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 On a remote desert island illustrated below two pirates, Roger and Biff, are
burying looted treasure.  To start, they drive a stake into the ground at a point  which�
lies near the only two trees on the island; a palm tree located at , and a birch tree�
located at  which lies directly west of the palm tree.   After driving the stake in the��
ground, Roger walks off paces to the birch tree ( ), whereupon he turns right 90° and�
walks the same distance  to a point    (In other words, )  After Roger�� �� �� � ���
reaches then Biff starts at  and walks off paces to , after which he turns  90�� � �  left
degrees and walks an equal distance reaching the point    (In other words,�� � ��
�� � ���)  Now, Roger and Biff advance towards each other and bury the treasure
halfway between them at a point .  (In other words, is halfway between  and .)	 	 � �
 A few years later, Roger and Biff return to dig up the treasure and discover that
although the two trees were still there, the stake  was gone.  They thought they would�
never find the treasure until Biff, who had once taken a course in high school math,
said he had a plan for finding the treasure even though they didn't know the location of
the stake   Can you think of how Biff might be able to do this ?��
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                           Drawing of Pirate Problem

��
�����
 We assume (for the moment) that the position of the stake  is known and hence�
can find the points  and the treasure point .   When we finish, we will be�� �� 	
surprised to see that the location of the treasure does not depend on where we	
placed the stake , but only on the points  and  !  We begin by dropping� � �
perpendiculars from , and  to the line segment .   Doing this and using�� �� � 	 ��



basic geometric arguments, we find the pair of congruent triangles
� � � �( ) ( ) , ( ) ( ), and hence we have the following�� � 
 �� � �� � 
 �� �    � � � �

distances the same: , , .  Using the�� � �� � � � �� � � � �� � � �      � � � � � � �

first two relations and ,  the distance between the birch and�� � �� � � � ��    � � � �

pine trees can be written as

�� � �� �� � � �� ���    � � � �

But since the midline  of the right trapezoid  has length		 �� ��� � �  

          �� �� �� ���

�

  � �

we have  .   But the midline of the trapezoid is also the		 � ���� 		 �� ��� � � �  

perpendicular bisector of  and  since , and so the pirates can find the� � � � � � �  � �

treasure even if the location  of the stake is no longer known by finding the�
perpendicular bisector of , and then walking along this bisector towards the��
riverbank a distance of �����
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  We can also solve this problem analytically by introducing the Cartesian plane,
where we place the -axis through the points  and  with -1, 0) and
 � � � � �
� � ��� ���  See the diagram below.
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            Using basic analytic geometry the points , and  can be found� �	 �

If we now place the stake at an arbitrary point , we can use basic analytic� � ��� ��
geometry to find the slopes and equations of the lines in the figure. (Remember that
slopes of perpendicular lines are negative reciprocals.)  Doing this, you will discover
that  and  are located at - - , 1 , - .  Hence, to find� � � � � � � � �� � � �� � �� � ��
the treasure , we then take the average of these two points, which gets the midpoint	
	 � ������ � ��� ��� 	 (  Again, is located on the perpendicular bisector of



� � � = (-1, 0) and  = (1, 0), and the distance along the bisector is the distance from 
or  to the bisector.�
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 If you are familiar with the geometry of complex numbers, there is a nice way to
solve this problem without resorting to geometry or slopes of lines and so on.  This is
based on the fact that performing arithmetic on complex numbers acts to move points
in the complex plane.  In particular, multiplication of any complex number  by� � ��
the imaginary number  rotates the number around the origin in the complex plane in�
the counterclockwise direction 90 degrees; and multiplication by  rotates points� �
around the origin in the clockwise direction 90 degrees.  
 Hence, we begin by placing the trees  and  at the points -� � � � �� � � � �
in the complex plane as shown in the diagram below.  This corresponds to the points
(-1, 0) and (+1, 0) in the Cartesian plane.

        a + bi

   -1-b                                   -1          a   0             +1                                      1+b

 Q = (a+1) i - (1+b)

R = (1-a) i + (1+b)
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         Complex plane solution

We now place the stake at an arbitrary point  Using complex� � � � ���
arithmetic, the point  is simply�

  � � 
 �� � 
�� � � � � � � � �� � ��� � �� � 
�

Why is this ?   Well, the expression inside the brackets [  ...   ] essentially moves the
origin of the complex plane to the new point (-1, 0), after which points are� �
multiplied by , which rotates  to But then we have to subtract -1 to get � � � �� �� �
back in the original coordinates of the problem.
 In the same way, we can find by computing�



  � � 
�� � 
�� � �� � � �� � � � � �� � � � � 
�  (1 1

Note that we subtract -1 from , which places the origin of the complex plane at� � ��
� � �(1, 0), and then multiply by -  which rotates points 90 degrees in the clockwise
direction, and so moves to  Then, finally we add +1 to get in terms of the� � �� �� �
original coordinates.
 So, we can now find the treasure  by taking the average of these to complex	
numbers, or

  � � � � ����
�

����	 
 ��� � � 	 
� ���  [  - ( )] [(1 - ( ) ]
2

Again, regardless of the original point  all remnants of  are canceled� � � � ��� �
and we discover that the treasure can be determined by knowing only the points �
and .  In particular, as before the treasure lies on the perpendicular bisector of � �
and , with the distance from the line  being   In fact, the treasure will� �� ����� 	
always be at the vertex of a right triangle whose hypotenuse connects the trees  and�
� .
 It is interesting to note that if 25 people placed stakes in different positions,
everyone's treasure would be buried in the same place using this strategy.   In other
words, it wasn't a very good strategy.

���� � This problem goes back to a very interesting book, One Two Three ...
Infinity by George Gamow.   Viking Press (1947).   This book is still in printing and
makes very interesting reading.
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 The length of each edge of a tetrahedron (four triangular faces six edges) is�

one unit  long.   An ant wants to make a path on the surface of the tetrahedron such

that each of the four vertices can be reached from any other vertex.   What is the

shortest path the ant can make a path ?
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 Let ( ) and (  represent two adjacent faces of the tetrahedron� ��� � ����

unfolded onto the plane, and let  be the middle of the line segment  as shown in� ��

Figure 1.
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     Figure 1:   Shortest path network on the surface of a tetrahedron



We will consider the network of lines symmetric about the point , consisting of�

��� ��� ��� ��� ��and as shown in the figure.  We will choose these lines in

such a way that the roads at angles 120° at the points  and  as illustrated in Figure� �

1.

 We start by considering the triangle , where we have assumed the sides������

of the tetrahedron have length one: i.e. 1, and hence we have 1 .�� � �� � ��

We also know that B = 60° and so from the triangle ( , if  we let� � ����

���� � � ���� �� ���� � then  = 60° - .   And since  = 60°, we have � � �

and so (  and are similar triangles.  Now, letting , we� ���� ������ �� � 


have  (since  and We now use the law of�� � �
 ����� � ���� �� � �
�

cosines applied to the triangle (  to get the relationship� ����

  � � ���� � � � � � �� � ��� ���� � � ������ � �°

which gives or Hence, the length of the network in (  is
 � ���� ��� � �����

 � �
 � �
 � �
, and the length of the entire network on the surface of the

tetrahedron connecting the four vertices is   2.645751311...   .�
 � � ��
Note:   We really haven't  that this is the shortest network, but it is the shortestproven

we have found.   If you can find a shorter network, we would be happy to know about

it.
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  Solve

    1� � � � � � � � � �� � �� �

	���
���

    If we introduce the new variable  , this leads to the cubic equation in � 
��
 ! � � �  � � � �1 . Factoring this equation, we get� �

(2 , which has three solutions , - .  Substituting � ��� � �� � �  � ��� � �� ��

back in terms of  we find
�

    � " 
 � " 
 �� � �

� � ��
��

    - -    (has no real root) � � " 
 � ���
        � � " 
 � � " 
 � ���

Hence, the original equation has real roots of 1/64 and 1.

Note: complex   You may ask the question, does the equation have  roots or have we

found  solutions? all
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 Anne, Brent, Cindy, and Dylan are playing tennis doubles (two versus two).

First, Anne and Brent play against Cindy and Dylan; next Anne and Cindy play

against Brent and Dylan; finally Anne and Dylan play against Brent and Cindy.

Show that for every possible outcome of the three games, there is one player that is

either on the winning team every game or on the losing team every game.
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 If we enumerate the different outcomes of the three games, we have a total of

eight outcomes illustrated by the tree below.   The labels on the edges of the tree

indicate the winner of each game.   For example, outcome 1 means  (Anne and��

Brent) win game 1,  (Anne and Cindy) win game 2, and  (Anne and Dylan) win�# �$

game three.   Likewise, outcome 4 means win game 1,  wins game 2, and �� �$ �#

win game 3.
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  Tree diagram showing the winning team of  each game

If you look carefully, you will see that for every outcome, there is one player that will

be either on the winning or losing team every game.
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 The numbers , and  satisfy the equation
�  � % &

             � 
 ��
��� ��� � ��

� �

What is the value of  ?&
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 We use the interesting (but not too-well known) algebraic fact that

        (1)� � � �	 �

 � 
 
 	 �� " �

For example

    � � � �	�
� �
 � �	�
� " �

To prove this statement, we start with the identity and write�� � ���

      (identity)�� � ��

     (since by assumption)' �� � �$ � �� � �# �$ � �#

    (factoring)' � �� � $� � � �� � #�

      (simple algebra)' �� �	 �

 
 	 �

In our problem, we are given

                                 � � ��
�	� �	 � � � �� �

which we can write as

                               (2-� ��
�	 � � � �� ��

         (2-�
�	 � �	�� ��7

If we apply our basic algebraic law (1) to (2- , we have��

   

       � �	 �� ��
�	� ��	 ��	 �� � �� �	 �� �



We can now write 2-  as� ��

                � � ��
�	 � �	� �	 �

� �

Hence, the numerators must be equal, giving & � �(�
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 We start with 6 points in the plane such that no 3 of them are on the same line.

Two players play a game where they take turns connecting any two points with a line.

Once two points are connected, they cannot be joined a second time.   The players

continue to play until one player is forced to connect points resulting in the formation

of a triangle.   This player is the loser.   Show that the person who makes the opening

move will always will if he/she plays skillfully.

��
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 Let's suppose you are the player who makes the opening move.  We show you

how you can always win.  The first thing you do is redraw the game as a hexagon as

shown in the diagram below.  (You can always redraw the points as a hexagon no

matter how they were originally drawn.)

�

�C

EB

FA

       

            Typical Six-Point Game

You now draw an imaginary line  that separates any three points from the others.)

In the drawing above, we have drawn the line  so it separates  from) �����

��*� + ) �*.  For this given imaginary line , you begin by drawing the  line . middle

After that, you simply respond to your opponent's move by drawing the  line.mirror

That is, if your opponent draws the line , you draw ; if your opponent draws�+ ��

�� �* �� �+�, you draw ; if your opponent draws , you draw and so on.   You can

convince yourself after playing a few games that you will never be the one to draw

the first triangle.  You could enumerate all the possible games in a diagram and show

that in each case you will win.
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  Any triangle can be divided into similar subtriangles.  Show that it is possible to

subdivide any triangle into 1999 similar triangles

��
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 A well-known property from geometry states that by drawing the three midlines

of a triangle (lines connecting the center points of adjacent sides), we obtain four

subtriangles, each similar to the original triangle.  See the drawing below.  (The

similarity is not difficult to verify and comes from the congruence of the

corresponding angles.)

   

  Finding four similar subtriangles from one triangle

If we now repeat this procedure for any of the subtriangles (doesn't matter which

one), we get three more subtriangles. If we repeat this procedure on  subtriangle,any

we obtain three new subtriangles at each step.   Hence, we have 1, 4, 7, 10, 13, ...

� � ,&, ...   similar subtriangles.   So, the equation we ask is: does the equation

� � ,& � �--- have a positive integer solution.   Solving this equation, we find

& � ...�  Hence, after 666 steps, we have 1999 similar triangles of various sizes.

Note:  The size of these subtriangles depends on which subtriangle you decide to

subdivide at each step ... there are all kinds of different sizes.   You might play

around by drawing different subdivisions yourself.
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 Four people come upon a bridge in the middle of the night.  It is dark and they

must use a flashlight to get across the bridge, but they only have one flashlight, and

the bridge is so rickety that no more than two people an be on the bridge at the same

time.  One person (person  can cross the bridge in 1 minute, the second person��

(person  can cross the bridge in 2 minutes, the third person person  can cross�� � ��

the bridge in 4 minutes, and the last person (person  can cross the bridge in 10��

minutes.  Can the four people cross the bridge to the other side in 18 minutes or less

?  If so, how ?

��
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     The four people can cross the bridge in 18 minutes by using the following

strategy:

 • First person  crosses the bridge with person  (takes 2 minutes)� �

 • then  returns  (1 minute)�

 • then  crosses with  (4 minutes)� �

 • then  returns  (1 minute)�

 • finally  crosses with    (10 minutes)� �

  ______________________________

       18 minutesTotal:  

The real question:   Just because you can't find a faster way for the people to cross

the bridge, have we really  this is the best way ?  Is possible to enumerate  proven all

the different ways to cross the bridge ?
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 Find all values of  that satisfy the equation


    (� � � � �� � �� �� ����	�
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 Using the general algebraic fact that if then implies 0 we� / �� � � � � � �


have

     
 � 
 � . � ��

which has solutions - 
 � ,� 
 � ��
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  A calculator can find the reciprocal of a number as well as addition and

subtraction.  Describe how you would go about finding:

  (  the square of any number��

   the product of two numbers���

��
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 (    To find the square of any real number  ( , we use our calculator,�� � � / ��

which can add, subtract, and find reciprocals, to compute

   � � � �� � �

� �	� � 	���

and

   � � 	�� �

� � �
� � � �

� �

where we can choose as any positive integer as long as it is different from .  Using0 �

our calculator again, we compute the difference

                         � �

� �

� �

� � � � �

and then add with itself a total of times, getting , the square of the original� �0 0 �� �

number.

  To find the product of  and , we observe the algebraic identity��� � �

   �� � � � � � �� �
 


� �

�
� �

If you look carefully, every term on the right-hand side of the equation can be

calculated using our ( reciprocal) calculator since� � � �

 (  �� � �
 � �

� 
 


  We can compute squares using the strategy in (���� ��



 (   ���� �
 


� �

�
� � �

Note:   This is one of those problems that seems to have more entertainment value

than practical value, until you consider the fact that it might be easier to make

electronic circuitry for adding, subtracting, and taking reciprocals than for computing

products.   The same was true for the Radon transform earlier in this century until a

medical researcher at Tuft's University discovered that it could be used for making

medical images, such as  scans and .   CAT  MRIs
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