\documentclass[10pt]{amsart}
\title{The Biquadratic Character of 2}
\author{Jeff Garrett}
\date{February 20, 2001}
\usepackage{amsmath, amsthm}
\theoremstyle{plain} %% Default
\newtheorem{thm}{Theorem}
\theoremstyle{definition}
\newtheorem{defn}{Definition}
\begin{document}
%% \begin{abstract}
%% \end{abstract}
\maketitle
\begin{thm}
The primes $p \equiv \pmod 4$ for which $2$ is a biquadratic residue modulo $p$ are exactly
those of the form $A^2 + 64 B^2$.
\end{thm}
\begin{proof}
Suppose that $p \equiv 1 \pmod 4$. Write $p = a^2 + b^2$ with $a$ odd. The
idea is to compute $(a+b/p)$ by two different methods. Let $f$ be such that
$b \equiv af \pmod p$. Then $p = a^2 + b^2 = a^2 (1 + f^2) \equiv 0 \pmod p$
and so $f^2 \equiv -1 \pmod p$.
First, note that $(a+b)^2 + (a-b)^2 = 2p$ so that $1 = (2p/a+b) = (2/a+b)(p/a+b)
= (-1)^{((a+b)^2 - 1)/8} (p/a+b)$. Thus $(a+b/p) = (-1)^{(a+b-1)(p-1)/4} (p/a+b)
= (-1)^{((a+b)^2 - 1)/8} \equiv f^{((a+b)^2 - 1)/4} \pmod p$.
Second, since $(a+b)^2 \equiv 2ab \pmod p$, $(a+b/p) \equiv (a+b)^{(p-1)/2}
\equiv (2ab)^{(p-1)/4} \equiv (2f)^{(p-1)/4} \pmod p$ since $(a/p) =
(-1)^{(p-1)(a-1)/4} (p/a) = 1$.
Equating the two expressions, we have $2^{(p-1)/4} \equiv f^{ab/2} \pmod p$.
$2$ is a biquadratic residue iff this is $1$, but since $f$ is of order $4$,
this happens iff $8$ divides $b$, i.e. $p$ is of the form required.
\end{proof}
\end{document}
               (
geocities.com/siliconvalley/park)                   (
geocities.com/siliconvalley)