DERIVADAS PARCIALES DE ORDEN SUPERIOR

(http://www.geocities.com/ajlasa)

Si tenemos z = f(x, y), sabemos que las derivadas parciales de la función respecto de las dos variables independientes son, en general, funciones a su vez de las mismas variables. Esto es:

$$\frac{\partial z}{\partial x} = f_x(x, y)$$

$$\frac{\partial z}{\partial y} = f_y(x, y)$$

Siendo las derivadas parciales funciones de las mismas variables, estas funciones pueden derivarse **nuevamente** respecto de x y de y y les llamamos derivadas parciales de segundo orden. Hay que hacer notar que ahora tendremos que la primera derivada parcial respecto de x puede ser derivada parcialmente respecto de x y también respecto de y. De igual manera, la primera derivada parcial respecto de y, puede ser derivada parcialmente respecto de x. De manera que las segundas derivadas, o derivadas de segundo orden, pueden ser estas cuatro derivadas parciales:

$$\frac{\partial^2 z}{\partial x^2} = f_{xx}$$

$$\frac{\partial^2 z}{\partial y^2} = f_{yy}$$

$$\frac{\partial^2 z}{\partial x \partial y} = f_{xy}$$

$$\frac{\partial^2 z}{\partial v \partial x} = f_{yx}$$

Puesto que estas cuatro derivadas parciales segundas pueden ser funciones de \boldsymbol{x} y de \boldsymbol{y} , es claro que pueden derivarse nuevamente para obtener las derivadas de tercer orden y así sucesivamente hasta el orden n..

Orden de la derivación parcial

Resulta natural la pregunta acerca de si el orden en que realizamos la derivación afecta un resultado. Supongamos que derivamos $z=f\left(x,y\right)$ respecto de x y luego derivamos el resultado respecto de y, para obtener la derivada "cruzada" f_{xy} . Ahora supongamos que derivamos $z=f\left(x,y\right)$ respecto de y y a esta derivada la volvemos a derivar respecto de x para obtener f_{yx} ¿Qué podemos decir acerca de la relación entre f_{xy} y f_{yx} ?

Teorema de Young

El teorema de Young afirma que si z = f(x,y) y f es continua en un punto P(x,y) y las derivadas parciales f_x , f_y , f_{xy} , f_{yx} están definidas y son continuas en el punto P y en cierta vecindad de este punto, entonces se cumple que:

$$f_{xy} = f_{yx}$$

Nota: En la gran mayoría de ls funciones que se usan en economía se cumple el teorema de Young. El resultado de Young nos ayuda a simplificar las condiciones suficientes en un problema de optimización de una función de dos variables independientes.

Ejemplo:

Supongamos
$$z = f(x,y) = x^5y^3 + yx$$

Las derivadas parciales de primer orden son

$$f_x = 5 x^4 y^3 + y$$
$$f_y = 3x^5 y^2 + x$$
:

Y Las cuatro derivadas parciales de segundo orden:

$$\frac{\partial^2 z}{\partial x^2} = f_{xx} = 20x^3y^3$$

$$\frac{\partial^2 z}{\partial y^2} = f_{yy} = 6x^5y$$

$$\frac{\partial^2 z}{\partial x \partial y} = f_{xy} = 15x^4y^2 + 1$$

$$\frac{\partial^2 z}{\partial y \partial x} = f_{yx} = 15x^4y^2 + 1$$

Vemos en este ejemplo que se cumple el teorema de Young y $f_{xy}=f_{yx}$.