
⋃

).

Proof: Let us show the homomorphic property of ↓+:
↓+ (x ∧ y) =↓ (x ∧ y)

⋂
X̂ = (↓ x

⋂ ↓ y)
⋂

X̂ = (↓ x
⋂

X̂)
⋂

(↓ y)
⋂

X̂) =
=↓+ x

⋂ ↓+ y, and
↓+ (x ∨ y) =↓ (x ∨ y)

⋂
X̂ = (↓ x

⋃ ↓ y)
⋂

X̂ = (↓ x
⋂

X̂)
⋃

(↓ y)
⋂

X̂) =
=↓+ x

⋃ ↓+ y. The isomorphic propertu holds from Bikhoff’s theorem.
¤
The name lifted is used to denote the difference from the original Birkhoff’s isomor-
phism: that is, we have that for any x ∈ X , 0 ∈↓+ x , so that ↓+ x is never empty set
(it is lifted by bottom element 0).
Notice that when X is distributive lattice then (X+,⊆,

⋂
,
⋃

) is a subalgebra of the
powerset Boolean algebra (P(X),⊆,

⋂
,
⋃

), differently from the case when X is not
distributive. Thus, we have
↓+: (X,≤,∧,∨) ' (X+,⊆,

⋂
,
⋃

) ⊆ (P(X),⊆,
⋂

,
⋃

).

Proposition 12 (Higher-order D-bilattices):
Let B be a D-bilattice with B̂t the set of join-irreducible elements w.r.t. ≤t with 0t,
and B̂k the set of join-irreducible elements w.r.t. ≤k with 0k. Then the higher-order
bilattice Bδ = {δx ∈ 2B | x ∈ B and imδx =↓t x

⋂ B̂t =↓+t x} ⊆ 2B, such that
1. δx ≤t δy iff x ≤t y, and δx ≤k δy iff x ≤k y,
2. for any unary operator ¯ ∈ (¬,∼, ∂}, ¯δx =def δ¯x

3. for any binary operator ¯ ∈ (∧,∨,⊗,⊕}, δx ¯ δy =def δx¯y ,
is a D-bilattice isomorphic to the original D-bilattice B.
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Analogously, the bilattice Bδ = {δx ∈ 2B | x ∈ B and imδx =↓k x
⋂ B̂k =↓+k x},

which satisfies the points 1,2 and 3 above, is a D-bilattice isomorphic to the original
D-bilattice B.

Proof: Easy to verify. Let us consider the negation in Bδ . If δx ≤t δy then x ≤t y ,
thus ¬x ≥t ¬y , thus δ¬x ≥t δ¬y , i.e., ¬δx ≥t ¬δy , and ¬ in this higher order
bilattice Bδ is antitonic. The bottom element 0t in Bδ is the function δ0t

: B → 2,
such that δ0t

(x) = 1 iff x ∈ {0t}, i.e., imδ0t
= {0t}, while the top element 1k

is the function δ1t
: B → 2, such that δ1t

(x) = 1 iff x ∈ B̂t, i.e., imδ0t
= B̂t.

And ¬δ0t = δ¬0t = δ1t and viceversa, with ¬¬δx = ¬δ¬x = δ¬¬x = δx, that is this
negation is an involution and, consequently the bilattice negation.
¤
It is easy to verify that the meet and join operators in these higher-order D-bilatice
have the intersection and Union set-based representations respectively, That is, im(δx∧
δy) = imδx

⋂
imδy , im(δx ∨ δy) = imδx

⋃
imδy and im(δx ∧ δy) = imδx

⋂
imδy ,

im(δx∨ δy) = imδx

⋃
imδy, which will be used for the representation theorem of the

D-bilattices. Consequently we define the following two sets:
B+

δ = {↓+t x = imδx] | x ∈ B} and B+

δ = {↓+k x = imδx] | x ∈ B} .

3.1 Minimal higher-order D-bilattice
The minimal non banal D-bilattice of the higher-order type is the following func-
tional version of the Belnap’s bilattice: Higher-order Belnap’s bilattice. We define
the canonical functional version of the Belnap’s bilattice based on the Proposition 12
Bδ = {δx : B4 → 2, x ∈ B4}, where
imδ⊥ = {⊥}, imδf = {⊥, f}, imδt = {⊥, t}, imδ> = {⊥, f, t}.
It is a bilattice with the following knowledge and truth orderings ≤k, ≤t

δx ≤k δy iff imδx ⊆ imδy iff x ≤k y, and δx ≤t δy iff x ≤t y.
Let us give an intuitive explanation [37] of what the Higher-order bilattice Bδ and its
knowledge ordering mean in the fixpoint semantics for logic programs with incomplete
and possibly inconsistent information. In order to obtain a new bilattice abstraction ra-
tionality, useful to manage logic programs with inconsistencies, we need to consider
more deeply the fundamental phenomena in such one framework. In the process of
derivation of new facts, for a given logic program, based on the ’immediate conse-
quence operator’, we have the following truth transformations for ground atoms in a
Herbrand base of such a program (at the beginning, the initial many-valued interpreta-
tion assign the unknown value δ⊥ to all ground atoms of the Herbrand base of a logic
program):
1. When a ground atom passes from unknown to true logic value (it means that the
value of an atom was unknown and in the next iteration it becomes true), without gen-
erating inconsistence; then we assign to this atom the value δt. Let us denote this action
by ↑t: (⊥ ≤k t), which is just the knowledge ordering in the set imδt =↓+k t. This
action is ’knowledge increasing’.
2. When a ground atom, tries to pass from unknown to both true and false value,
generating an inconsistency, then is applied the inconsistency repairing, that is, the
actual value of the literal of this atom, in a body of a violated clause with built-in
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predicate, is replaced by possible value, that is δ>. Let us denote this action by the pair
↑>: (⊥ ≤k f , ⊥ ≤k t), which is just the knowledge ordering in the set imδ> =↓+k >.
This action is ’knowledge increasing’, because we pass from the value ⊥ to the value
>. Notice that this transformation does not change the truth ordering.
3. When a ground atom passes from unknown to false logic value, without generating
an inconsistence. Let us denote this action by ↑f : (⊥ ≤k f), which is just the knowl-
edge ordering in the set imδf =↓+k f . It is knowledge increasing.
4. For ground atom which did not change its initial state we denote this action by the
identity ↑⊥: (⊥ ≤k ⊥), which is just the knowledge ordering in the set imδ⊥ =↓+k ⊥.

It is evident how this dynamic phenomena, during computation of the least fixpoint
model of a logic program, is more precisely represented by replacing the ordinary Bel-
nap’s bilattice B4 by its higher order type Bδ , where each logic value corresponds to
some of the actions above.
Notice that the set B+

δ = {↓+k x = imδx] | x ∈ B4} is the set of proper ide-
als (downward closed w.r.t. the knowledge ordering) of the Belnap’s bilattice. It is
not a simple coincidence, but the consequence of the general definition of the join-
semilattice for Higher-order Herbrand interpretation types [39]. The elements of B+

δ

are closed sets, and more over, the knowledge-lattice (B+

δ ,⊆) with set intersection and
set union (meet and join operators respectively), is the canonical (set-based) Belnap’s
knowledge-lattice.

3.2 Duality in higher-order Herbrand interpretations
The higher-order types of Herbrand interpretations for logic programs, where we are
not able to associate a fixed logic value to a given ground atom of a Herbrand base,
arise often in practice when we have to deal with uncertain information. In such cases
we associate some degree of belief to ground atoms, which can be simple probability,
probability interval, or other more complex data structures, as for example in Bayesian
logic programs where for a different kind of atoms we associate also different (from
probability) kind of measures.
The higher-order Herbrand interpretations of logic programs (for example Databases),
produce models where the true values for ground atoms are not truth constants but
functions. In this section we will give the general definitions for such higher-order
Herbrand interpretation types for logic programs and their models.
Now we can formally introduce the definition for higher-order Herbrand interpretation
types:

Definition 5 (Higher-order Herbrand interpretation types [39]):
Let H be a Herbrand base, then, the higher-order Herbrand interpretations are defined
by Iabs : H → T , where T denotes the functional space W1 ⇒ (...(Wn ⇒ 2)...),
where 2 = {0, 1} is the set of classic truth values, denoted also as
(...((2Wn)Wn−1)...)W1 , and Wi, i ∈ [1, n], n ≥ 1, the sets of parameters. In the case
n = 1, T = (W1 ⇒ 2), we will denote this interpretation by Iabs : H → 2W1 .
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In the rest of the paper we will use only the simplest higher type T = (W ⇒ 2)
for higher Herbrand interpretations, where W is equal to the D-bilattice B of algebraic
logic values, that is, when T = 2B is the higher-order D-bilattice from the Proposition
12. Now we will introduce the transformation, called flattening, where the set of values
of the D-bilattice B, is fused into the Herbrand base by enlarging original predicates
(in H of the old theory) with new logic attributes taken from the D-bilattice B.

Definition 6 (Flattening) A higher-order Herbrand interpretation Iabs : H → Bδ ⊆
2B, can be flattened into the ordinary Herbrand interpretation IF : HF → 2, where
HF = {rF (d, υ) | r(d) ∈ H and υ ∈ B}, is the Herbrand base of predicates rF ,
obtained as extension of original predicates r by parameters, such that for any
rF (d, υ) ∈ HF , υ ∈ B, holds that IF (rF (d, υ)) = Iabs(r(d))(υ).

We obtain the following ”exponent” diagram for interpretations

2B × B eval - 2

H × B

Iabs

6

idB

6

¾
is−1

HF

IF

6

which commutes, with IF = [Iabs]−1 ◦ is−1, where [Iabs]−1 = eval ◦ (Iabs ⊗ idB) ,
where is : H × B ' HF is a bijection such that (r(d), υ) = is−1(rF (d, υ)), and
rF (d, υ) = is(r(d), υ)), [ ] is the curring (λ abstraction) for functions, [ ]−1 is its
inverse, and eval is the evaluation of a function from 2B for values in B4. Thus,
IF (rF (d, υ)) = eval◦(Iabs×idB)◦is−1(r(d), υ) = eval◦(Iabs⊗idB)((r(d), (r(d), υ))
= eval ◦ (I(r(d)), υ) = Iabs(r(d))(υ).
If we consider a many-valued logic program P with a Herbrand base H and a many-
valued interpretation Imv : H → B, then such a many-valued interpretation can be
replaced by the higher-order Herbrand interpretation I : H → Bδ , by replacing the
original bilattice values υ ∈ B with correspondent functional elements δυ ∈ Bδ .
Thus, by flattening we obtain an ordinary Herbrand interpretation IF : HF → 2. Such
a transformation is an ”ontological encapsulation” [41] of many-valued logic programs
into 2-valued ”meta” logic programs. For excample, the Fitting’s 4-valued ”immediate
consequence operator” ΦP : BH → BH , based on the Belnap’s D-bilattice B, mono-
tonic w.r.t. the knowledge ordering in B4, can be transformed in an analog operator
ΨP : 2HF → 2HF , which is monotonic w.r.t. the truth ordering (see for more technical
details in [41, 39]).
Such result is intimately connected with the duality of simple D-bilattices B and its
functional higher-order version Bδ , and its extension to the following functional space:

Lemma 3 If B is a D-bilattice then the functional space BH
δ is a D-bilattice.

Proof: From the isomorphism δ : B ' Bδ in the Proposition 12 and the Lemma 4.
¤
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EXAMPLE: Temporal-probabilistic logic:

For a more exhaustive presentation of TP-logic/database we refer to the work in [2, 44],
so we will restrict our attention only to necessary concepts for the work presented in
this paper, but we will use the same terminology as those used in [2, 44]. We denote
by Sτ the set of all valid time points of a calendar of a type T .
Temporal Constraint: A temporal constraint C over calendar T is defined induc-
tively:
1. Any atomic temporal constraint, (t op ci), where ci is the time-value and op ∈ {≤
, <, =, 6=, >,≥}, is a temporal constraint.
2. if C1 and C2 are temporal constraints, then C1∧C2, C1∨C2, and ¬C1 are temporal
constraints.
The extension (the set of time points) of a temporal constraint C is denoted by sol(Ci).
TP-case statement and TP-tuple: A TP-case statement
γ = {γi = 〈Ci, Di, Li, Ui, δi〉 | 1 ≤ i ≤ n, n ≥ 1}, is an expression where Ci and
Di are temporal constraints, Li and Ui are lower and upper probability boundaries,
and δi : sol(Di) → [0, 1] is a probability distribution, so that for any t ∈ sol(Di),
δi(Di, t) is a probability value at t; and the following conditions are satisfied for all
1 ≤ i ≤ n :
1. 0 ≤ Li ≤ Ui ≤ 1, sol(Ci) ⊆ sol(Di).
2. | sol(Ci) |≥ 1, that is, at least one time point satisfy Ci and Di.
3. ∀(j ≤ n).( i 6= j implies sol(Ci)

⋂
sol(Cj) = {}).

Let A = {A1, .., Ak} be an ordinary relational schema, correspondent to the predi-
cate r(x1, ..., xk), and d = {d1, .., dk} its ordinary tuple from a database domain, then
tp = (d, γ) is a TP-tuple over a schema A.
Intuitively, γ gives the probability p for each t ∈ Sτ , that the event with data d occurs
at time t; as default, we consider that for each t ∈ Sτ −

⋃
γi∈γ sol(Ci) the probability

is zero; that is
⋃

γi∈γ sol(Ci) represents the temporal uncertainty for this event. Other
important assumption is that each event in a TP-Database is uniquely determined by its
data tuple d. A TP-relation over a relational schema A is a multiset of TP-tuples over
a schema A.
Their equivalent, explicit, definition by ordinary tuples and relations is given by so
called annotated relations: an annotated tuple provides probabilistic information ([L,U ])
for one data tuple d at one point in time t.
Annotated relations: Let tp = (d, γ) be a TP-tuple over a relational schema A, where
γ = {γi = 〈Ci, Di, Li, Ui, δi〉 | 1 ≤ i ≤ n, n ≥ 1}.
Then the annotated relation for this TP-tuple tp is defined as the set
{(d, t, Li · x,Ui · x) | t ∈ ⋃

γi∈γ sol(Ci), x = δi(Di, t) }.
Intuitively, in the above definition, x represents the percentage of sol(Di)’s proba-
bility which is associated with time point t according to δi. If the original relation
for a schema A is denoted by the predicate r(x1, ..., xk), the correspondent predicate
for annotated relation will be denoted by rF (x1, ..., xk, t, Lt, Ut), where are added the
temporal attribute and lower and upper probability attributes.
Annotated relations, as we will show in advance, can be seen as a particular case of
the flattening (Definition 6) of the higher-order Herbrand interpretations for TP-tuples,

24



introduced in what follows.
These TP-tuples and TP-relations are implicitly defined by means of temporal con-
straints Ci in γ and are not ordinary relations, that is, they cannot be defined by ordi-
nary 2-valued predicates. In fact, to each ground atom r(d) we associate the TP-case
statement γ = {γi = 〈Ci, Di, Li, Ui, δi〉 | 1 ≤ i ≤ n, n ≥ 1}, and this mapping for
each ground atom in a Herbrand base, can be equivalently represented by the higher-
order Herbrand interpretation [44]:
Iabs : H → T , where T = (T ⇒ (LB ⇒ 2)), that is, T = (2LB )T , where LB is the
interval-based lattice used for a belief based logic, so that for any r(d) in a Herbrand
base H , Iabs(r(d)) is a function from T to the set of functions in 2LB , such that,
Iabs(r(d))(t)(Li · x, Ui · x) = 1, (i.e., true), iff t ∈ ⋃

γi∈γ sol(Ci), x = δi(Di, t).
This fact simply tells us that the probability of the event, represented by the atom r(d)
in a database, in the time-instance t, is between values Li · x, and Ui · x.
If we enlarge every predicate r in a database by a temporal attribute t, so that instead of
original atoms r(d) we introduce new temporal atoms r′(d, t), we obtain a new Her-
brand base HT = {r′(d, t)|r(d) ∈ H and t ∈ T }, with the following higher-order
interpretation:
I ′abs : HT → T ′ , where T ′ = (LB ⇒ 2), that is, T = 2LB is a higher-order belief-
based D-bilattice.
More preciselly, we have the higher-order Herbrand interpretation
I ′abs : HT → L̃B ⊆ 2LB , where L̃B is the canonical higher-order D-bilattice of the
belief D-bilattice LB in Proposition 8.
Consequently, we have the higher-order Herbrand interpretations, any time when we
are using higher-order D-bilattices.

4 Duality for the fixpoint semantic of Logic programs
If P is a many-valued logic program with a Herbrand base HP , then the ordering
relations and operations in a bilattice B are propagated to the function space BHP , that
is the set of all Herbrand interpretations (functions), I = vB : HP → B.

Definition 7 Ordering relations are defined on the Function space BHP pointwise, as
follows: for any two Herbrand interpretations vB , wB ∈ BHP

1. vB ≤t wB if vB(A) ≤t wB(A) for all A ∈ HP .
2. vB ≤k wB if vB(A) ≤k wB(A) for all A ∈ HP .
Bilattice meet ∧,⊗ and join ∨,⊕ operations for these two orderings are defined in
pointwise fashion (for ex., (vB ∧ wB)(A) = vB(A) ∧ wB(A), etc.), and also nega-
tion is defined in pointwise fashion, that is, ¬vB : HP → B is a mapping such that
(¬vB)(A) = ¬(vB(A)) for all A ∈ HP .

Now we will show that if the basic bilattice B is a D-bilattice, then also the higher level
bilattice (Functional space of Herbrand interpretations) is a D-bilattice.

Lemma 4 The Function space bilattice is a D-bilattice composed by two lattices, a t-
lattice (BHP , αt), with αt = {∧,⇀,∼}, and a k-lattice (BHP , αk), with αk = {⊗,⇁
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,¬}, such that:
1. Implication: for truth vB ⇀ wB = maxt{uB | uB ∧ vB ≤t wB} ,
for knowledge vB ⇁ wB = maxk{uB | uB ⊗ vB ≤k wB} , that is,
(vB ⇀ wB)(A) = vB(A) ⇀ wB(A), and (vB ⇁ wB)(A) = vB(A) ⇁ wB(A),
for all A ∈ HP .
2. Duality operation: ∂vB is pointwise defined by (∂vB)(A) = ∂(vB(A)) for all
A ∈ HP .
3. Knowledge negation: ∼ vB is pointwise defined by (∼ vB)(A) =∼ (vB(A)) for
all A ∈ HP .
Proof: For all A ∈ HP we have that (vB ⇀ wB)(A) = maxt{uB | (uB ∧ vB) ≤t

wB}(A) = maxt{uB(A) | (uB ∧ vB)(A) ≤t wB(A)} = maxt{uB(A) | uB(A) ∧
vB(A) ≤t wB(A)} = vB(A) ⇀ wB(A).
Let us prove that duality homomorphism holds for implications, vB ⇁ wB = ∂(∂vB ⇀
∂wB); for all other it is easy to verify in a pointwise fashion. So, we have that for all
A ∈ HP (consider that ∂ is operator which preserves orderings):
∂(vB ⇁ wB)(A) = ∂(maxk{uB | uB⊗vB ≤k wB})(A) = ∂(maxk{uB(A) | (uB⊗
vB)(A) ≤k wB(A)}) = maxt{∂uB(A) | (uB ⊗ vB)(A) ≤k wB(A)}
= maxt{∂uB(A) | ∂(uB ⊗ vB)(A) ≤t ∂wB(A)} = maxt{∂uB(A) | (∂uB ∧
∂vB)(A) ≤t ∂wB(A)} = (maxt{∂uB | (∂uB ∧ ∂vB) ≤t ∂wB})(A) = (∂vB ⇀
∂wB)(A),
that is, ∂(vB ⇁ wB) = ∂vB ⇀ ∂wB , and, consequently (∂ is an involution opera-
tion), vB ⇁ wB = ∂(∂vB ⇀ ∂wB). 2

Now we will show that full duality holds for a fixpoint semantics of logic programs
[21] based on D-bilattice.

Proposition 13 Let Φq : BHP → BHP be an ”immediate consequence operator” for
a logic program P , monotonic w.r.t. the ordering ≤q, q ∈ {t, k}, with a least fixpoint
u = Φq(u). Then there exists the ”immediate consequence operator” Φq = ∂Φq∂ :
BHP → BHP , of the dual program ∂P = {∂ϕ | ϕ ∈ P}, monotonic w.r.t. the dual
ordering ≤q , with a least fixpoint u′ = ∂u∂.

Proof: By monotonicity of Φ we have that v ≤q w implies Φq(v) ≤q Φq(w). So, by
duality v′ = ∂v ≤q ∂w = w′ and ∂Φq(v) ≤q ∂Φq(w), that is
Φq(v′) = ∂Φq∂(∂v) ≤q ∂Φq∂(∂w) = Φq(w′).
2

EXAMPLE: In what follows, for any Herbrand interpretation, of a Logic Program
P based on Belnap’s D-bilattice B4, v ∈ BHP

4 , we denote by v its standard unique
extension to all ground formulae, such that for any A ∈ HP , and the ground formulae
ψ, φ, v(∼ A) =∼ v(A), v(¬A) = ¬v(A), v(∂A) = ∂v(A), and v(ψ ∧ φ) =
v(ψ) ∧ v(φ), etc..
It is known that a general logic program P (with epistemic negation in the body of
rules) has the least fixpoint semantics [18] of the immediate consequence operator Φk,
monotonic with respect to the knowledge ordering, such that vi+1 = Φk(vi) ≥k vi,
i = 0, 1, 2, .. with v0 the bottom knowledge member in BHP which assigns to all atoms
in HP the unknown value ⊥ of Belnap’s 4-valued bilattice, determined as follows: for
a ground atom A, let S = {A ↼ Bj1, .., Bjkj ∈ P ∗, j = 1, 2, .., n} be the set of all
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clauses in a grounded program P ∗, then
(1) vi+1(A) = vi((B11 ∧ .. ∧B1k1) ∨ ... ∨ (Bn1 ∧ .. ∧Bnkn

)).
We have that the dual grounded program is ∂P ∗ = {∂(A ↼ Bj1 ∧ .. ∧ Bjkj

) | A ↼
Bj1, .., Bjkj ∈ P ∗} = {∂A ↽ ∂Bj1 ⊗ .. ⊗ ∂Bjkj | A ↼ Bj1, .., Bjkj ∈ P ∗}. So,
the dual immediate consequence operator Φt = ∂Φk∂ is monotonic with respect to
the truth ordering, such that v′i+1 = Φt(v′i), i = 0, 1, 2, .. with v′0 the bottom truth
member in BHP which assigns to all atoms in HP the false value f of Belnap’s 4-
valued bilattice.
Let us show that the next interpretation v′i+1 is determined as follows: for a ground
atom A, let S = {∂A ↽ ∂Bj1 ⊗ .. ⊗ ∂Bjkj ∈ ∂P ∗, j = 1, 2, .., n} be the set of all
clauses in a grounded program ∂P ∗, then
(2) v′i+1(∂A) = v′i((∂B11 ⊗ ..⊗ ∂B1k1)⊕ ...⊕ (∂Bn1 ⊗ ..⊗ ∂Bnkn

))
We can apply the operator ∂ to both sides of the equation (1). For the left side we
obtain
∂vi+1(A) = ∂Φkvi(A) = ∂Φk(∂v′i∂)(A) = Φtv

′
i(∂A) = v′i+1(∂A).

While for the right side we obtain
∂vi((B11 ∧ .. ∧B1k1) ∨ ... ∨ (Bn1 ∧ .. ∧Bnkn

)) =
= ∂((vi(B11) ∧ .. ∧ vi(B1k1)) ∨ ... ∨ (vi(Bn1) ∧ .. ∧ vi(Bnkn))) =
= (∂vi(B11)⊗ ..⊗ ∂vi(B1k1))⊕ ...⊕ (∂vi(Bn1)⊗ ..⊗ ∂vi(Bnkn)) =
= (∂vi∂(∂B11)⊗ ..⊗ ∂vi∂(∂B1k1))⊕ ...⊕ (∂vi∂(∂Bn1)⊗ ..⊗ ∂vi∂(∂Bnkn)) =
= (v′i(∂B11)⊗ ..⊗ v′i(∂B1k1))⊕ ...⊕ (v′i(∂Bn1)⊗ ..⊗ v′i(∂Bnkn)) = (from the fact
that v′i = ∂vi∂)
= v′i((∂B11 ⊗ ..⊗ ∂B1k1)⊕ ...⊕ (∂Bn1 ⊗ ..⊗ ∂Bnkn)).
That is, we obtain (2).

5 Autoreferential Representation Theorem for D-bilattices
In mathematics, Stone’s representation theorem for Boolean algebras [30], of Marshall
H. Stone, is the duality between the category of Boolean algebras and the category of
Stone spaces, i.e., totally disconnected compact Hausdorff topological spaces. In de-
tail, the Stone space of a Boolean algebra BA is the set of all 2-valued homomorphisms
on BA. Stone’s original idea was to model an element a of Boolean algebra by the set
of homomorphisms h into the two-element Boolean algebra 2 = {0, 1} of truth-values,
such that h(a) = 1. Such homomorphisms are completely determined by the inverse
image h−1(1), which can be easily seen to be an ultrafilter (maximal filter).
Every Boolean algebra is isomorphic to the algebra of clopen (i.e., simultaneously
closed and open) subsets of its Stone space. The Stone’s isomorphism
is : (BA, +, ·, \, 0, 1) ' (CL(P(S)),

⋃
,
⋂

,−, ∅, S)
for any set S, where P(S) is the powerset of S, and CL(P(S)) its subset of clopen sets
(here ”−” denotes the set complement w.r.t. S), maps any element a of BA to the set
of homomorphisms that map a to 1. The powerset algebra is the canonical extension
of Boolean algebra: any Boolean algebra can be represented by this canonical algebras
of sets whose structure is simpler to describe and much better understood.
The Stone representation theorem cannot be proven within the Zermelo-Fraenkel ax-
ioms. This theorem was proved by M.Stone in 1934. Stone’s theorem has since been
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the model for many other similar representation theorems, as, for example, Priestley,s
duality for bounded distributive lattices, where h−1(1) is a prime filter of the lattice,
and known duality theorems for semilattices.
Generally, all Stone-like representation theorems for algebraic logics are based on the
assumption that the possible worlds, in this relational Kripke-like semantics, are filters
of their Lindenbaum algebras: it is original approach used for the 2-valued algebraic
modal logics. So that each possible world is modeled as a set of sets of values.
In what follows we will not follow this standard approach but will use different seman-
tics for possible worlds, which is autoreferential w.r.t. the lattice of algebraic logic
values where the set of possible worlds is equal to the set of elements of this lattice.
Autoreferential semantics for possible worlds is based on the consideration that each
possible world represents a level of credibility, so that only the propositions with the
right logic value (i.e., level of credibility) can be accepted by this world (more about
this approach can be find in [42, 43]).
This new approach becomes more clear when we consider, for example, the way how
to choose the Higher-order D-bilattice, in Proposition 12, Bδ ⊂ 2B as a strict subset
of the set of all mappings from the lattice (B,≤k) to the lattice (2,≤). To show it, let
us first define the inclusive homomorphism i2 : (2,≤) ↪→ (B,≤k) which preserves
orderings, that is, i2(0) = 0k and i2(1) = 1k (maps bottom-to-bottom and top-to-top
elements). Now, the question of how to obtain Higher-order bilattices is inverse w.r.t.
the inclusive homomorphism. That is we are able to define the family of inverse homo-
morphisms from (B,≤k) to (2,≤). The natural choice is defined by Proposition 12,
such that, by Proposition 11, we obtain the isomorphisms
↓+t : (B,≤t,∧,∨) ' (B+

δ ,⊆,
⋂

,
⋃

) and ↓+k : (B,≤k,⊗,⊕) ' (B+

δ ,⊆,
⋂

,
⋃

),
where B+

δ = {↓+t x = imδx] | x ∈ B} and B+

δ = {↓+k x = imδx] | x ∈ B} .

EXAMPLE: For the Belnap’s D-lattice we have that (see also the subsection 3.1 ),
B+

δ = {{f}, {f,⊥}, {f,>}, {f,⊥,>}}, while B+

δ = {{⊥}, {⊥, f}, {⊥, t}, {⊥, f, t}}.
¤
In order to extend these canonical lattices (B+

δ ,⊆) and (B+

δ ,⊆) to intuitionistic im-
plication (and negation) operators, we have to provide the closure property [12] for
elements of these lattices.

Proposition 14 Let⇒ be the relative pseudo-complement operator for sets, that is, for
any two sets X and Y , X ⇒ Y = max{Z | Z ⋂

X ⊆ Y }, so, the powerset algebras
(P(↓+t 1t),⊆,

⋂
,⇒) and (P(↓+k 1k),⊆,

⋂
,⇒) are Heyting algebras.

The operators Ct : B+
δ → B+

δ and Ck : B+

δ → B+

δ , such that Ct =
⋃{0t}, Ck =⋃{0k}, are closure operators. Thus, also (B+

δ ,⊆,
⋂

,⇒) and (B+

δ ,⊆,
⋂

,⇒) are
Heyting algebras with {0t} and {0k} bottom elements respectively. Thus, the negation
is defined by ¬tX = X ⇒ {0t} for any X ∈ B+

δ , and by ¬kX = X ⇒ {0k} for any
X ∈ B+

δ , respectively.

Proof: It is enough to prove that Ct (and Ck) are closure operators for sets. In fact:
1. Ct({0t}) = {0t}

⋃{0t} = {0t}
2. Ct(X

⋃
Y ) = X

⋃
Y

⋃{0t} = (X
⋃{0t})

⋃
(Y

⋃{0t}) = Ct(X)
⋃

Ct(Y )
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3. X ⊆ X
⋃{0t} = Ct(X)

4. CtCt(X) = Ct(X)
⋃{0t} = X

⋃{0t} = Ct(X).
Notice that all elements in B+

δ are clopen, that is, closed and open (their complement
w.r.t. ↓+t 1t is closed element). Thus operations

⋂
and ⇒ are closed over the set

B+
δ , and consequently (B+

δ ,⊆,
⋂

,⇒) is a (Heyting) subalgebra of the Heyting algebra
(P(↓+t 1t),⊆,

⋂
,⇒).

¤
But as Halmos have shown [29], the structures as (B+

δ ,⊆) (and (B+

δ ,⊆)) in which
each closed element is also open have monadic algebraic structure and can support
also the closure modal operator ¦ conjugate to itself. And that is just our case, for
modal D-bilattice operators ∼ and ¬ in the truth and knowledge lattices respectively.

Proposition 15 Let ¦t and ¦k be two operators on sets such that for a given set X ∈
P(↓+t 1t),
¦tX = {∼ x | x ∈ X}, and for Y ∈ P(↓+k 1k), ¦kY = {¬y | y ∈ Y }.
Then (P(↓+t 1t),⊆,

⋂
,⇒, ¦t) and (P(↓+k 1k),⊆,

⋂
,⇒, ¦k) are modal extensions of

Heyting algebras.
Also (B+

δ ,⊆,
⋂

,⇒, ¦t) and (B+

δ ,⊆,
⋂

,⇒, ¦k) are monadic Heyting algebras.

Proof: We have that ¦t({0t}) = {∼ 0t} = {0t}, so ¦t is normal modal operator, and,
for any two sets X, Y ∈ P(↓+t 1t), ¦t(X

⋃
Y ) = {∼ x | x ∈ X

⋃
Y } = {∼ x | x ∈

X or x ∈ Y } = {∼ x | x ∈ X}⋃{∼ x | x ∈ Y } = ¦t(X)
⋃ ¦t(Y ), that is, ¦t is

additive.
It is easy to show that for any X ∈ B+

δ , ¦tX = ¬t ¦t ¬tX = 2tX ∈ B+
δ , thus

¦t ≡ 2t, that is it is conjugate to yourself w.r.t. B+
δ . The same holds for ¦k w.r.t.

B+

δ , thus (B+
δ ,⊆,

⋂
,⇒, ¦t) and (B+

δ ,⊆,
⋂

,⇒, ¦k) are monadic Heyting subalgebras
of (P(↓+t 1t),⊆,

⋂
,⇒, ¦t) and (P(↓+k 1k),⊆,

⋂
,⇒, ¦k) respectively.

¤

Theorem 1 (Representation Theorem for D-bilattices)
Let ∂ : (B,≤t,∧,⇀,∼) ∼= (B,≤k,⊗,⇁,¬) be the duality isomorphism for a D-
bilattice B. Then the following commutative diagram holds

(B,≤t,∧,⇀,∼)
↓+te- (B+

δ ,⊆,
⋂

,⇒, ¦t)
int- (P(↓+t 1t),⊆,

⋂
,⇒, ¦t)

(B,≤k,⊗,⇁,¬)

∂

? ↓+ke- (B+

δ ,⊆,
⋂

,⇒, ¦k)

∂∗P
?

ink- (P(↓+k 1k),⊆,
⋂

,⇒, ¦k)

∂P
?

where ↓+te and ↓+ke are extensions of the lattice isomorphisms ↓+t and ↓+k respectively,
to all other algebraic operators, and int, ink are injective homomorphisms; the iso-
morphism ∂P is the extension of the isomorphism ∂ to sets, that is, for any set
X ∈ P(↓+t 1t), ∂PX = {∂x | x ∈ X} ∈ P(↓+k 1k), while ∂∗P is its reduction
to B+

δ and B+

δ respectively.
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Proof: it is easy to verify, based on the precedent propositions and definitions.
¤
In this diagram we have to consider the vertical arrows as the D-bilattices, from left
to right: original D-bilattice, its set-based canonical isomorphic Representation, and
its powerset canonical extension. Notice that all arrows (homomorphism between
monadic Heyting algebras) of the commutative diagram on the left are isomorphisms.
The right part of commutative diagram represents the fact that monadic Heyting alge-
bras of canonical isomorphic representations are subalgebras of the powerset canonical
extensions.

6 Conclusion
In this paper we introduced a family of bilattices which satisfy the truth/knowledge
duality principle. They are characterized as residuated bilattice-based algebras with
epistemic selfconjugate modal operator (which models S5 modal logic), that is, as ex-
tended monadic Heyting algebras. Thus, the intuitionistic negation together with this
modal operator, model the epistemic negation in the way that D-bilattices can be used
for logic programming able to avoid the explosive inconsistency, differently from a
standard 2-value logics. They are particularly useful for logic/database systems with
incomplete information (unknown value of a bilattice can characterize such logic for-
mulae) and with mutually-inconsistent information also, which happen often when we
integrate different source databases: by assigning to them the top-knowledge (”incon-
sistent” or ”possible”) value of a bilattice we avoid the explosive inconsistency of the
whole logic system.
We defined also a family of parameterized Heyting algebras L,LB and LC , downward
compatible, based on complete distributive lattices with truth ordering and the epis-
temic negation which reverse such ordering. Coherently, the whole hierarchy of these
parameterized Heyting algebras is constructed from the basic parameterized algebra L.
Such methodological approach may be used also for other kinds of probabilistic types
of uncertainty.
The parameterizations of these Heyting algebras is given for a number of possible con-
junction probability strategies which can be used for the rules in probabilistic logic
programming, and which are a kind of more sceptic algebraic approximations for the
meet operation of these lattices (the basic conjunctive strategy).
By connection with a paraconsistent logic programming [10] we are able to extend
the use of these parameterized intuitionistic logics to deal with both uncertain and in-
consistent information. Moreover, we are able to extend such logic programming also
with nested implications: for example by allowing the formulae with implication also
in bodies of programming rules.
We hope that this coherent and incremental approach to different probabilistic ap-
proaches, used for modeling uncertainty for belief, will give a clear light on the nature
of deep interdependency between different measure types for uncertainty, and different
conjunctive/disjunctive probabilistic strategies.
From the theoretical point of view, we investigate also the higher-order dual bilat-
tices, based on the ordinary bilattices where the logic values are constants (or 0-arity
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functions). The elements of such higher-order bilattices are elements of a subset of a
functional space Y X , where a base bilattice is the target set Y (the standard construc-
tion used for a fixpoint semantics of normal logic programs, for example, where the
elements of such functional space are many-valued Herbrand interpretations Y H ), or
in opposite case when a base bilattice is the source set X (the case when we are deal-
ing with a higher-order types of Herbrand interpretations, typical in applications with
uncertain information).
Finally, we define the Autoreferential Representation Theorem for D-bilattices. We
demonstrated that the canonical D-bilattice algebras, with intuitionistic implication
and epistemic negation, are subalgebras, composed by only closed sets, of a powerset
algebras which are canonical extensions of the bilattice. The set of possible worlds
(base set) of these powerset algebras is just the set of logical values of the original bi-
lattice, which gives us the concrete definition of the modal Kripke-style semantics for
logic programs, differently from the standard Ginsberg’s world-based bilattices, where
the way of defining a set of possible worlds remains open to various interpretations,
and, thus, have more theoretical than practical importance.

References
[1] A.Dekhtyar, M.I.Dekhtyar: Possible Worlds Semantics for Probabilistic Logic

Programs, ICLP 2004, 2004, 137–148.

[2] A.Dekhtyar, R.Ross, V.S.Subrahmanian: Probabilistic temporal databases,
I:Algebra, ACM Transactions on Database Systems, 26, 2001, 41–95.

[3] A.Dekhtyar, V.S.Subrahmanian: Hybrid Probabilistic Programs, Journal of Logic
Programming, Vol.43, Issue 3, 2000, 187–250.

[4] D.Miller: A logical analysis of Modules in Logic Programming, Journal of Logic
Programming, 6, 1989, 79–108.

[5] D.Scott: Some ordered sets in computer science, In Ordered Sets, I.Rival,
Ed.D.Reidel, 1982, 677–718.

[6] E.Sandewall: A functional approach to non-monotonic logic, In Proc. of the 9th
Int. Joint Conf. on Artificial Intelligence, 1985, 100–106.

[7] F.Bry: Logic programming as constructivism: a formalization and its application
to databases, In Proc. of the Symposium on Principles of Database Systems, ACM
SIGACT-SIGMOD, 1989.

[8] G.Bikhoff: Lattice theory, reprinted 1979, amer. Math. Soc. Colloquium Publi-
cations XXV, 1940.

[9] H.Rasiowa, R.Sikorski: The Mathematics of Metamathematics, PWN- Polisch
Scientific Publishers, Warsaw, 3rd edition, 1970.

[10] J.Alcantara, C.V.Damasio, L.M.Pereira: An encompassing framework for para-
consistent logic programs, Journal of Applied Logic, 3(1), 2005, 67–95.

31



[11] J.C.C.McKinsey, A.Tarski: The algebra of topology, Annals of Mathematics, 45,
1944, 141–191.

[12] J.C.C.McKinsey, A.Tarski: On Closed Elements in Closure Algebras, Annals of
Mathematics,47, 1946, 122–162.

[13] J.F.Baldwin: Evidential support logic programming, Journal of fuzzy sets and
systems, 24, 1987, 1–26.

[14] J.Medina, M.Ojeda-Aciego, P.Vojtas: Multi-adjoint logic programming with con-
tinuous semantics, Lect. Notes in Artificial Intelligence 2258, 2001, 290–297.

[15] J.Y.Halpern, Y.Moses: A guide to completeness and complexity for modal logics
of knowledge and belief, Artificial Intelligence, 54, 1992, 319–379.

[16] L.Henkin, J.D.Monk, A.Tarski: Cylindic Algebras I, North-Holland, 1971.

[17] M.C.Fitting: A Kripke/Kleene semantics for logic programs, Journal of Logic
Programming 2, 1985, 295–312.

[18] M.C.Fitting: Bilattices and the semantics of logic programming, Journal of Logic
Programming,11, 1991, 91–116.

[19] M.C.Fitting: Kleene’s Logic, Generalized, Journal of Logic and Computation, 1,
1992, 797–810.

[20] M.C.Fitting: Kleene’s Three Valued Logics and their Children, Fundamenta In-
formaticae, 20, 1994, 113–131.

[21] M.C.Fitting: Fixpoint semantics for logic programming: A survey, Theoretical
Computer Science, 278, 2002, 25–31.

[22] M.Denecker, M.Bruynooghe, V.Marek: Logic Programming Revisited: Logic
Programs as Inductive Definitions, ACM Transactions on Computational Logic 2
(4), 2001, 623–654.

[23] M.Ginsberg: Multivalued logics: A uniform approach to reasoning in artificial
intelligence, Computational Intelligence, vol.4, 1988, 265–316.

[24] M.Kifer, A.Li: On the semantics of rule-based expert systems with uncertainty,
2nd Intl. Conference on Database Theory, Bruges, Belgium:Spinger Verlag LNCS
326, 1988, 102–117.

[25] M.L.Ginsberg: Bilattices and Modal Operators, Tech.Rep.N.94305,
Comp.Science Dept. Stanford University, California, 1990.

[26] N.D.Belnap: A useful four-valued logic, In J-M.Dunn and G.Epstein, editors,
Modern Uses of Multiple-Valued Logic. D.Reidel, 1977.

[27] O.Arieli, A.Avron: Logical bilattices and inconsistent data, In Proc. 9th IEEE
Annual Symp. on Ligic in Computer Science, IEEE press, 1994, 468–476.

32



[28] P.R.Halmos: Algebraic Logic I: Monadic Boolean Algebras, Compositio Math.
12, 1955, 217–249.

[29] P.R.Halmos: Algebraic logic, Chelsea, New York, 1962.

[30] P.T.Johnstone: Stone Spaces, Cambridge University Press, Cambridge ISBN 0-
521-23893-5, 1982.

[31] R.Moore: Semantical considerations on nonmonotonic logic, Artificial Intell-
gence, 25, 1985, 75–94.

[32] R.T.Ng, V.S.Subrahmanian: Probabilistic logic programming, Information and
Computation, 101(2), 1992, 150–201.

[33] S.Kripke: Outline of a theory of truth, The Juornal of Philosophy, 72, 1975,
690–716.

[34] V.S.Lakshmanan, F.Sadri: Probabilistic Deductive Databases, In Proc. Intl. Logic
Programming Symposium, Ithaca, NY:MIT Press, 1994, 254–268.

[35] V.S.Lakshmanan, F.Sadri: On a Theory of Probabilistic Deductive Databases,
CoRR cs. DB/0312043, 2003.

[36] V.S.Lakshmanan, N.Leone, R.Ross, V.S.Subrahmanian: A flexible probabilistic
database system, ACM Trans. Database Systems, 1997, 419–469.
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[43] Z.Majkić: New Representation Theorem for Many-valued Modal Logics,
http://www.geocities.com/zoran it, 2006.

33
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