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Note 1: Interfacing a Matrix Keypad

Introduction. This application note covers the use of matrix-encoded
keypads with PIC microcontrollers. It presents an example program in
Parallax assembly language for reading a 4 x 4 keypad.

Background. In order to use as few input/output (I/O) pins as
possible, most keypads of eight or more switches are wired in a matrix
arrangement. Instead of interfacing each set of contacts to an I/O pin,
switches are wired to common row and column connections, as shown
in the figure. For a given number of switches, this method can save quite
a few I/O pins:

The disadvantage of matrix encoding is that it requires some additional
programming. The listing shows a program that reads a 4 x 4 keypad
using an 8-bit I/O port and presents the number of the key pressed on
a 4-bit port.

How it works. Code at the beginning of the program sets the lower four
bits of port RB (connected to the columns of the keypad) to output, and
the upper four bits (rows) to input. It also sets port RA, which will drive
LEDs indicating the binary number of the key pressed, to output.

The routine scankeys does the actual work of reading the keypad. It
performs the following basic steps:

• Assert a “1” on the current column.
• Does the “1” appear on the current row?

> No: increment key and try the next row.
> Yes: exit the subroutine.

• Try the next column.

If the first key, key 0, is pressed, the routine exits with a 0 in the variable
key, because it ends before the first increment instruction. If no key is
pressed, the variable key is incremented 16 (010h) times. Therefore, this

Matrix
(rows x columns)

I/O Pins
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8 2 x 4 6

12 3 x 4 7
16 4 x 4 8
20 5 x 4 9

No. of
Switches
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number serves as a flag to the calling program that no key has been
pressed.

On the issue of switch debouncing: After a switch is pressed, it may take
20 milliseconds or more for it to settle into its new state. That means that
one key press can register as many repeated presses. The easiest way to
defeat this problem is to read the switches, and then wait a while before
reading them again. That’s the purpose of the :delay loop in the main
program.

Modifications. In circumstances where electrical noise might be a
problem, Microchip’s data sheet on the PIC indicates that it might be
wise to move the port I/O assignments to the beginning of scankeys. The
reason is that electrostatic discharge (ESD) from the user’s fingertips, or
presumably any other strong electrical noise, could corrupt an I/O
control register and switch an input pin to output. This would prevent
the routine from reading one or more rows of the keypad.
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A milder zap could conceivably cause a false input to the keypad. Some
routines check for this condition by comparing two or more consecutive
readings of the keys. Unless several readings match, no data is returned
to the main program.

Program listing. This program may be downloaded from the Parallax
BBS as KEYPAD.SRC. You can reach the BBS at (916) 624-7101.

Note 1: Interfacing a Matrix Keypad

; PROGRAM: KEYPAD
; This program demonstrates a simple method for scanning a matrix-encoded
; keypad. The 4 columns of the pad are connected to RB.0 through RB.3; 4 rows to
; RB.4 through RB.7. The scanning subroutine returns the code of key pressed
; (0h—0Fh) in the variable key. If no switch is pressed, the out-of-range value 10h is
; returned in key (this avoids the use of a separate flag variable).

keypad = rb
row1 = rb.4
row2 = rb.5
row3 = rb.6
row4 = rb.7

; Variable storage above special-purpose registers.
org 8

cols ds 1
key ds 1
index ds 1

; Remember to change device info if programming a different PIC.
device pic16c54,rc_osc,wdt_off,protect_off
reset start

; Set starting point in program ROM to zero.
org 0

start mov !rb, #11110000b ; cols out, rows in
mov !ra, #0 ; ra all outputs

:keys call scankeys
cje key, #16, :delay
mov ra, key

:delay nop
nop
djnz index,:delay
goto :keys

; Subroutine to scan the keypad. Assumes that the calling routine will delay long
; enough for debounce.
scankeys clr key
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clr keypad
mov cols,#4 ; 4 x 4 keypad
setb c ; put a 1 into carry

; On the first time through the following loop, the carry bit (1) is pulled into keypad.
; On subsequent loops, the lone 1 moves across the column outputs.
:scan rl keypad

clrb c ; follow the 1 with zeros
jb row1, press

; If a 1 is detected, quit the routine with the current value of key. If row1, column1 is
; pressed, the value of key is 0 (on the first loop). If not, increment key and try the
; next row.

inc key
jb row2, press
inc key
jb row3, press
inc key
jb row4, press
inc key
djnz cols, :scan ; Try all 4 columns.

press ret ; Return with value in key.

; If no key is pressed, the value will be 10h due to execution of the final increment
; instruction. The program should interpret this out-of-range value as ‘no press.’

Note 1: Interfacing a Matrix Keypad
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Note 2: Receiving RS-232 Serial Data

Introduction. This application note presents a simple program for
receiving asynchronous serial data with PIC microcontrollers. The
example program, written using  Parallax assembly language, displays
received bytes on a bank of eight LEDs.

Background. Many controller applications involve receiving data or
commands from a larger system. The RS-232 serial port is a nearly
universal means for this communication. While the PIC lacks the serial
receive function found on some more expensive chips, it can readily be
programmed to receive serial data.

A byte of serial data is commonly sent as a string of 10 bits; a start bit,
eight data bits, and a stop bit, as shown in figure 1 below. The start and
stop bits help the receiver to synchronize to the incoming data bits. In
some cases, a serial transmitter will lengthen the stop bit to 1.5 or 2 times
the duration of the data bits in order to ensure proper sync under noisy
conditions.

The speed of a serial transmission is expressed in baud or bits per
second (bps). Since a complete transmission is 10 bits long, the number
of bytes per second is one-tenth the baud rate. A 1200-baud signal
conveys 120 bytes per second. The bit duration is 1 second divided by
the baud rate. For instance, each bit of a 1200-baud signal is 833
microseconds long.

RS-232 is an electrical standard for signals used in serial communica-
tion. It represents a binary 1 with a level of -5 to -15 volts, and a 0 with
+5 to +15 volts. In order for a 5-volt device like the PIC to interface with
this signal, additional circuitry must convert the RS-232 signal to logic
levels. The 1489 quad line receiver used in the circuit (see schematic,
figure 3) can convert four RS-232 signals to 5-volt logic levels; the
example circuit uses only one section of the device.

Figure 1. A byte of serial data. The byte depicted is 01011010, the ASCII code for Z.
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Where cost or space is a problem, the PIC can accept the RS-232 signal
through a 22k resistor, as shown in the inset to figure 3. The resistor
limits the input current, while the PIC’s internal clamping diodes
(intended to protect against static electricity) clip the voltage to logic
levels. The resistor method does not invert the RS-232 signal, so three
minor changes to the program are required as shown in comments to
listing 1. The method also gives up the noise rejection built into the 1489,
and should not be used in noisy environments or over long cable runs.

The example presented here does not use any of the RS-232 handshak-
ing lines. These lines help when a fast computer must communicate
with (for instance) a slow printer. When the receiving device does not
use the handshaking lines, it is necessary to loop them back as shown
in figure 2. That way, when the computer asks for permission to send,
the signal appears at its own clear-to-send pin. In effect, it answers its
own question.

Although it is the most common, RS-232 is not the only serial-signaling
standard. RS-422 is becoming increasingly popular because of its
resistance to noise, high speed, long allowable wire runs, and ability to
operate from a single-ended 5-volt power supply. Since the only
difference between RS-232 and RS-422 is the electrical interface, conver-
sion requires only the substitution of an RS-422 line receiver chip.

How it works. The example program in listing 1 is a no-frills algorithm

Note 2: Receiving RS-232 Serial Data

Figure 2. Hookups for standard 9- and 28-pin
connectors. Connecting RTS to CTS disables
normal handshaking, which is not used here.
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for receiving serial data in the popular N81 format; i.e., no parity bit,
eight data bits, and one stop bit. Listing 2 is a BASIC program for
sending individual bytes to the circuit.

Listing 1 begins by setting up the input and output bits. It then enters
a loop waiting to detect the start bit. Once the start bit is detected, the
program waits one-half bit time and checks to see whether the start bit
is still present. This helps ensure that the program isn’t fooled by a noise
burst into trying to receive a nonexistent transmission. It also makes
sure that subsequent bits are read during the middle of their time slots;
another precaution against noise.

Once it detects and verifies the start bit, the program enters another loop
that does the actual job of receiving the data. It works like this:

• Wait one bit time.
• Copy input bit to carry bit.
• Rotate the receive byte right.
• Decrement the bit counter.
• Is the counter zero?

> No, loop again.
> Yes, exit the loop.

If you are unfamiliar with the rotate right (rr) instruction, you may not
see how the input bit gets from the carry bit into the receive byte.
Performing an rr on a byte moves its bits one space to the right. Bit 7 goes
to bit 6, bit 6 to bit 5, and so on. Bit 0 is moved into the carry bit. The carry
bit moves into bit 7.

Once the byte is received, the program waits a final bit delay (until the
middle of the stop bit), copies the received byte to the output port to
which the LEDs are connected, and goes back to the beginning to await
another start bit.

The program can be set up for most standard data rates. The table lists
PIC clock speeds and values of the bit time constant bit_K (declared at
the beginning of listing 1) for a wide range of common rates. For other
combinations of clock speed and data rate, just replace the delay
routines with ones that provide the appropriate timing. The footnote to
the table gives general guidance.

Note 2: Receiving RS-232 Serial Data
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One final hardware note: Although timing isn’t overly critical for
receiving this type of serial data, resistor/capacitor timing circuits are
inadequate. The PIC’s RC clock is specified to fairly loose tolerances (up
to ±28 percent) from one unit to another. The values of common
resistors and capacitors can vary substantially from their marked
values, and can change with temperature and humidity. Always use a
ceramic resonator or crystal in applications involving serial communi-
cation.

Program listing. This program may be downloaded from the Parallax
BBS as RCV232.SRC. You can reach the BBS at (916) 624-7101.

Note 2: Receiving RS-232 Serial Data
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Values of Timing Constant Bit_K for Various Clock Speeds and Bit Rates

Clock
Serial Bit Rate (bit time)

Frequency
600 1200 2400 4800 9600 19,200

1 MHz 206 102 50 24 — — —
2 MHz — 206 102 50 24 — —
4 MHz — — 206 102 50 24 —
8 MHz — — — 206 102 50 24

Other combinations of clock speed and bit rate can be supported by changing the bit_delay and

start_delay subroutines. The required bit delay is 1
bit rate

. For example, at 1200 baud the bit delay

is 1
1200

  = 833µs. The start delay is half of the bit delay; 416µs for the 1200-baud example.

Calculate the time delay of a subroutine by adding up its instruction cycles and multiplying by
4

clock speed
. At 2 MHz, the time per instruction cycle is 4

2   ,000   ,000
 = 2µs.

300
(3.33 ms) (1.66 ms) (833 µs) (417 µs) (208 µs) (104 µs) (52 µs)

; PROGRAM: RCV232
; This program receives a byte of serial data and displays it on eight LEDs
; connected to port RB. The receiving baud rate is determined by the value of the
; constant bit_K and the clock speed of the PIC. See the table in the application note
; (above) for values of bit_K. For example, with the clock running at 4 MHz and a
; desired receiving rate of 4800 baud, make bit_K 50.

bit_K = 24 ; Change this value for desired
; baud rate as shown in table.

half_bit = bit_K/2
serial_in = ra.2
data_out = rb

; Variable storage above special-purpose registers.
org 8

delay_cntr ds 1 ; counter for serial delay routines
bit_cntr ds 1 ; number of received bits
rcv_byte ds 1 ; the received byte

; Org 0 sets ROM origin to beginning for program.
org 0

; Remember to change device info if programming a different PIC. Do not use RC
; devices. They are not sufficiently accurate or stable for serial communication.

device pic16c54,xt_osc,wdt_off,protect_off
reset begin

; Set up I/O ports.

begin mov !ra, #00000100b ; Use RA.2 for serial input.
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mov !rb, #0 ; Output to LEDs.

:start_bit snb serial_in ; Detect start bit. Change to sb
; serial_in  if using 22k resistor
; input.

jmp :start_bit ; No start bit yet? Keep watching.
call start_delay ; Wait one-half bit time to the

; middle of the start bit.

jb Serial_in, :start_bit ; If the start bit is still good,
; continue. Otherwise, resume
; waiting.

; Change to jnb Serial_in, :start_bit
; if using 22k resistor input.

mov bit_cntr, #8 ; Set the counter to receive 8 data
; bits.

clr rcv_byte ; Clear the receive byte to get
; ready for new data.

:receive call bit_delay ; Wait one bit time.
movb c,Serial_in ; Put the data bit into carry.

; Change to movb  c,/Serial_in if
; using 22k resistor input.

rr rcv_byte ; Rotate the carry bit into the
; receive byte.

djnz bit_cntr,:receive ; Not eight bits yet? Get next bit.
call bit_delay ; Wait for stop bit.
mov data_out, rcv_byte ; Display data on LEDs.

goto begin:start_bit ; Receive next byte.

; This delay loop takes four instruction cycles per loop, plus eight instruction cycles
; for other operations (call, mov, the final djnz, and ret). These extra cycles become
; significant at higher baud rates. The values for bit_K in the table take the time
; required for additional instructions into account.

bit_delay mov delay_cntr,#bit_K
:loop nop

djnz delay_cntr, :loop
ret

; This delay loop is identical to bit_delay above, but provides half the delay time.

start_delay mov delay_cntr,#half_bit

Note 2: Receiving RS-232 Serial Data
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:loop nop
djnz delay_cntr, :loop
ret

BASIC Program for Transmitting Bytes via COM1

10  REM  Open the serial port com1. Substitute the desired baud rate
20  REM  for 9600 in this line. The parameters CD0, CS0, DS0, and OP0
30  REM  serve to disable hardware handshaking. They may be omitted if
40  REM  these lines are looped back as shown in figure 2.
50  OPEN “com1:9600,N,8,1,CD0,CS0,DS0,OP0” FOR OUTPUT AS #1
60  CLS
70  REM  At the prompt, enter a value between 0 and 255 representing a
80  REM  byte of data to send out the serial port.
90  INPUT “ASCII code to send:  “, A%
100 PRINT #1, CHR$(A%);
110 GOTO 60
120 END
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Note 3: Sending RS-232 Serial Data

Introduction. This application note covers transmission of asynchro-
nous serial data using PIC microcontrollers. It presents an example
program in Parallax assembly language that transmits a text string
serially via RS-232 at speeds up to 19,200 bits per second. Hardware
examples demonstrate the use of a popular serial line driver, as well as
a method for using the PIC’s output to directly drive a serial line.

Background. Many PIC applications require sending data to a larger
computer system. The common RS-232 serial port is almost ideal for this
communication. While the PIC lacks the onboard serial communication
hardware available with some more expensive controllers, it can readily
be programmed to add this capability.

A previous application note (#2, Receiving RS-232 Serial Data) covered
the data format and RS-232 signals in some detail. Here are the high-
lights:

A byte of serial data is commonly sent as 10 bits: a start bit, eight data
bits, and a stop bit. The duration of these bits is calculated by dividing
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the rate in bits per second (commonly baud) into 1 second. The stop bit
can be stretched to any desired duration.

Under the RS-232 standards, a high (1) is represented by a negative
voltage in the range of -5 to -15 volts. A low (0) is a voltage from +5 to
+15 volts. In addition to connections for data input, output, and ground,
most RS-232 ports include handshaking lines that help devices turn the
flow of data on and off when necessary (for instance, when a printer is
receiving data faster than it can store and process it). Many applications
avoid the use of these hardware signals, instead embedding flow-
control commands in the data stream itself.

A traditional method of sending serial data is to use a parallel-in serial-
out shift register and a precise clock. The start, data, and stop bits are
loaded into the register in parallel, and then shifted out serially with
each tick of the bit-rate clock. You can easily use a software version of
this method in a PIC program. Really, the most difficult part of transmit-
ting an RS-232-compatible signal from the PIC is achieving the signal-
ing voltages. However, the hardware example presented here shows
that:

• There are devices that generate the RS-232 voltages from a
single-ended 5-volt supply.

• It is possible to use the PIC’s output to directly drive an RS-232
input, if the cable is kept short.

How it works. The PIC program in listing 1 sends a short text string as
a serial data stream whenever the PIC is reset. To reset the PIC, push and
release the reset button shown in the schematic (if you are using the
Parallax Downloader, omit S1 and use the built-in reset switch). If you
lack appropriate terminal software for your computer, listing 2 is a
BASIC program that will help get you started. If you use other terminal
software and get “device timeout” errors, try cross-connecting the
handshaking lines as shown in figure 2 below. This has the effect of
disabling handshaking. The program in listing 2 does this in software.

The PIC program starts by setting port RA to output. Serial data will be
transmitted through pin RA.2. The program consists of two major loops,
defined by the labels :again and :xmit. The first loop, :again, initializes the

Note 3: Sending RS-232 Serial Data
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bit counter, and then gets a byte from the subroutine/table called string.
Once string returns a byte in the w register, the program puts this byte
into xmt_byte. After a start bit is sent by clearing the serial-out pin, :xmit
takes over. It performs the following steps:

• Rotate the transmit byte right (into carry).
• Move the carry bit to serial output.
• Wait one bit time (set by bit_K).
• Decrement the bit counter.
• Is the counter zero?

> No, loop again.
> Yes, exit the loop.

With the :xmit loop finished, the program sets the serial-out pin to send
a stop bit, and checks to see whether it has reached the end of the string.
If not, it goes back to :again to retrieve another byte. If it is done with the
string, the program enters an endless loop.

The hardware portion of the application is fairly straightforward. The
PIC produces logic-level signals that the MAX232 chip converts to
acceptable RS-232 levels, approximately ±10 volts. The MAX232 has
onboard charge-pumps that use the external capacitors to build up the
required signaling voltages. There are other chips that provide addi-

Note 3: Sending RS-232 Serial Data

Figure 2. Hookups for standard 9- and 28-pin
connectors. Connecting RTS to CTS disables
normal handshaking, which is not used here.
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tional features, such as additional I/O channels, higher signaling rates,
lower power consumption, and the ability to work without external
capacitors.

Modifications. The MAX232 draws more current and costs more (in
single-part quantities) than the PIC it supports. Most of the time, this is
still a bargain compared to adding a bipolarity power supply to a device
just to support RS-232 signaling. In fact, the MAX232 has excess current
capacity that can be used to power other small bipolarity devices, such
as low-power op-amps. Depending on the application, additional
voltage regulation may be required.

If you plan to use the serial port infrequently, consider powering the
MAX chip through one of the PIC’s I/O pins. Your program could turn
the MAX on shortly before it needed to send a serial message, and turn
it back off afterward. This option is especially attractive for uses that
require wringing the most life out of a set of batteries.

A sample MAX232 that we tested drew 15 mA while driving two
simulated serial-port loads. This is well within the PIC’s drive capabil-
ity. A further test showed that the MAX232’s output voltages rose to
their full ±10-volt levels about 1.5 milliseconds after power was applied
to the chip. If your program switches the MAX232 on and off, program
a 1.5-ms delay between turning the device on and sending the first bit.

In some cases, you may be able to dispense with the serial line driver
altogether. Make the changes marked in listing 1 “for direct connec-
tion” and wire RA.2 directly to the serial receive connection of your
terminal or PC. The changes in the program invert the logic of the serial
bits, so that a 1 is represented by an output of 0 volts and a 0 is a 5-volt
output. According to RS-232, the receiving device should expect volt-
ages of at least -3 volts for a 1 and +3 volts for a 0. Voltages lying between
+3 and -3 are undefined, meaning they could go either way and still
comply with the standard.

As a practical matter, though, it wouldn’t be smart to let 0 volts be
interpreted as a 0, since this is a serial start bit. Any time the serial input
was at ground potential, the terminal or PC would attempt to receive
incoming serial data. This would cause plenty of false receptions.
Serial-port designers apparently take this into account and set the 0
threshold somewhere above ground.

Note 3: Sending RS-232 Serial Data
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Note 3: Sending RS-232 Serial Data

That’s why this cheap trick works. Don’t count on it to provide full RS-
232 performance, especially when it comes to sending data rapidly over
long cables. Keep cables short and you shouldn’t have any problems
(19,200 baud seems to work error-free through 6 feet of twisted pair).

If your application will have access to the handshaking pins, you may
be able to steal enough power from them to eliminate batteries entirely.
According to the RS-232 specifications, all signals must be capable of
operating into a 3000-ohm load. Since many computers use ±12 volts for
their RS-232 signals, each line should be capable of delivering 4 mA. In
practice, most can provide more, up to perhaps 15 mA. The only
problem with exploiting this free power is that the software running on
the PC or terminal must be written or modified to keep the handshaking
lines in the required state.

One final hardware note: Although timing isn’t overly critical for
transmitting serial data, resistor/capacitor timing circuits are inad-
equate. The PIC’s RC clock is specified to fairly loose tolerances (up to
±28 percent) from one unit to another. The values of common resistors
and capacitors can vary substantially from their marked values, and
can change with temperature and humidity. Always use a ceramic
resonator or crystal in applications involving serial communication.

Program listing. This program may be downloaded from the Parallax
BBS as XMIT232.SRC. You can reach the BBS at (916) 624-7101.

Clock
Serial Bit Rate (bit time)

Frequency
600 1200 2400 4800 9600 19,200

1 MHz 206 102 50 24 — — —
2 MHz — 206 102 50 24 — —
4 MHz — — 206 102 50 24 —
8 MHz — — — 206 102 50 24

Other combinations of clock speed and bit rate can be supported by changing the bit_delay and

start_delay subroutines. The required bit delay is 1
bit rate

. For example, at 1200 baud the bit delay

is 1
1200

  = 833µs. The start delay is half of the bit delay; 416µs for the 1200-baud example.

Calculate the time delay of a subroutine by adding up its instruction cycles and multiplying by
4

clock speed
. At 2 MHz, the time per instruction cycle is 4

2   ,000   ,000
 = 2µs.

300
(3.33 ms) (1.66 ms) (833 µs) (417 µs) (208 µs) (104 µs) (52 µs)

Values of Timing Constant Bit_K for Various Clock Speeds and Bit Rates
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Note 3: Sending RS-232 Serial Data

; PROGRAM: XMIT232
; This program transmits a string of serial data. The baud rate is determined by the
; value of the constant bit_K and the clock speed of the PIC. See the table in the
; application note (above) for values of bit_K. For example, with the clock running at
; 4 MHz and a desired transmitting rate of 4800 baud, make bit_K 50.

bit_K = 24      ; 24 for 19,200-baud operation @ 8 MHz
serial_out = ra.2

; Variable storage above special-purpose registers.
org 8

delay_cntr ds 1 ; counter for serial delay routines
bit_cntr ds 1 ; number of transmitted bits
msg_cntr ds 1 ; offset in string
xmt_byte ds 1 ; the transmitted byte

; Org 0 sets ROM origin to beginning for program.
org 0

; Remember to change device info if programming a different PIC. Do not use RC
; devices. They are not sufficiently accurate or stable for serial communication.

device pic16c54,xt_osc,wdt_off,protect_off
reset begin

begin mov !ra, #00000000b ; Set port to output.
mov msg_cntr, #0 ; Message string has nine

; characters; 0 through 8.
:again mov bit_cntr,#8 ; Eight bits in a byte.

mov w,msg_cntr ; Point to position in the string.
call string ; Get next character from string.
mov xmt_byte,w ; Put character into transmit byte.
clrb serial_out ; Change to setb serial_out for

; direct connection.
call bit_delay ; Start bit.

:xmit rr xmt_byte ; Rotate right moves data bits into
; carry, starting with bit 0.

movb serial_out,c ; Change to movb serial_out,/c for
; direct connection.

call bit_delay ; Data bit.
djnz bit_cntr,:xmit ; Not eight bits yet? Send next bit.
setb serial_out ; Change to clrb serial_out for

; direct connection
call bit_delay ; Stop bit.
inc msg_cntr ; Add one to the string pointer.
cjbe msg_cntr,#8, :again ; More characters to send? Go to

; the top.

:endless goto :endless ; Endless loop. Reset controller to
; run program.
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; To change the baud rate, substitute a new value for bit_K at the beginning of this
; program.

bit_delay mov delay_cntr,#bit_K
:loop nop

djnz delay_cntr, :loop
ret

string jmp pc+w ; Message string consisting of
; ‘Parallax’ followed by a linefeed.

retw ‘P’,’a’,’r’,’a’,’l’,’l’,’a’,’x’,10

Note 3: Sending RS-232 Serial Data

BASIC Program for Receiving Text String via COM1

10 CLS
15 REM Substitute desired baud rate for 19200 in the line below.
20 OPEN “com1:19200,N,8,1,CD0,CS0,DS0,OP0” FOR INPUT AS #1
30 IF NOT EOF(1) THEN GOSUB 200
40 GOTO 30
200 Serial$ = INPUT$(LOC(1), #1)
210 PRINT Serial$;
220 RETURN
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Note 4: Reading Rotary Encoders

Introduction. This application note covers the use of incremental
rotary encoders with PIC microcontrollers. It presents an example
program in Parallax assembly language for reading a typical encoder
and displaying the results as an up/down count on a seven-segment
LED display.

Background. Incremental rotary encoders provide a pair of digital
signals that allow a microcontroller to determine the speed and direc-
tion of a shaft’s rotation. They can be used to monitor motors and
mechanisms, or to provide a control-knob user interface. The best-
known application for rotary encoders is the mouse, which contains
two encoders that track the x- and y-axis movements of a ball in the
device’s underside.

Rotary encoders generally contain a simple electro-optical mechanism
consisting of a slotted wheel, two LEDs, and two light sensors. Each

Figure 2. Sequence of two-bit numbers output by
the phases of a rotary encoder.

0 1 1 0 0 1 1 0 0 1 1

CLOCKWISE

COUNTER CW

Phase 1
Phase 2

1 1 0 0 1 1 0 0 1 1 0

Figure 1. Quadrature waveforms from a rotary
encoder contain directional information.

CLOCKWISE

COUNTER CW

Phase 1

Phase 2
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LED/sensor pair is arranged so that the devices face each other through
the slots in the wheel. As the wheel turns, it alternately blocks and
passes light, resulting in square wave outputs from the sensors.

The LED/sensor pairs are mounted offset relative to one another, so
that the output square waves are offset 90 degrees in phase. This is
known as quadrature, because 90 degrees amount to one-quarter of a
full 360-degree cycle.

This phase relationship provides the information needed to determine
the encoder’s direction of rotation (see figure 1).

The dotted lines in figure 1 indicate a common method of reading

Note 4: Reading Rotary Encoders
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direction. For instance, if phase 1 is high and phase 2 is rising, the
direction is clockwise (CW). If phase 1 is low and phase 2 is rising, the
direction is counterclockwise (CCW).

For the sake of interpreting this output with a PIC or other
microcontroller, it’s probably more useful to look at the changing states
of the phases as a series of two-bit numbers, as shown in figure 2 above.

When the encoder shaft is turning CW, you get a different sequence of
numbers (01,00,10,11) than when it is turning CCW (01,11,10,00). You
may recognize this sequence as Gray code. It is distinguished by the fact
that only one bit changes in any transition. Gray code produces no
incorrect intermediate values when the count rolls over. In normal
binary counting, 11 rolls over to 00. If one bit changed slightly before the
other, the intermediate number value could be incorrectly read as 01 or
10 before settling into the correct state of 00.

Interpreting this code amounts to comparing the incoming sequence to
the known sequences for CW and CCW rotation. A lookup table would
do the trick. However, this approach, while easy to understand, is
inefficient. The shortcut method uses an interesting property of the
two-bit Gray code sequence.

Pick any pair of two-bit numbers from the CW sequence shown in
figure 2; for instance, the first two: 10, 11. Compute the exclusive-OR
(XOR) of the righthand bit of the first number with the lefthand bit of
the second. In this case, that would be 0 XOR 1 = 1. Try this for any CW
pair of numbers from the table, and you’ll always get 1.
Now reverse the order of the number pair: 11, 10. XOR the right bit of
the first with the left of the second (1 XOR 1 = 0). Any CCW pair of
numbers will produce a 0.

How it works. The schematic in figure 3 shows a typical rotary encoder
connected to the lower two bits of port RA, and a seven-segment LED
display to port RB. The circuit, and the program in the listing, perform
a simple task. The count displayed on the LED goes up when the control
is turned CW, and down when it is turned CCW. The display is in
hexadecimal, using seven-segment approximations of the letters: A, b,
C, d, E F.

Note 4: Reading Rotary Encoders
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The program begins by setting up the I/O ports and clearing the
variable counter. It gets an initial input from the encoder, which goes
into the variable old, and strips off all but the two least-significant bits
(LSBs).

The body of the program, starting with :loop, calls check_encoder and
then displays the latest value of counter on the LED display.

Most of the interesting business happens in check_encoder itself. Here,
the program gets the latest value at the encoder inputs, strips all but the
two LSBs, and XORs the result into a copy of the old value. If the result
is zero, the encoder hasn’t moved since its last reading, and the routine
returns without changing the value of counter.

If the value has changed, the routine moves the value in old one bit to the
left in order to align its LSB with the high bit of the two-bit value in new.
It XORs the variables together. It then examines the bit old.1. If the bit is
1, counter is incremented; if it’s 0, counter is decremented.

Modifications. To avoid ‘slippage’ errors (where a change in encoder
position does not change the counter, or results in the wrong change),
check_encoder must be called at least once every 1/(encoder resolution

* 
max revs per second). For instance, if the encoder might turn 300 rpm

(5 revs per second) and its resolution is 32 transitions per turn,
check_encoder must be called every 1/(32

*
5) seconds, or 6.25 millisec-

onds. For a user interface, bear in  mind that generally the larger the
knob, the slower the input. Substitution of a larger control knob may be
all that’s required to reduce the sampling rate.

In circumstances where electrical noise might be a problem, Microchip’s
PIC data sheet indicates that it might be wise to move the port I/O
assignments to the beginning of check_encoder. Electrostatic discharge
(ESD) from the user’s fingertips, or some other electrical noise, could
corrupt an I/O control register. This would prevent the routine from
reading the encoder.

Program listing. This program may be downloaded from the Parallax
BBS as RD_ENCDR.SRC. You can reach the BBS at (916) 624-7101.

Note 4: Reading Rotary Encoders
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; PROGRAM: Read Rotary Encoder (RD_ENCDR.SRC)
; This program accepts input from a rotary encoder through bits RA.0 and RA.1,
; determines the direction of rotation, and increments or decrements a counter
; appropriately. It displays the hexadecimal contents of the four-bit counter on a
; seven-segment LED display connected to port RB.

encoder = ra
display = rb

; Variable storage above special-purpose registers.
org 8

temp ds 1
counter ds 1
old ds 1
new ds 1

; Remember to change device info when programming a different PIC.
device pic16c54,rc_osc,wdt_off,protect_off
reset start

; Set starting point in program ROM to zero.
org 0

start mov !rb, #0 ; Set rb to output.
mov !ra, #255 ; Set ra to input.
clr counter
mov old, encoder
and old, #00000011b

:loop call chk_encoder
mov w, counter
call sevenseg
mov display, w
goto :loop

chk_encoder mov new, encoder ; Get latest state of input bits.
and new, #00000011b ; Strip off all but the encoder bits.
mov temp, new
xor temp, old ; Is new = old?
jz :return ; If so, return without changing

; counter.
clc ; Clear carry in preparation for

; rotate-left instruction.
rl old ; Move old to the left to align old.0

; with new.1.
xor old, new
jb old.1, :up ; If the XOR resut is 1, increment

; counter, otherwise decrement.
:down dec counter

skip

Note 4: Reading Rotary Encoders
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:up inc counter
and counter, #00001111b
mov old,new

:return ret

sevenseg jmp pc+w ; display lookup table
retw 126, 48, 109, 121, 51, 91, 95, 112
retw 127, 115, 119, 31, 78, 61, 79, 71

Note 4: Reading Rotary Encoders
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Note 5: Producing Sound & Music

Introduction. This application note presents a subroutine for produc-
ing tones (or musical notes) by specifying values for frequency and
duration. The example program plays a brief tune through a speaker.
The circuit uses two PIC outputs driven differentially to produce a 10-
volt peak-to-peak signal from a single-ended power supply.

Background. Most high-level programming languages include a com-
mand for producing tones or musical notes that accepts two inputs:
frequency and duration. These are the basis for programs that generate
music, audible prompts, sound effects, and even Morse code. In PIC
assembly language, it’s easy to produce a tone by toggling an output bit.
It’s also easy to control the duration of the tone by counting cycles.

The problem with counting cycles is that the duration ends up varying
with the frequency. A 1000-hertz (Hz) tone is made up of 1-millisecond
(ms) cycles. If your program counts out 200 cycles, the resulting tone
lasts 200 ms. But if you change the frequency to 5000 Hz, each cycle takes
only 0.2 milliseconds, so 200 cycles last only 40 ms.

The program presented here takes a different approach. The subroutine
beep consists of a single loop that always takes 20 microseconds (µs) to
execute. A 16-bit value controls the number of loops and therefore the
duration of the sound.
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An eight-bit counter controls the frequency of the sound. If the fre-
quency value is 100, then the routine inverts the speaker lines every
100th execution of the main loop. The larger the frequency value, the
lower the output frequency.

How it works. The circuit in figure 1 plays a short tune each time the PIC
is powered up or reset (if you are using the Parallax downloader, you
can omit the switch and use the built-in reset button). The speaker
connects through a capacitor to two of the PIC’s input/output pins.
Most PIC circuits switch a load between a single pin and ground or +5
volts. As a result, the largest voltage swing they can generate is 5 volts.
In this case, the program ensures that RA.0 and RA.1 are always comple-
mented; when RA.0 is 1, RA.1 is 0 and vice versa. The speaker therefore
sees a 10-volt swing. This makes a noticeably louder sound, especially
with piezo devices, which are more efficient at higher voltages.
The program that controls the PIC begins by setting port RA to output
and loading a pattern of alternating 0’s and 1’s into it. The program then
looks up two values from ROM tables* notes and lengths. It stores these
values in the variables freq and duratn, and calls the subroutine beep.

Beep accepts the values and produces a tone of the specified frequency
and duration. The key to this routine is the ability of the exclusive-OR
(XOR) logic function to selectively invert bits. XOR’s truth table is:

A XOR B Result
0 0 0
0 1 1
1 0 1
1 1 0

When B contains a 0, Result = A. When B contains a 1, Result is the
inverse of A.

Note 5: Producing Sound & Music

*You can stuff a series of bytes into the program ROM for later use by your program. Just set
up a subroutine beginning with jmp pc+w followed by the directive retw byte0, byte1, byte2...
When you need to access one of these numbers from your program, just move the number
corresponding to the byte value you want into the w register, and call the table. Upon return, the
byte value will be in the w register.
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Each time beep loops, it XOR’s the speaker lines with the variable tgl.
Most of the time, this variable contains 0’s, so the XOR has no effect. The
counter variable f_temp is decremented each time the loop executes.
When f_temp reaches 0, tgl gets loaded with 1’s. Now XOR’ing the
speaker lines with tgl inverts them. The routine reloads f_temp with the
value freq, and the process starts again.

After beep returns, the main program increments the variable index and
checks to see whether all the notes have played. If they haven’t, the
program loops. If they have, it enters an endless do-nothing loop
waiting to be reset or shut off.

A couple of notes about using beep in other applications: To calculate the
value freq for a given frequency, divide the frequency in hertz into
50,000 (4-MHz clock) or 100,000 (8-MHz clock). If freq is 0, beep will
produce a silent delay of the length set by duratn. To calculate duratn,
divide the desired length of the tone by 5 ms.

Modifications. The frequency and duration values that make up the
tune CHARGE were programmed by ear, but you can readily program real
music by using the table below. It lists the three octaves that beep
adequately covers. Note that the routine is not always right on the
nominal frequency of the notes, but it’s generally within a few hertz.
The worst-case error is about 1 percent. The frequencies listed assume
a 4-MHz clock. If you use an 8-MHz clock, the values for freq listed in the
table will still accurately  represent musical notes, but they’ll be shifted
upward by one octave.

If you use a resistor-capacitor oscillator, your notes could wind up
being sharp or flat (or worse) because of variations in clock frequency.
For applications in which it’s important that the notes sound just right,
use a ceramic resonator or crystal.

To program a tune, look up each note in the table and put the corre-
sponding freq into notes. To calculate values for lengths, pick an appro-
priate duration for a whole note, and scale half-note, quarter-notes,
eighths and so on correspondingly. The duration in milliseconds of the
note will be approximately 5 x duratn. So, if you pick a value of 128 for
a whole note, it will last 640 ms.

Note 5: Producing Sound & Music
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When you’re done filling in notes and lengths, count the notes and set the
constant end_note equal to this number. Also make sure that the number
of notes is equal to the number of lengths.

Program listing. This program may be downloaded from the Parallax
BBS as CHARGE.SRC. You can reach the BBS at (916) 624-7101.

Note 5: Producing Sound & Music

Values of Variable freq Required to Create Musical Notes (4-MHz clock)

Firs t Oc t av e Sec ond Oc t av e Third Oc t av e

Note
Nominal

(Hz)
Actual
(Hz)

Value of
freq

Nominal
(Hz)

Actual
(Hz)

Value of
freq

Nominal
(Hz)

Actual
(Hz)

Value of
freq

A 220 220 227 440 439 114 880 877 57
B 247 248 202 494 495 101 988 980 51
C 262 262 191 523 521 96 1047 1042 48
D 294 294 170 587 588 85 1175 1163 43
E 330 329 152 659 658 76 1319 1316 38
F 349 350 143 698 694 72 1397 1389 36
G 392 391 128 784 781 64 1568 1563 32

*To get values of freq for sharps (#), multiply the value listed by 0.9442 and round off the result.
For example, the freq value for C# in the first octave would be 0.9442 x 191 = 180.

; PROGRAM: CHARGE.SRC
; This program in Parallax assembly language plays a short tune, “Charge,” from
; data stored in a pair of tables. It uses a general-purpose routine called beep to
; generate the notes from frequency and duration data. The tune will play when the
; PIC or Downloader is first powered up, and any time the device is reset. Note that
; although beep uses seven file registers, five of these may be  reused elsewhere in
; the program  for counting, or any use that does not require their values to be
; preserved after beep is called.

spkr = ra ; Connect speaker to adjacent ra
pins.
end_note = 6 ; number of notes in the tune

; Variable storage above special-purpose registers.
org 8

freq ds 1 ; passess frequency value to beep
duratn ds 1 ; passes duration value to beep
f_temp ds 1 ; temporary counter (frequency)
d_hi ds 1 ; temporary counter (high byte of

; duration)
d_lo ds 1 ; temporary counter (low byte of

; duration)
tgl ds 1 ; temporary variable
t_pat ds 1 ; temporary variable
index ds 1 ; note counter used by main

; program
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Note 5: Producing Sound & Music

; Device data and reset vector. Remember to change these entries if programming
; another type of PIC.

device pic16c54,rc_osc,wdt_off,protect_off
reset start

; Set ROM origin to 0 for start of program.
org 0

start mov !ra, #0 ; Set port ra to output.
mov ra, #1010b ; Use alternating bits as push-pull

; drivers.
mov index, #0 ; Start index at 0.

:loop mov w,index
call notes ; Look up the frequency of next

; note.
mov freq, w ; Put the frequency value into freq.
mov w,index
call lengths ; Look up the length of the next

; note.
mov duratn, w ; Put the length value into duratn.
call beep ; Play the note.
inc index
cjb index,#end_note,:loop; All notes done? If not, loop.

:endless goto :endless ; Sit in a loop until reset.

Notes jmp pc+w ; Lookup table for note frequencies
retw 90, 67, 52, 44, 52, 44 ; 4-MHz or RC operation.

; For 8-MHz operation (e.g., the downloader w/ built-in xtal) substitute the sequence
; below for Notes:
; retw 180, 134, 104, 88, 104, 88

Lengths jmp pc+w ; Lookup table for note durations.
retw 35, 35, 35, 55, 30,127; 4-MHz or RC operation.

; For 8-MHz operation (e.g., the downloader w/ built-in xtal)  substitute the sequence
; below for Lengths:
; retw 70, 70, 70, 110, 60, 255

beep mov t_pat, #255 ; All ones to invert all bits in port A.
mov f_temp, freq ; If freq is zero, fill pattern with

; zeros.
jnz :cont ; ..for a silent pause.
mov t_pat, #0

:cont mov d_hi, duratn ; Variable duratn goes into the
; high byte

clr d_lo ; ..of a 16-bit counter.
mov tgl, t_pat

:main xor spkr, tgl ; XORing the speaker bits with 1s
; inverts them.
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:delay nop ; Zeros have no effect.
nop ; Nops pad main loop to 20µs.
nop
djnz f_temp, :noRoll1 ; When f_temp reaches zero,

; reload the freq.
mov f_temp, freq ; ..value and put tgl_pat into tgl in

; order to
mov tgl, t_pat ; ..invert the speaker bits on the

; next loop.
:dur_lo sub d_lo, #1 ; Decrement low byte of duration.

jc :noRoll2 ; If no borrow, go to noRoll2.
sub d_hi, #1 ; If borrow occurs, decrement the
sc ; ..high byte of duration. If the high

; byte
ret ; ..needs a borrow, routine is done.
jmp :main ; Else loop to :main.

:noRoll1 clr tgl ; If f_temp is not zero, don’t
jmp :dur_lo ; ..pluck the speaker.

:noRoll2 nop ; Waste time to ensure that all
; paths through

nop ; ..the routine take 20µs.
jmp :main

Note 5: Producing Sound & Music
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Note 6: Driving an LCD Display

Introduction. This application note shows how to interface PIC micro-
controllers to common Hitachi liquid-crystal display (LCD) modules.
The program, in Parallax assembly language, writes text to the display,
reads display status, and creates custom character patterns.

Background. LCD modules based on the Hitachi 44780 controller are
plentiful and inexpensive, and range in size from 8 to 80 characters.
While a complete description of these LCDs’ features and operation is
beyond the scope of this application note, here are the highlights:

Hitachi LCD modules display the standard ASCII character set, plus
selected Japanese, Greek, and math symbols. They operate from a
single-ended 5-volt supply, and communicate with a bus or controller
through 11 input/output (I/O) lines. The data lines are tri-state; they go
into a high-impedance state when the LCD is not enabled.

The three control lines ‘control’ the LCD. The enable (E) line determines
whether the LCD listens to the other control and data lines. When
disabled, the LCD ignores all data and control signals. When enabled,
the LCD checks the state of the other two control lines and responds
accordingly.
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The read/write (R/W) line determines whether the LCD reads bits
from the data lines, or writes bits to them.

Register-select (RS) determines whether the LCD treats data as instruc-
tions or characters. Here is the truth table for the control lines:

E 0 LCD disabled.
1 LCD enabled.

R/W 0 Write to LCD.
1 Read from LCD.

RS 0 Instructions.
1 Characters/bytes.

Writing to the LCD requires the basic steps listed below. (Reading from
the LCD follows the same sequence, but the R/W bit must be set.)

• Clear the R/W bit.
• Set or clear the RS bit as appropriate.
• Set the E bit (E=1).
• Clear the E bit (E=0).

When power is applied to the LCD, it resets itself and waits for
instructions. Typically these instructions turn on the display, turn on
the cursor, and set the display to print from left to right.

Once the LCD is initialized, it can receive data or instructions. If it
receives a character, it prints it on the screen and moves the cursor one
character to the right. The cursor marks the next location at which a
character will be printed. The LCD’s internal processing is similar. A
memory pointer determines where the next byte will be stored. When
a new byte arrives, the pointer advances. To write to sequential loca-
tions, establish the starting address and then write one byte after
another.

Characters are stored in data display (DD) RAM. Regardless of the
number of characters visible on the display, the LCD has 80 bytes of DD
RAM. Characters in off-screen RAM can be made visible by scrolling
the display.

The LCD also has 64 bytes of character-generator (CG) RAM. Data in

Note 6: Driving an LCD Display
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CG RAM determines the bit maps of the characters corresponding to
codes 0 through 7 (in normal ASCII, these are control codes). To
download bit maps to the LCD, first set the CG RAM address to the
desired starting point (usually 0), and then write the bytes to the LCD.
Because the pointer increments with each write, you don’t need to keep
specifying addresses. Figure 2 is an example pattern definition. The
program listing shows how to define custom characters.

Before you can write to DD RAM after defining custom characters, the
program must set a DD RAM address. The LCD reads and writes
whichever RAM bank (DD or CG) was last specified in a set-address
instruction. Once you have set an address in DD RAM, the next data
write will display a character at the corresponding location on the
screen.

Until now, we have talked about reading and writing to the LCD as
though it were regular memory. It’s not. The LCD’s controller takes 40
to 120 microseconds (µs) to complete a read or write. Other operations
can take as long as 5 milliseconds. To avoid making the PIC wait a
worst-case delay between operations, the LCD has a 1µs instruction that
reads the address counter and a busy flag. When the busy flag is set (1),
the LCD cannot handle a read or write. The program listing  includes a
subroutine (blip_E) that makes sure the busy flag is cleared (0) before
talking to the LCD.

The address returned along with the busy flag is either the DD or CG
RAM pointer, depending on which address was last set.

Note 6: Driving an LCD Display

Address in
Character

Generator RAM Bit Map Data

0000
0001
0010
0011
0100
0101
0110
0111

01111
10001
10001
01111
00001
00001
00001
00000

“retw”
Data

15
17
17
15

1
1
1
0

Figure 2. Programming a custom character pattern.
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Figure 3 is a list of LCD instructions for reading and writing memory.
Some other useful instructions appear as constants in the beginning of
the program listing.

How it works. The circuit in figure 1 interfaces a PIC to an LCD module.
When the power is turned on, or the circuit is reset, the PIC initializes
the LCD, downloads four custom characters, and prints “Parallax”
forward and backward (with custom mirrored characters).

The potentiomenter connected to the LCD’s Vo pin controls contrast. If
the display is hard to read, appears blank, or is filled with black pixels,
adjust this control.

Power to the LCD is controlled by a PIC I/O bit. In this way, the PIC
ensures that the 5-volt supply is up and stable before switching on the
LCD. If the circuit used the PIC’s sleep mode, it could shut down the
LCD to save approximately 1.5 mA. If you use this feature, make sure
that the data and control lines are cleared to 0’s or set to input before
putting the PIC to sleep. Otherwise, leakage through the LCD’s protec-
tion diodes might continue to power it.

Set DD RAM address
RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

0 0 1 A A A A A A A

Set CG RAM address
RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

0 0 0 1 A A A A A A

Read busy flag and address
RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

0 1 Bsy A A A A A A A

Write data to RAM (CG or DD, most recently set)
RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

1 0 D D D D D D D D

Read data from RAM (CG or DD, most recently set)
RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

1 1 D D D D D D D D

Figure 3. Commonly used memory operations.
(A = address; D = data; Bsy = busy)
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Program listing. This program may be downloaded from the Parallax
BBS as LCD_DRVR.SRC. You can reach the BBS at (916) 624-7101.

; PROGRAM: Drive Liquid Crystal Display (LCD_DRVR.SRC)
; This program initializes a Hitachi LCD module, defines a set of four custom
; characters, and displays the message “Parallax” forward and backward (in custom,
; mirror-reading letters). It includes a subroutine, blip_E, that handles all the required
; handshaking to send data or instructions to the LCD.

LCD_pwr = ra.3 ; +5 to LCD module
RS = ra.2 ; 0 = write, 1 = read
RW = ra.1 ; 0 = instruction, 1 = data
E = ra.0 ; 0 = disable, 1 = enable
data = rb ; Data to LCD
count = 16 ; Number of characters in demo

; string.
char_cnt = 32 ; Number of bytes in custom

; character definition

; Declare constants for common LCD instructions. To perform the functions listed
; below, clear bit RS and send #constant to the display. Remember to set RS again
; before sending characters to the LCD.
clear = 1 ; Clears the display (fills it with

; blanks).
home = 2 ; Returns display to the home

; position.
shift_l = 24 ; Shifts display to the left.
shift_r = 28 ; Shifts display to the right.
crsr_l = 16 ; Moves cursor to the left.
crsr_r = 20 ; Moves cursor to the right.
blink_c = 11 ; Blinks whole character to indicate

; cursor position.
no_crsr = 8 ; Turns off the cursor.

; Set RAM origin above special registers, declare variables, and set code origin.
org 8

temp ds 1 ; Temporary counter.
temp2 ds 1 ; Pass data or instructions to

; blip_E.
counter ds 1 ; Index variable.

org 0
; Device data

device pic16c54,xt_osc,wdt_off,protect_off
reset start

start mov ra, #0 ; Initialize ports, power LCD and
; wait for it to reset.

mov rb, #0
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mov !ra,#0h ; set control lines to output
mov !rb,#0h ; set data lines to output
setb LCD_pwr
call wait

mov temp2,#00110000b ; Initialize LCD: set 8-bit, 1-line
; operation.

call blip_E
mov temp2,#00001110b
call blip_E
mov temp2,#00000110b
call blip_E

mov temp2, #01000000b ; Write to CG RAM: start at
; address 0.

call blip_E
setb RS ; Set RS to send data.
mov counter, #0

:stuff mov w, counter
call my_chars ; Get next byte.
mov temp2, w ; Write byte to CG RAM.
call blip_E
inc counter
cjb counter, #char_cnt,:stuff
clrb RS ; Clear RS to send instruction.
mov temp2, #10000000b ; Address 0 of DD RAM.
call blip_E
setb RS

send_msg mov counter, #0 ; Send the message string to the
; LCD.

:loop mov w,counter
call msg
mov temp2,w
call blip_E
inc counter
cjb counter,#count,:loop

:loop2 jmp :loop2 ; Endless loop. Reset PIC to run
; program again.

; Write data or instructions (in variable temp2) to the LCD.
blip_E movb pa2, RS ; Store current state of RS in

; unused bit.
clrb RS ; Clear RS to send instruction.
setb RW ; Set RW to read.
mov !rb, #255 ; Port RB: all inputs.

:loop setb E ; Enable the LCD.
nop
mov temp, data ; Put LCD data (RB) into temp.

Note 6: Driving an LCD Display
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clrb E ; Disable LCD.
snb temp.7 ; Is the LCD busy?
jmp :loop ; Yes, try again later.
movb RS, pa2 ; No, send the data or instruction.
clrb RW
mov !rb, #0
mov data, temp2
setb E
nop
clrb E
ret

wait mov temp2,#200 ; Create a delay for LCD power-on
; reset.

:loop djnz temp,:loop
djnz temp2,:loop

ret

msg jmp pc+w ; Table of ASCII and custom
; characters to display.

retw ‘P’,’a’,’r’,’a’,’l’,’l’,’a’,’x’,’x’,2,0,0,2,1,2,3

my_chars jmp pc+w ; Table of data for custom
; ‘backwards’ characters.

retw 6,4,4,4,4,4,14,0 ; backwards l
retw 0,0,13,19,1,1,1,0 ; backwards r
retw 0,0,14,16,30,17,30,0 ; backwards a
retw 15,17,17,15,1,1,1,0 ; backwards P

Note 6: Driving an LCD Display
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Note 7: Direct & Indirect Addressing

Introduction. This application note describes direct and indirect ad-
dressing and shows a method for avoiding the gaps in the PIC16C57’s
banked memory.

Direct Addressing. PIC microcontrollers have 32 or 80 bytes of RAM,
which Microchip refers to as file registers. The first seven registers
(eight in the case of the 28-pin PIC’s) are mapped to special functions,
such as the real-time clock/counter (RTCC), status bits, and input/
output (I/O) ports. Figure 1 shows a simplified memory map.

The simplest way to manipulate the contents of a PIC’s RAM is to
specify a register address in an instruction, like so:

mov 010h, #100

This instruction, which moves the decimal number 100 into register 10
hexadecimal (h), is an example of direct addressing. Most of the instruc-
tions in a typical PIC program use this addressing mode.

The Parallax assembler has several helpful features for direct address-
ing. The first of these is labeling. Instead of referring to registers by

Figure 1. Simplified memory map of PIC’s 16C54 through ’57.

Address
(hex) Description

8–1F General-purpose RAM (’54, ’55, ’56) and RAM bank 0 of ’57

indirect Reads/writes address pointed to by fsr.0

rtcc Real-time clock/counter.1

pc Program counter—9 to 11 bits wide; lower 8 may be read/written.2

status Flag bits for arithmetic operations, sleep and reset, and ROM page selects.3

fsr Pointer; address of data accessed through indirect.4

ra I/O port ra.5

rb I/O port rb.6

rc I/O port rc on ’55 and ’57; general-purpose register on ’54 and ’56.7

RAM Banks 1–3, 16C57

RAM warp; reads and writes to 0–F.20–2F

RAM bank 1 (’57 only)30–3F

RAM warp; reads and writes to 0–F.40–4F

RAM bank 2 (’57 only)50–5F

RAM warp; reads and writes to 0–F.60–6F

RAM bank 3 (’57 only)70–7F
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address, you may assign names to them:

counter = 010h ;Program header
.
.
.
mov counter, #100

Labeled memory locations are often called variables. They make a
program more understandable and easier to modify. Suppose you
needed to change the location in which the counter data was stored.
Without the label, you would have to rely on your text editor’s search-
and-replace function (which might also change other numbers contain-
ing “10”). With a label, you could change the counter = ... value in the
program header only.

You can also define variables without specifying their address by using
the ds (define space) directive:

org 8 ;Start above special registers.
counter ds 1 ;One byte labeled “counter.”

.

.

.
mov counter, #100

Using ds assigns the  label to the next available register. This ensures
that no two labels apply to the same register, making variable assign-
ments more portable from one program to another. The only caution in
using ds is that you must set the origin using the org directive twice; once
for the starting point of variables in RAM, and again (usually at 0) for
the starting point of your program in ROM.

Labels can be assigned to individual bits in two ways. First, if the bit
belongs to a labeled byte, add .x to the label, where x is the bit number
(0–7). Or assign the bit its own label:

LED = ra.3 ;Bit 3 of port ra controls LED.

The Parallax assembler has predefined labels for the special-purpose

Note 7: Direct & Indirect Addressing



PIC16Cxx Applications Handbook 1.1 • Parallax, Inc. • (916) 624-8333 • Page 133

registers, and the bits of the status register. See your manual for a list.

Indirect Addressing. The registers used in direct addressing are set
forever when the program is burned into the PIC’s ROM. They cannot
change. However, many powerful programming techniques are based
on computing storage locations. Consider a keyboard buffer. If key-
strokes can’t be processed immediately, they are stored in sequential
bytes of memory. Pointers—variables containing addresses of other
variables—track the locations of data entered and data processed.

The PIC’s indirect addressing mode allows the use of pointers and the
high-level data structures that go with them, such as stacks and queues.
Using indirect addressing for the earlier example (writing 100 to
register 10h) would look like this:

mov fsr, #010h ;Set pointer to 10h.
mov indirect, #100 ;Store 100 to indirect.

The value in the file select register (fsr; register 04h) is used as the
address in any instruction that reads/writes indirect (register 00h). So
storing 10h in the fsr and then writing 100 to indirect is the same as
writing 100 to address 10h.

Note 7: Direct & Indirect Addressing

7 6 5 4 3 2 1 0

address, 0–Fh

banked memory enable;
1 = on, 0 = off

bank select, 0–3h

unused; reads as 1

Memory
Register

banks:

0 10h to 1Fh

1 30h to 3Fh

2 50h to 5Fh

3 70h to 7Fh

Figure 2. The 16C57
file-select register.
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A more practical example would be to store a series of values from an
I/O port to sequential registers in memory. All it takes is a loop like this:

mov pointer, #010h ;Set start address.
:loop mov fsr, pointer ;Put pointer into fsr.

mov indirect, rb ;Move rb to indirect.
inc pointer ;pointer = pointer + 1.
cjb pointer,#01Fh,:loop

This fragment assumes that a variable named pointer was declared
previously (using =, equ, or ds), and that rb is set for input. The loop will
rapidly fill registers 10h through 1Fh with data samples from rb.

PIC’s with 32 bytes of RAM (’54, ’55, and ’56) have a five-bit-wide fsr.
Since all registers are eight bits wide, the highest three bits of the fsr in
these devices are fixed, and always read as 1’s. Keep this in mind if you
plan to perform comparisons (such as the last line of the example above)
directly on the fsr. It will always read 224 (11100000b) higher than the
actual address it points to.

The 16C57 has 80 bytes of RAM and a seven-bit-wide fsr. The highest bit
of its fsr is fixed and reads as a 1. Seven bits allows for 128 addresses, but
only 80 are used. The remaining 48 addresses are accounted for by three
16-byte gaps in the 57’s memory map. See the RAM warps in figure 1.

Because these warps map to the lowest file registers of the PIC, they can
cause real trouble by altering data in the special-purpose registers. To
avoid this problem, consider using a subroutine to straighten out the
memory map and avoid the warps. Below is an excerpt from a program
that uses the registers from 10h on up as a storage buffer for up to 64
characters of ASCII text. For the purposes of the program, address10h
is location 0 in the buffer; 7F is location 63.

When the program needs to write a value representing a position in the
buffer to the fsr, it puts the value into the w register and calls buf_ptr
(buffer pointer).

Note 7: Direct & Indirect Addressing
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buf_ptr mov temp,w
mov fsr, temp
cjae temp,#030h,:bank3
cjae temp,#020h,:bank2
cjae temp,#010h,:bank1
jmp :bank0

:bank3 add fsr,#010h
:bank2 add fsr,#010h
:bank1 add fsr,#010h
:bank0 add fsr,#010h

ret

It may be more useful in some applications to treat these memory
locations as register banks, as they are described in the Microchip
literature. According to this model, bit 4 of the fsr enables bank selection
when it is a 1. The 16-byte bank in use is then selected by bits 5 and 6 of
the fsr as shown in figure 2.

This model explains the warps in the memory map. Each of the three
warp addresses (20h, 40h, and 60h) has a 0 in the bit-4 position. This
disables banked memory, causing the PIC to disregard all but bits 0
through 3 of the address.

Note 7: Direct & Indirect Addressing
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Note 8: The PIC16C71 A/D Converter

Introduction. This application note presents a program in Parallax
assembly language that uses the PIC16C71’s built-in analog-to-digital
converter (ADC) to measure an input voltage and flash an LED at a
proportional rate.

Background. One of the most popular enhancements offered by the
new PIC16C71 is its eight-bit ADC, which features:

• 20-microsecond (µs) conversion time (nearly 50,000 samples per
second, depending on additional processing time).

• Four multiplexed inputs.

• Built-in sample-and-hold.

• ±1 least-significant-bit accuracy (better than 20 millivolts with a
5-volt reference).

• Selectable voltage reference (Vdd or RA.3).

While using the ADC is fairly straightforward, it does require a series
of decisions much like those required to select and use a separate ADC.
The first consideration is hardware.

Input Characteristics. The ADC produces a digital output that is propor-
tional to an analog input. A voltage reference determines the input
voltage that will produce a full-scale (255) digital output. The voltage
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reference can be the +5-volt power-supply rail, or some other voltage
source between 3 volts and the power supply voltage + 0.3 volts. The
ADC is most accurate with a reference voltage of 5.12 volts, according
to the manufacturer’s specifications.

The specifications recommend that the analog voltage source being
measured have an impedance of no more than 10kΩ. Above this value,
accuracy suffers. They also suggest that the source have not less than
500Ω impedance. This limits current through the PIC in the event that
your program reconfigures the analog input pin as an output, or some
other circuit trauma occurs.

Clock Source. The PIC’s ADC, like the PIC itself, requires a clock signal.
The ADC performs a conversion in 10 of its clock cycles, which must be
no shorter than 2µs. Clock signals for the ADC can come from two
sources,  the PIC’s own clock or an on-chip resistor-capacitor (RC)
oscillator exclusive to the ADC.

When the PIC’s clock is the source, it is divided by 2, 8 or 32, depending
on the status of the ADC clock source bits (see figure 2). In order to have
an ADC clock signal of 2µs or longer, the PIC clock speed must not
exceed 1, 4, or 16 MHz, respectively. If you plan to run the PIC faster
than 16 MHz, or you want the ADC conversion rate to be independent
of the PIC clock, you must use the ADC’s RC oscillator.

The tradeoff in using the RC oscillator is that its period can vary from
2 to 6µs, depending on temperature and manufacturing tolerances.

Interrupt Enable. The ADC is relatively slow—at 20 MHz the PIC can
execute 100 instructions in the 20µs the ADC takes to make a conver-
sion. In some cases, it makes sense not to force a PIC program to wait in
a loop for a conversion to finish. The alternative is to configure the ADC
to announce “conversion complete” through an interrupt. To keep
things as simple as possible, the example program does not take
advantage of interrupt capability.

Pin Configuration and Voltage Reference. Pins RA.0 through RA.3 can serve
as inputs to the ADC. One of the choices you must make when setting
up the ADC is which pins to configure as analog inputs, which (if any)
as digital inputs, and what to use as a voltage reference. Figure 2 shows
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the range of available choices.

Note that the control register containing the configuration and voltage
reference bits is in register page 1. To access it, you must first set bit RP0.
The program listing shows how.

Input Selection. Only one of the pins configured for analog input can
actually sample at any one time. In other words, if you want ADC input
from two or more channels, your program must select a channel, wait
long enough for the sample-and-hold circuit to charge up, command a
conversion, get the result, and select the next channel...

Note 8: The PIC16C71 A/D Converter

Figure 2. ADC control registers.

ADC Control and Status Register (ADCON0, register page 0, 08h)

CHS0 go_done ADIF ADONCHS1unusedADCS0ADCS1
0234567

ADC power switch:
0 = ADC off
1 = ADC on

Interrupt flag bit:
set when conversion
is complete

Conversion flag bit:
set to start conversion
cleared when conversion is done

Channel select bits:
00 = channel 0 (Ain0)
01 = channel 1 (Ain1)
10 = channel 2 (Ain2)
11 = channel 3 (Ain3)

1

Clock select bits:
00 = Oscillator/2
01 = Oscillator/8
10 = Oscillator/32
11 = RC clock

Pin configuration bits:
00 = RA0–RA3, analog; Vdd  reference
01 = RA0–RA2, analog; RA3  reference
10 = RA0/1, analog; RA2/3, digital; Vdd  reference
11 = RA0–RA3, digital input

Remaining bits of ADCON1 are
unimplemented and always read 0

ADC Control Register (ADCON1, register page 1, 88h)

0 0 ADIF ADON0000
0234567 1



Page 140 • PIC16Cxx Applications Handbook 1.1 • Parallax, Inc. • (916) 624-8333

How long should the program wait for the sample-and-hold? Micro-
chip suggests a worst case of 4.67µs plus two ADC clock cycles (after a
conversion, the sample-and-hold takes a two-cycle break before it
begins sampling again).

How it works. The PIC in figure 1 accepts a voltage from a pot wired as
variable voltage divider. The PIC’s ADC, which is set up to use Vdd as
a reference, outputs a one-byte value that’s proportional to the input
voltage. This value controls a timing routine that flashes an LED. When
the input voltage is near 5 volts, the LED flashes about once a second.
When it’s near 0, the LED flashes very rapidly.

The program listing shows how it’s done. Most of the code is devoted
to setting up the ADC. Constants at the beginning of the program are
assigned with values that, when loaded into the appropriate ADC
control registers, turn the ADC’s various features on and off. If you wish
to change, for instance, the pin that the circuit uses for analog input, just
comment out the line containing AD_ch = 0 and uncomment the desired
channel (“commenting” and “uncommenting” are handy techniques
for temporarily removing and restoring instructions in source code.
Putting a semicolon (;) in front of a line causes the assembler to ignore
it, as though it were a comment).

If you accidentally leave two assignements for AD_ch uncommented,
the assembler will catch the mistake, flag the “redefinition” and tell you
the line number of the error.

The assembler combines values assigned to ADC_ch and ADC_clk into
a single byte by performing a logical OR (|) on the values and putting
the result into another constant, ADC_ctl. This technique makes the
program easier to understand and modify, and doesn’t cost a thing in
PIC program memory or processing time. The assembler does all the
work.

Program listing. This program may be downloaded from the Parallax
BBS as ADC71.SRC. You can reach the BBS at (916) 624-7101.

Note 8: The PIC16C71 A/D Converter
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; PROGRAM: Using the 16C71’s analog-to-digital converter (ADC71.SRC)
; This program demonstrates use of the ADC in a simple circuit that samples a
; voltage and flashes an LED at a proportional rate. The header contains a number
; of constants representing setup constants for the ADC control registers.
; Uncomment the constant corresponding to the desired ADC setting.

; The following constants set the ADC clock source and speed. Uncomment one.
;AD_clk = 0 ; Oscillator x 2  (<= 1 MHz).
;AD_clk = 64 ; Oscillator x 8  (<= 4 MHz).
;AD_clk = 128 ; Oscillator x 32 (<= 16 MHz).
AD_clk = 192 ; RC oscillator, 2–6 us.

; The following constants select a pin for ADC input. Uncomment one.
AD_ch = 0 ; ADC channel 0 (Ain0, pin 17).
;AD_ch = 8 ; ADC channel 1 (Ain1, pin 18).
;AD_ch = 16 ; ADC channel 2 (Ain0, pin 1).
;AD_ch = 24 ; ADC channel 3 (Ain0, pin 2).

AD_ctl = AD_clk | AD_ch ; Logical OR.

; The following constants determine which pins will be usable by the ADC and
; whether Vdd or RA.3 will serve as the voltage reference. Uncomment one.
AD_ref = 0 ; RA.0-3 usable, Vdd reference.
;AD_ref = 1 ; RA.0-3 usable, RA.3 reference.
;AD_ref = 2 ; RA.0/1 usable, Vdd reference.
;AD_ref = 3 ; All unusable—digital inputs only.

device  rc_osc,wdt_off,pwrt_off,protect_off
id ‘ADC1’

org 0Ch
counter1 ds 1
counter2 ds 1

; Set starting point in program ROM to zero. Jump past interrupt vector to beginning
; of program. (This program doesn’t use interrupts, so this is really not needed, but it
; will be easier to add interrupts later if required.)

org 0
jmp 5
org 5

start mov !ra, #255 ; Set RA to input.
mov !rb, #0 ; Set RB to output.
mov intcon, #0 ; Turn interrupts off.
mov adcon0,#AD_ctl ; Set AD clock and channel.
setb rp0 ; Enable register page 1.
mov adcon1,#AD_ref ; Set usable pins, Vref.
clrb rp0 ; Back to register page 0.
setb adon ; Apply power to ADC.
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:loop call wait ; Delay for time determined by
; ADC input.

setb rb.0 ; Turn LED on.
call wait ; Delay for time determined by

; ADC input.
clrb rb.0 ; Turn LED off.
goto :loop ; Endless loop.

wait setb go_done ; Start conversion.
:not_done snb go_done ; Poll for 0 (done).

jmp :not_done ; If 1, poll again.
mov counter2,adres ; Move ADC result into counter.

; The number of loops this delay routine makes is dependent on the result of the AD
; conversion. The higher the voltage, the longer the delay.
:loop djnz counter1, :loop

djnz counter2, :loop
ret
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Note 9: Managing Multiple Tasks

Introduction. This application note presents a program in Parallax
assembly language that demonstrates a technique for organizing a
program into multiple tasks.

Background. Like most computers, the PIC executes its instructions
one at a time. People tend to write programs that work the same way;
they perform one task at a time.

It’s often useful to have the controller do more than one thing at a time,
or at least seem to. The first step in this direction is often to exploit the
dead time from one task—the time it would normally spend in a delay
loop, for instance—to handle a second task. The PIC’s speed makes this
quite practical in many cases.

When several tasks must be handled at once, this approach can quickly
become unworkable. What we need is a framework around which to
organize the tasks. We need an operating system.

The program in the listing illustrates an extremely simple operating
system that runs each of eight small subprograms in turn. When the
subprograms finish their work, they jump back to the system. Notice
that this method does not require the call instruction, so it leaves the
two-level stack free for the use of the subprograms.

How it works. The circuit and program comprise an eight-LED flasher.
Each of the LED’s flashes at a different rate. While this could be
accomplished differently, the program is easier to understand and
maintain because the code that controls each LED is a separate task.

The “system” portion of the program acts like a spinning rotary switch.
Each time it executes, it increments the task number and switches to the
next task. It does this by taking advantage of the PIC’s ability to modify
the program counter. Once the task number is loaded into the working
register, the program executes the instruction jmp pc+w. The destina-
tions of these jumps contain jmp instructions themselves, and send the
program to one of the eight tasks. Not surprisingly, a list of jmp
instructions arranged like this is called a “jump table.”

Modifications. For the sake of simplicity, this task-switching program
lacks one important attribute: fixed timing. The individual tasks are
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permitted to take as much or as little time as they require. In some real
applications, this wouldn’t be acceptable. If the system maintains a
master timer (like the variable ticks in this program) it should increment
at a consistent rate.

With many possible paths through the code for each task, this may seem
like another problem. A straightforward solution is to use the PIC’s
RTCC to time how long a particular task took, then use that number to
set a delay to use up all of the task’s remaining time. All you need to
know is the worst-case timing for a given task.

Program listing. This program may be downloaded from the Parallax
BBS as TASKS.SRC. The BBS phone number is (916) 624-7101.

Note 9: Managing Multiple Tasks
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; PROGRAM: TASK.SRC

; This program demonstrates task switching using the PIC’s relative addressing
; mode. It handles eight tasks, each of which flashes an LED at a different rate. The
; flashing routines base their timing on a master clock variable called ticks.

LEDs = rb

; Put variable storage above special-purpose registers.
org  8

task ds 1 ; The task number used by the
; system.

ticks ds 1 ; Master time clock, increments
; once for each system cycle.

time0 ds 1 ; Timer for task 0.
time1 ds 1 ; Timer for task 1.
time2 ds 1 ; Timer for task 2.
time3 ds 1 ; Timer for task 3.
time4 ds 1 ; Timer for task 4.
time5 ds 1 ; Timer for task 5.
time6 ds 1 ; Timer for task 6.
time7 ds 1 ; Timer for task 7.

; Remember to change device info if using a different part.
device pic16c54,xt_osc,wdt_off,protect_off
reset start

; Set starting point in program ROM to zero.
org 0

start mov !rb,#00000000b ; Set port rb to output.
mov task, #7 ; Set task number.
clr ticks ; Clear system clock.
clr LEDs ; Clear LEDs

system inc task ; Next task number.
cjne task, #8, :cont ; No rollover? Continue.
clr task ; Rollover: reset task and
inc ticks ; increment the clock.

:cont mov w, task ; Prepare to jump.
jmp pc+w ; Jump into table, and from there
jmp task0 ; to task #.
jmp task1
jmp task2
jmp task3
jmp task4
jmp task5
jmp task6
jmp task7
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task0 cjne ticks, #255,:cont ; Every 255 ticks of system clock
inc time0 ; increment task timer. Every 3

; ticks
cjne time0, #3, :cont ; of task timer, toggle LED, and
clr time0 ; reset task timer.
xor LEDs, #00000001b

:cont jmp system

task1 cjne ticks, #255,:cont
inc time1
cjne time1, #8, :cont
clr time1
xor LEDs, #00000010b

:cont jmp system

task2 cjne ticks, #255,:cont
inc time2
cjne time2, #6,:cont
clr time2
xor LEDs, #00000100b

:cont jmp system

task3 cjne ticks, #255,:cont
inc time3
cjne time3, #11,:cont
clr time3
xor LEDs, #00001000b

:cont jmp system

task4 cjne ticks, #255,:cont
inc time4
cjne time4, #12, :cont
clr time4
xor LEDs, #00010000b

:cont jmp system

task5 cjne ticks, #255,:cont
inc time5
cjne time5, #4, :cont
clr time5
xor LEDs, #00100000b

:cont jmp system

task6 cjne ticks, #255,:cont
inc time6
cjne time6, #23,:cont
clr time6
xor LEDs, #01000000b

:cont jmp system



PIC16Cxx Applications Handbook 1.1 • Parallax, Inc. • (916) 624-8333 • Page 149

task7 cjne ticks, #255,:cont
inc time7
cjne time7, #9,:cont
clr time7
xor LEDs, #10000000b

:cont jmp system

Note 9: Managing Multiple Tasks
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Note 10: An External A/D Converter

Introduction. This application note shows how to interface an 8-bit
serial analog-to-digital converter to 16C5x-series PICs.

Background. Although the PIC 16C71 offers a built-in analog-to-
digital converter (ADC), some users may prefer an external device. One
that’s particularly suited to use with the PIC is the National Semicon-
ductor ADC0831, available from Digi-Key, among others.

Interfacing the 831 requires only three input/output lines, and of these,
two can be multiplexed with other functions (or additional 831s). Only
the chip-select (CS) pin requires a dedicated line. The ADC’s range of
input voltages is controlled by the VREF and VIN(–) pins. VREF sets the
voltage at which the ADC will return a full-scale output of 255, while
VIN(–) sets the voltage that will return 0.

In the example application, VIN(–) is at ground and VREF is at +5;
however, these values can be as close together as 1 volt without harming
accuracy or linearity. You may use diode voltage references or trim pots
to set these values.
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How it works. The sample program reads the voltage at the 831’s input
pin and uses the eight-bit result to control a timing routine that flashes
an LED. The LED flashes slowly when the input is 5 volts, and very
rapidly as it approaches ground.

The subroutine convert handles the details of getting data out of the
ADC. It enables the ADC by pulling the CS line low, then pulses the clock
(CLK) line to signal the beginning of a conversion. The program then
enters a loop in which it pulses CLK, gets the bit on pin data, and shifts
it into the received byte using the rotate left (rl) instruction. Remember
that rl affects not only the byte named in the instruction, but the carry
bit as well.

When all bits have been shifted into the byte, the program turns off the
ADC by returning CS high. The subroutine returns with the conversion
result in the variable ADresult. The whole process takes 74 instruction
cycles.

Modifications. You can add more 831s to the circuit as follows: Connect
each additional ADC to the same clock and data lines, but assign
separate CS pins. Modify convert to take the appropriate CS pin low when
it needs to acquire data from a particular ADC. That’s it.

Program listing. This program may be downloaded from the Parallax
BBS as AD831.SRC. You can reach the BBS at (916) 624-7101.

Note 10: An External A/D Converter

; PROGRAM: AD831.SRC

; Program demonstrates the use of an external serial ADC (National ADC0831) with
; PIC16C5x-series controllers. A variable dc voltage (0-5V) at pin 2 of the ADC
; controls the blinking rate of an LED connected to PIC pin ra.3.

clk = ra.0
data = ra.1
CS = ra.2
LED = ra.3

; Put variable storage above special-purpose registers.
org 8

counter1 ds 1
counter2 ds 1
ADresult ds 1
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; Remember to change device info when programming part.
device pic16c54,xt_osc,wdt_off,protect_off
reset start

; Set starting point in program ROM to zero
org 0

start mov ra, #00000100b ; Set CS to disable ADC for now.
mov !ra,#00000010b ; Make ra.1 (data) input, rest

; outputs.
mov !rb,#00000000b ; Make rb output.

blink xor ra, #8 ; Invert bit3 of ra (LED).
call wait ; Delay depends on ADC data.
goto blink ; Endless loop.

wait call convert ; Get AD result and put into
; counter2.

mov counter2,ADresult
add counter2,#1 ; Add 1 to avoid underflow when

; AD=0.

; Time delay produced by loop depends on value of ADresult. Higher values
; produce longer delays and slower blinking.
:loop djnz counter1, :loop

djnz counter2, :loop
ret

convert clrb CS ; Enable the ADC.
mov counter2,#8 ; Set up for eight data bits.
setb clk ; Pulse the clock line (insert
nop ; nop if PIC clock >4 MHz).
clrb clk
clr ADresult ; Clear byte to make way for new

; data.
:loop setb clk ; Pulse the clock line (insert nop

nop ; if PIC clock >4 MHz).
clrb clk
movb c,data ; Move data bit into carry.
rl ADresult ; Rotate carry into byte.
djnz counter2,:loop ; Eight bits collected? If not, loop.
setb CS ; End the conversion.
ret

Note 10: An External A/D Converter



Page 154 • PIC16Cxx Applications Handbook 1.1 • Parallax, Inc. • (916) 624-8333

BLANK PAGE



PIC16Cxx Applications Handbook 1.1 • Parallax, Inc. • (916) 624-8333 • Page 155

Note 11: Using Serial EEPROMs

Introduction. This application note shows how to use the Microchip
93LC56 EEPROM to provide 256 bytes of nonvolatile storage. It pro-
vides a tool kit of subroutines for reading, writing, and erasing the
EEPROM.  (Note that  EEPROMs made by other manufacturers will not
work with the PIC16Cxx.)

Background. Many designs take advantage of the PIC’s ability to store
tables of data in its EPROM program memory. The trouble is that the
larger the tables are, the smaller the space left for code. And many
applications could benefit from the ability to occasionally update data
tables for calibration or other purposes. What the PIC needs is the
equivalent of a tiny disk drive.

The Microchip 93C56 and 93LC56 electrically erasable PROMs
(EEPROMs) are perfect for these applications. They communicate
serially via a three- or four-wire bus using a simple synchronous
(clocked) communication protocol at rates of up to 2 million bits per
second (Mbps). It’s possible to read a byte in as little as 10 microseconds
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(including the time required to send the instruction opcode and ad-
dress). Once a program has begun reading data from the EEPROM, it
can continue reading subsequent bytes without stopping. These are
clocked in at the full 2 Mbps rate; 1 byte every 4 microseconds.

Erasing and writing these serial EEPROMs happens at a more leisurely
pace. While the opcode, address, and data can be clocked into the chip
at high speed, the EEPROM requires about 2 milliseconds to erase or
write a byte. During this time, the chip cannot process additional
instructions. The PIC can poll a flag to determine when the automatic
erase/write programming cycle is over. As soon as this flag goes high,
the EEPROM is ready for more instructions.

Data stored in the EEPROM will be retained for 10 years or more,
according to the manufacturer. The factor that determines the EEPROM’s
longevity in a particular application is the number of erase/write
cycles. Depending on factors such as temperature and supply voltage,
the EEPROM is good for 10,000 to 1 million erase/write cycles. This
rules out its use as a substitute for ordinary RAM, since many PIC
applications write to RAM thousands of times a second. At that rate, the
EEPROM could be unusable in as little as 20 seconds! For a thorough
discussion of EEPROM endurance, see the Microchip Embedded Con-
trol Handbook, publication number DS00092A, October 1992.

How it works. The circuit in the figure specifies a 93LC56 EEPROM, but
a 93C56 will work as well. The difference is that the LC device has a
wider Vcc range (2.5–5.5 V, versus 4–5.5 V), lower current consumption
(3 mA versus 4 mA), and can be somewhat slower in completing
internal erase/write operations, presumably at lower supply voltages.
In general, the LC type is less expensive, and a better match for the
operating characteristics of the PIC.

The schematic shows the data in and data out (DI, DO) lines of the
EEPROM connected together to a single PIC I/O pin. The 1k resistor
prevents the PIC and DO from fighting over the bus during a read
operation. During a read, the PIC sends an opcode and an address to the
EEPROM. As soon as it has received the address, the EEPROM activates
DO and puts a 0 on it. If the last bit of the address is a 1, the PIC could
end up sourcing current to ground through the EEPROM. The resistor
limits the current to a reasonable level.

Note 11: Using Serial EEPROMs
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The program listing is a collection of subroutines for reading, writing,
and erasing the EEPROM. All of these rely on Shout, a routine that shifts
bits out to the EEPROM. To perform an EEPROM operation, the
software loads the number of clock cycles into clocks and the data to be
output into temp. It then calls Shout, which does the rest.

If you don’t have the EEPROM data handy (Microchip Data Book,
DS00018D, 1991), you should know about a couple of subtleties. First,
when the EEPROM powers up, it is write protected. You must call
EEnable before trying to write or erase it. It’s a good idea to call EEdisbl
(disable writes) as soon as possible after you’re done. Otherwise, a
power glitch could alter the contents of your EEPROM. Also, you
cannot write all locations (EEWrall) without first erasing all locations
(EEwipe).

Modifications. The table of constants at the beginning of the listing
specifies the opcodes for each of the EEPROM operations. Although the
opcodes are only three bits long, they are combined with a trailing
don’t-care bit. This bit is required for compatibility with the 512-byte
93LC66. With the ’66, this would be address bit A8. If you want to
modify this code for the ’66, add a line to the read, write, and byte erase
routines to copy A8 into bit 4 of temp just before calling Shout. If you
want to increase capacity by adding more EEPROMs, you can bus the
data and clock lines together and provide separate chip selects to each
device.

If you plan to run your PIC faster than 8 MHz, add one or two nops
where marked in the listing. The clock must be high for at least 500
nanoseconds. The low time must also be greater than 500 ns, but the
move-data, rotate, and looping instructions provide enough delay.

Program listing. This program may be downloaded from the Parallax
BBS as EEPROM.SRC. You can reach the BBS at (916) 624-7101.

Note 11: Using Serial EEPROMs



Page 158 • PIC16Cxx Applications Handbook 1.1 • Parallax, Inc. • (916) 624-8333

Note 11: Using Serial EEPROMs

; PROGRAM: EEPROM.SRC

; This program is a collection of subroutines for reading, writing, and erasing the
; 93LC56 (or 'C56) serial EEPROM. As a demonstration, it writes a scanning pattern
; to the 256 bytes of the EEPROM, and then reads it back to eight LEDs connected
; to port rb.

D = ra.0 ; Pins DI and DO of the EEPROM
CLK = ra.1 ; Clock pin--data valid on rising

; edge
CS = ra.2 ; Chip select--high = active
ROP = 192 ; Opcode for read
WROP = 160 ; Opcode for write
EWEN = 152 ; Opcode to enable erase and

; write
EWDS = 128 ; Opcode to disable erase and

; write
ERAS = 224 ; Opcode to erase a byte
ERAL = 144 ; Opcode to erase all bytes
WRAL = 136 ; Opcode to write all bytes with

; specified data

org 8
temp ds 1 ; Temporary variable for EE

; routines
EEdata ds 1 ; Passes data to EEwrite/wrall,

; from EEread
EEaddr ds 1 ; Passes address to EErase,

; EEwrite, EEread
clocks ds 1 ; Number of clock cycles for

; SHiftOUT
tick1 ds 1 ; Timer for Delay--not required for

; EE routines
tick2 ds 1 ; Timer for Delay--not required for

; EE routines

; Remember to change device info when programming part
device pic16c54,xt_osc,wdt_off,protect_off
reset start
org 0

start mov ra,#0 ; Clear ports
mov rb,#0
mov !ra,#0 ; Make all ra pins outputs initially
mov !rb,#0
call EEnable ; Turn off write/erase protection
mov EEdata,#1
mov EEaddr,#0

:loop call EEwrite ; Write scanning pattern to
; EEPROM

call Busy
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rr EEdata
ijnz EEaddr,:loop
call EEdisbl ; Turn write/erase protection back

; on
mov EEaddr,#0

:loop2 call EEread
mov rb,EEdata
inc EEaddr
call delay
goto :loop2

; Shift out the bits of temp to the EEPROM data line.
Shout rl temp ; Rotate bit7 of temp into carry

movb D,c ; Move carry bit to input of
; EEPROM

setb CLK ; Clock the bit into EEPROM
nop ; Clock must be high > 500 ns
clrb CLK
djnz clocks,Shout
ret

; Read the byte in EEaddr into EEdata.
EEread mov temp,#ROP ; Move the read opcode into temp

mov clocks,#4 ; Number of bits to shift out (op+1)
setb CS
call Shout
mov clocks,#8
mov temp,EEaddr
call Shout
mov !ra,#1
mov clocks,#8

:read setb CLK
movb c,D
rl temp
clrb CLK
djnz clocks,:read
mov EEdata,temp
mov !ra,#0
clrb CS
ret

; Call to unprotect after EEdisbl or power up.
EEnable setb CS

mov clocks,#12
mov temp,#EWEN
call Shout
clrb CS
ret
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; Call to protect against accidental write/erasure.
EEdisbl setb CS

mov clocks,#12
mov temp,#EWDS
call Shout
clrb CS
ret

; Write the byte in EEdata to EEaddr.
EEwrite mov temp,#WROP

mov clocks,#4
setb CS
call Shout
mov clocks,#8
mov temp,EEaddr
call Shout
mov clocks,#8
mov temp,EEdata
call Shout
clrb CS
ret

; Erase the byte in EEaddr. Erasure leaves FFh (all 1s) in the byte.
EErase mov temp,#ERAS

mov clocks,#4
setb CS
call Shout
mov clocks,#8
mov temp,EEaddr
call Shout
ret

; Erase the entire EEPROM--all 256 bytes. Call before using EEwrall below.
EEwipe setb CS

mov temp,#ERAL
mov clocks,#12
call Shout
clrb CS
ret

; Write the byte in EEdata to every address. Call EEwipe first.
EEwrall setb CS

mov temp,#WRAL
mov clocks,#12
call Shout
mov clocks,#8
mov temp,EEdata
call Shout
clrb CS
ret
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; Check flag to determine whether the EEPROM has finished its self-timed erase/
; write. Caution: This will lock up your program until D goes high.
Busy nop

mov !ra,#1
setb CS

:wait jnb D,:wait
clrb CS
mov !ra,#0
ret

Delay djnz tick1,Delay ; Delay routine for demo.
djnz tick2,Delay
ret

Note 11: Using Serial EEPROMs
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Note 12: Using Dynamic RAM

Introduction. This application note covers the use of dynamic RAM
(DRAM) with PIC16C5x series PICs. It presents a circuit using a
Motorola 1-Mb x 1 DRAM IC, and a program in Parallax assembly
language showing how to refresh, write, and read the DRAM’s 1,048,576
bits of storage.
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Background. When a project requires a large amount of memory at the
lowest possible cost and in the smallest available package, dynamic
RAM (DRAM) is currently the only choice. Unfortunately, DRAM has
a bad reputation for being difficult to work with. That reputation is built
on the experiences of designers squeezing the greatest possible speed
out of the large memory arrays used in general-purpose computers. In
PIC applications, where speeds are more leisurely and 1 kByte is still a
lot of memory, DRAMs can be downright mild-mannered.

A review of the basic differences between DRAM and static RAM
(SRAM) is in order. The basic storage unit in an SRAM is a flip-flop
circuit made up of several transistors. Once set or cleared, the flip-flop
remains in that state until set or cleared again, or until power is
removed. This is a convenient form of temporary storage, since it
requires no attention from the processor except when it’s being read or
written.

DRAM uses even simpler storage cells, consisting of just a capacitor and
a transistor. The state of the cell, set or cleared, is stored as a charge on
the capacitor. However, the capacitor inevitably leaks and loses its
charge over time. When this happens, the stored data is lost.

To prevent the loss of data, each cell in a DRAM must be periodically
read and rewritten before its charge fades completely. This ensures that
the storage capacitors always have a “fresh” charge, so the process is
called refreshing the DRAM. The responsibility for refreshing the DRAM
is shared between the external processor and circuitry inside the
DRAM, as we will see later.

SRAM and DRAM also use different addressing schemes. To access a
particular cell of an SRAM, you place the bits of its address on the
SRAM’s address pins. The number of address pins must be sufficient
for each cell to have a unique binary address. A 256-cell SRAM requires
8 address lines, since 8 binary digits are required to express 256
addresses (28 = 256). By the same token, a 64k SRAM needs 16 address
lines (216 = 65,536) and a 1M SRAM, 20 address lines (220 = 1M).

DRAMs use a two-dimensional addressing scheme. Each cell has two
addresses, a row and a column. A 256-cell DRAM would require a 4-bit
row address and a 4-bit column address (24 x 24 = 256). A 64k DRAM

Note 12: Using Dynamic RAM
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would need 8 rows and 8 columns (28 x 28 = 65,536) and a 1M DRAM,
10 rows and 10 columns (210 x 210 = 1M).

Therefore, a 1-Mb DRAM has a 10-bit wide address bus. To access a
memory cell, you put the row address on the bus and activate the
DRAM’s row-address strobe (RAS), then put the column address onto
the bus and activate the column-address strobe (CAS). At the expense
of a two-step addressing processing, the number of address lines is cut
in half.

The RAS and CAS lines play an important role in the refresh process.
DRAM manufacturers know that refresh is a pain in the neck, so they
add features to make it easier. For example, just cycling through the
DRAM’s row addresses will satisfy refresh requirements. The DRAM’s
internal circuitry takes care of the rest. This is known as RAS-only
refresh, because all the user has to do is put a sequential row address on
the bus, and blip the RAS line.  The MCM 511000A DRAM shown in the
figure supports RAS-only refresh. Although it has 10 bits worth of row
addresses, the DRAM requires that only the lower 9 bits (512 addresses)
be accessed in RAS-only refresh.

An even simpler refresh scheme, the one illustrated in the program
listing, is known as CAS-before-RAS refresh. All the processor has to do
in this case is activate CAS, activate RAS, and then deactivate both
strobes. Each time it does this, it refreshes a row. In a normal access, RAS
is activated before CAS, so reversing the order serves as a signal to the
DRAM. When the DRAM sees this signal, it uses its own internal row-
refresh counter to supply row addresses for the refresh process, ignor-
ing the external address bus.

The MCM 511000A DRAM requires refresh every 8 milliseconds, but it
doesn’t care whether it is performed all at once (burst refresh), or spread
out over time (distributed refresh).

Some applications don’t require a separate refresh routine at all. Any
application that accesses 512 row addresses every 8 milliseconds doesn’t
need any further refresh. If the application doesn’t access all rows in the
required time, but does read or write the DRAM 512 or more times
every 8 milliseconds, a CAS-before-RAS refresh cycle can be tacked to
the end of each read or write. This is known as hidden refresh.

Note 12: Using Dynamic RAM
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Not all DRAMs support all refresh schemes, so it’s important to review
the manufacturer’s specifications before finalizing a design. Data on the
MCM 511000A for this application note came from the Motorola Memory
Data book, DL113/D, Rev 6, 1990.

How it works. The sample application shown in the figure and program
listing accepts a stream of input bits, such as the output from a square-
wave generator, and records them into sequential addresses in the
DRAM. At the same time, it echoes these bits to a speaker. When the
DRAM is full, the program plays back the recorded bits through the
speaker until the circuit is shut off or reset.

To demonstrate the circuit, reset the PIC and twiddle the tone-generator
frequency knob. It will take about 52 seconds for the PIC to fill the
DRAM’s 1,048,576 bits of storage. When it does, you will hear the
sequence of tones played back through the speaker. Because the play-
back routine requires fewer instructions than recording, the pitch of the
tones will be slightly higher and the playback time shorter.

The write loop takes up to 120 program cycles to execute; 60 microsec-
onds when the PIC is operating from an 8-MHz clock. The exact number
of cycles for a trip through the loop depends on how long the program
spends in the subroutine inc_xy, which increments 10-bit row and
column counters. At 60 microseconds per loop, the PIC samples the
input pin approximately 17,000 times per second. If you use the circuit
to record frequencies higher than half the sampling rate (approximately
8.5 kHz), you’ll hear some interesting squawks. The output tone will
become lower as you adjust the input tone higher.

What you’re hearing is known as aliasing noise or foldover. The only way
to faithfully reproduce an input frequency is to record two or more
samples per cycle. You will hear this referred to as the Nyquist theorem
or Nyquist limit. If you are interested in modifying this application to
build a recording logic probe or tapeless audio recorder, keep Nyquist
in mind.

Modifications. This application will work fine (albeit at faster rates of
sampling and playback) if you remove call refresh from the :record and
:playback loops. The reason is that with call refresh removed the program
accesses row addresses sequentially every 30 microseconds or so. This

Note 12: Using Dynamic RAM
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means that 512 rows are refreshed every 15 milliseconds. Although this
exceeds the maximum refresh time allowed by the DRAM specification,
DRAMs are rated conservatively. Further, you are unlikely to hear the
data errors that may be occurring because of inadequate refresh!

If you want to organize data stored in the DRAM as bytes (or nibbles,
16-bit words, etc.) instead of bits, consult the DRAM specs on “fast page
mode” reads and writes. Using this method of accessing the DRAM,
you issue the row address just once, then read or write multiple
columns of the same row. This would be faster and simpler than eight
calls to the single-bit read and write routines presented here.

Program listing. This program may be downloaded from the Parallax
BBS as DRAM.SRC. You can reach the BBS at (916) 624-7101.

Note 12: Using Dynamic RAM

; PROGRAM: Dynamic RAM Basics (DRAM.SRC)
; Upon power up or reset, this program starts sampling pin ra.0 and recording its
; state in sequential addresses of a 1Mb dynamic RAM. When the DRAM is full, the
; program plays back the recorded bits in a continuous loop.

Sin = ra.0 ; Signal generator input
RAS = ra.1 ; DRAM row-address strobe
WR = ra.2 ; DRAM write line (0 = write)
Dout = ra.3 ; DRAM data line
adrb_lo = rb ; Low bits of address bus
adrb_hi = rc ; High bits of address bus
Din = rc.2 ; DRAM Q line
CAS = rc.3 ; DRAM column-address strobe
Sout = rc.5 ; Signal out to speaker

; Put variable storage above special-purpose registers.
org 8

r_ctr ds 1 ; Refresh counter
row_lo ds 1 ; Eight LSBs of row address
row_hi ds 1 ; Two MSBs of row address
col_lo ds 1 ; Eight LSBs of column address
col_hi ds 1 ; Two MSBs of column address
flags ds 1 ; Holder for bit variable flag
flag = flags.0 ; Overflow flag for 20-bit address

; Remember to change device info when programming part.
device pic16c55,xt_osc,wdt_off,protect_off
reset start
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; Set starting point in program ROM to zero
org 0

start setb RAS ; Disable RAS and CAS before
setb CAS ; setting ports to output.
mov !ra,#1 ; Make ra.0 (Sin) an input.
mov !rb,#0 ; Make rb (low addresses) output.
mov !rc,#00000100b ; Make rc.2 (Din) an input.
clr flags ; Clear the variables.
clr row_lo
clr row_hi
clr col_lo
clr col_hi
call refresh ; Initialize DRAM.

:record call refresh ; Refresh the DRAM.
call write ; Write Sin bit to DRAM.
call inc_xy ; Increment row and col

; addresses.
jnb flag,:record ; Repeat until address overflows.

:play call refresh ; Refresh the DRAM.
call read ; Retrieve bit and write to Sout)
call inc_xy ; Increment row and col

; addresses.
goto :play ; Loop until reset.

write mov adrb_lo,row_lo ; Put LSBs of row addr on bus (rb).
AND adrb_hi,#11111100b ; Clear bits adrb_hi.0 and .1.
OR adrb_hi,row_hi ; Put MSBs of row adr on bus (rc).
clrb RAS ; Strobe in the row address.
movb Dout,Sin ; Supply the input bit to the DRAM,
movb Sout,Sin ; and echo it to the speaker.
mov adrb_lo,col_lo ; Put LSBs of col addr on bus (rb).
AND adrb_hi,#11111100b ; Clear bits adrb_hi.0 and .1.
OR adrb_hi,col_hi ; Put MSBs of col addr on bus (rc).
clrb WR ; Set up to write.
clrb CAS ; Strobe in the column address.
setb WR ; Conclude the transaction by
setb RAS ; restoring WR, RAS, & CAS high
setb CAS ; (inactive).
ret

read mov adrb_lo,row_lo ; Put LSBs of row addr on bus (rb).
AND adrb_hi,#11111100b ; Clear bits adrb_hi.0 and .1.
OR adrb_hi,row_hi ; Put MSBs of row addr on bus (rc)
clrb RAS ; Strobe in the row address.
mov adrb_lo,col_lo ; Put LSBs of col addr on bus (rb).
AND adrb_hi,#11111100b ; Clear bits adrb_hi.0 and .1.
OR adrb_hi,col_hi ; Put MSBs of col addr on bus (rc).
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clrb CAS ; Strobe in the column address.
movb Sout,Din ; Copy the DRAM data to the

; speaker.
setb RAS ; Conclude transaction by

; restoring
setb CAS ; RAS and CAS high (inactive).
ret

; This routine implements a CAS-before-RAS refresh. The DRAM has a counter to
; keep track of row addresses, so the status of the external address bus doesn't
; matter. The DRAM requires 512 rows be refreshed each 8 ms, so this routine must
; be called once every 125 microseconds. Changing the initial value moved into r_ctr
; will alter the refresh schedule. To refresh the entire DRAM, move #0 into r_ctr (256
; loops) and call the routine twice in a row (512).

refresh mov r_ctr,#8
:loop clrb CAS ; Activate column strobe.

clrb RAS ; Activate row strobe.
setb CAS ; Deactivate column strobe.
setb RAS ; Deactivate row strobe.
djnz r_ctr,:loop ; Repeat.
ret

; This routine increments a 20-bit number representing the 1,048,576 addresses of
; the DRAM. The number is broken into two 10-bit numbers, which are each stored
; in a pair of byte variables. Note that wherever the routine relies on the carry bit to
; indicate a byte overflow, it uses the syntax "add variable,#1" not "inc variable." Inc
; does not set or clear the carry flag.

inc_xy add row_lo,#1 ; Add 1 to eight LSBs of row addr.
sc ; If carry, add 1 to MSB, else

; return.
ret
inc row_hi ; Increment MSBs of row address.
sb row_hi.2 ; If we've overflowed 10 bits, clear
ret ; row_ hi and add 1 to column
clr row_hi ; address, else return.
add col_lo,#1
sc ; If carry, add 1 to MSBs, else

; return.
ret
inc col_hi ; Increment MSBs of col address.
sb col_hi.2 ; If we've overflowed 10 bits, clear
ret ; col_ hi and set the flag to signal
clr col_hi ; main program that we've reached
setb flag ; the end of memory, then return.
ret
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Note 13: Running at 32 kHz

Introduction. This application note presents a method for operating
the Parallax Downloader from a watch crystal. Example programs
show how to receive RS-232 serial data at 300 and 1200 baud with a PIC
running at 32.768 kHz.

Background. One of the PIC’s greatest virtues is its tremendous speed.
With instruction cycles as short as 200 nanoseconds and an inherently
efficient design, the PIC leaves comparably priced micros in the dust.

This makes it easy to forget about the LP-series PICs, whose virtue is
their ability to go very slow. At 32 kHz, these devices draw as little as
15µA; good news for battery- or solar-powered applications.

Life in the slow lane requires some slightly different techniques than
multi-megahertz PIC design. First of all, you’ll need to get acquainted
with the 32.768-kHz quartz crystal. This is the crystal of choice for LP
PICs. Why 32.768 kHz? It’s the standard timing reference for electronic
watches. It resonates exactly 215 times per second, making it easy and
inexpensive to build a chain of counters to generate 1-pulse-per-second
ticks. Because of common use in watches, 32.768-kHz crystals are
inexpensive (often less than a buck in single quantities) and accurate
[±20 parts per million (ppm), compared to the ±50 ppm common in
garden-variety clock crystals, or ±3000 ppm of ceramic resonators).

At a clock rate of 32.768 kHz, the PIC executes 8192 instructions per
second, with instruction cycles taking about 122.1 microseconds each.
Whether or not this is slow depends on your perspective—many
applications spend most of their time in delay loops anyway.

A minor stumbling block in LP development is that you can’t just plug
a watch crystal into the Parallax Downloader. The Downloader’s
bondout chip—the device responsible for imitating a PIC in your
circuit—has an XT/HS-type oscillator, which won’t work with a 32-
kHz crystal. However, the Downloader can run off an external clock
oscillator like the ones shown in figure 1.

The first circuit (figure 1a) is normally constructed with a comparator,
because of the fast switching requirements imposed by a clock oscilla-
tor. But for the pokey 32-kHz crystal, even an internally compensated
op-amp like the CA5160 works just fine. If you substitute another part
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for the ’5160, you will have to
play with the values of the
feedback resistor (10k) and
capacitor (0.001µF) to get the
circuit to oscillate. If you use
a comparator with an open-
collector output, don’t forget
to add a pullup resistor.

The second oscillator (figure
1b) uses a CMOS inverter as
its active element. In this case,
the role of the inverter is
played by one of the NOR
gates of a 4001 chip. Adjust-
ing the values of the 20-pF
capacitors slightly will fine-
tune the frequency of oscilla-
tion. Do not omit the 47-k
resistor on the output. The
capacitance of the OSC1 pin,
or other connected logic (say
a CMOS inverter or buffer)
will pull the oscillator off fre-
quency. It may even jump to a multiple of 32.768 kHz. This will throw
your timing calculations way off.

With the help of one of these oscillators, you can have Downloader
convenience in the development of LP applications.

How it works. The application this time is a variation on application
note number 2, receiving RS-232 data. The circuit shown in figure 2
receives RS-232 data at 300 or 1200 baud  and displays it in binary form
on eight LEDs connected to port rb. The baud rate depends on the
program used. Listing 1 runs at 300 baud while listing 2 runs at 1200.

The previous fast-clock RS-232 application used a counter variable to
determine how many trips through a djnz loop the PIC should take.
Each loop burns up three instruction cycles, so the best resolution
possible with this type of delay is 3

*
(oscillator period/4). When the
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Figure 1. 32.768-kHz clocks.



PIC16Cxx Applications Handbook 1.1 • Parallax, Inc. • (916) 624-8333 • Page 173

oscillator is running at 4 MHz, resolution is a respectable 3 microsec-
onds. However, at 32.768 kHz, the resolution of a djnz loop is 366.3
microseconds!

There’s another method that provides 1-instruction-cycle resolution:
the nop table. To use this approach, you create code like this:

mov w,delay ;Put length of delay into w.
jmp pc+w ;Jump w nops into the table
nop ;The nops. Each does nothing
nop ;for 1 program cycle.
...
nop

; The program continues here.

The number in w represents the number of nops to be skipped, so the
larger the number the shorter the delay. If you need delays of varying
sizes at several points in the program, set the table up as a callable
subroutine. Don’t forget to account for the program cycles used by call
and return; two cycles each. For long delays, it would also make sense
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to use a two-step approach that creates most of the delay using loops
and then pads the result with nops. Otherwise, you could end up filling
most of your code space with nops.

The RS-232 reception routine in listing 1 uses nop-table delays of 0, 12,
and 15 nops. If the program were expanded, other code could make use
of the nop table, too. When writing such a program, make sure not to
jump completely over the table!

Listing 2 uses the same circuit to receive 1200-baud serial data. A bit
delay at 1200 baud is 833.33 µs, which is 6.8 instruction cycles at 32.768
kHz. There’s no instruction that offers a 0.8-cycle delay, so the routine
gets bit 0 as early as possible after the start bit is detected (7 instruction
cycles) and then uses a 7-cycle delay between subsequent bits. The
program is written so that it samples the first bit early, and spreads the
timing error over the rest of the reception of the byte.

This approach is a little risky. It probably would produce errors if the
line were noisy or the timing of the serial transmitter’s clock were off.
Still, it’s a useful example of straight-line programming. In a real-world
application, the serial transmitter would have to be set for 1.5 or 2 stop
bits in order to give the program time to do anything useful with the
received data. During the time afforded by an extra stop bit, the PIC
could stuff the received by into a file register for later processing.

Program listings. These programs may be downloaded from the
Parallax BBS as SLOW1.SRC and SLOW2.SRC. You can reach the BBS at
(916) 624-7101.

; Listing 1: SLOW1.SRC (300-baud serial receive for 32-kHz clocks)
; This program receives a byte of serial data and displays it on eight LEDs
; connected to port rb. Special programming techniques (careful counting of
; instruction cycles, use of a nop table) allow a PIC running at 32.768kHz to receive
; data at 300 baud.

half_bit = 14 ; Executes 1 nop in table.
bit = 3 ; Executes 12 nops in table.
stop = 0 ; Executes 15 nops in table
serial_in =  ra.2
data_out =  rb

; Variable storage above special-purpose registers.
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org 8
bit_cntr ds 1 ; number of received bits
rcv_byte ds 1 ; the received byte

; Org 0 sets ROM origin to beginning for program.
org 0

; Remember to change device info if programming a different PIC.
device pic16c54,lp_osc,wdt_off,protect_off
reset begin

; Set up I/O ports.
begin mov !ra, #4 ; Use ra.2 for serial input.

mov !rb, #0 ; Output to LEDs.
:start_bit sb serial_in ; Detect start bit.

jmp :start_bit ; No start bit? Keep watching.
mov w,#half_bit ; Wait 1 nop (plus mov, call, and

; ret).
call nop_delay ; Wait half bit to the middle of start

; bit.
jnb Serial_in, :start_bit ; Continue if start bit good.
mov bit_cntr, #8 ; Set counter to receive 8 data

; bits.

:receive mov w,#bit ; Wait one bit time (12 nops).
call nop_delay
movb c,/Serial_in ; Put the data bit into carry.
rr rcv_byte ; Rotate carry bit into the receive

; byte.
djnz bit_cntr,:receive ; Not eight bits yet? Get next bit.
mov w,#stop ; Wait 1 bit time (15 nops) for stop

; bit.
call nop_delay
mov data_out, rcv_byte ; Display data on LEDs.
goto begin:start_bit ; Receive next byte.

nop_delay jmp pc+w
nop ; w = 0—executes 15 nops.
nop ; w = 1—executes 14 nops.
nop ; w = 2—executes 13 nops.
nop ; w = 3—executes 12 nops.
nop ; w = 4—executes 11 nops.
nop ; w = 5—executes 10 nops.
nop ; w = 6—executes 9 nops.
nop ; w = 7—executes 8 nops.
nop ; w = 8—executes 7 nops.
nop ; w = 9—executes 6 nops.
nop ; w = 10—executes 5 nops.
nop ; w = 11—executes 4 nops.
nop ; w = 12—executes 3 nops.
nop ; w = 13—executes 2 nops.
nop ; w = 14—executes 1 nop.
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ret ; w = 15—executes 0 nops

; If w > 15, the program will jump into unprogrammed code memory, causing a reset.

; Listing 2: SLOW2.SRC (1200-baud serial receive for 32-kHz clocks)
; This program receives a byte of serial data and displays it on eight LEDs
; connected to port rb. Straight-line programming allows a PIC running at 32.768kHz
; to receive data at 1200 baud. Since timing is so critical to the operation of this
; program, the number of instruction cycles required for each instruction appears in
; () at the beginning of most comments.

serial_in = ra.2 ; RS-232 via a 22k resistor.
data_out = rb ; LED anodes.

; Variable storage above special-purpose registers.
org 8

rcv_byte ds 1 ; The received byte.

; Org 0 sets ROM origin to beginning for program.
org 0

; Remember to change device info if programming a different PIC.
device pic16c54,lp_osc,wdt_off,protect_off
reset begin

; Set up I/O ports.
begin mov !ra, #4 ; Use ra.2 for serial input.

mov !rb, #0 ; Output to LEDs.

:start_bit sb serial_in ; (2) Detect start bit.
jmp :start_bit ; (2) No start bit? Keep watching.
nop ; (1)
sb serial_in ; (2) Confirm start bit.
jmp :start_bit ; (2) False alarm? back to loop.
nop ; (1)
nop ; (1)
movb rcv_byte.0,/serial_in ; (4) Get bit 0.
nop ; (1)
nop ; (1)
nop ; (1)
movb rcv_byte.1,/serial_in ; (4) Get bit 1.
nop ; (1)
nop ; (1)
nop ; (1)
movb rcv_byte.2,/serial_in ; (4) Get bit 2.
nop ; (1)
nop ; (1)
nop ; (1)
movb rcv_byte.3,/serial_in ; (4) Get bit 3.
nop ; (1)
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nop ; (1)
nop ; (1)
movb rcv_byte.4,/serial_in ; (4) Get bit 4.
nop ; (1)
nop ; (1)
nop ; (1)
movb rcv_byte.5,/serial_in ; (4) Get bit 5.
nop ; (1)
nop ; (1)
nop ; (1)
movb rcv_byte.6,/serial_in ; (4) Get bit 6.
nop ; (1)
nop ; (1)
nop ; (1)
movb rcv_byte.7,/serial_in ; (4) Get bit 7.
mov data_out,rcv_byte ; (2) Data to LEDs.
jmp :start_bit ; (2) Do it again

Note 13: Running at 32 kHz
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Note 14: Generating/mixing Sine Waves

Introduction. This application note illustrates methods for generating
audio-frequency waveforms using lookup tables.

Background. Digitally generating sine waves or other complex wave-
forms may seem like wasted effort compared to using a few discrete
components or an IC to do the same job. If the goal is just to make a pure
tone, that view is probably true. However, if you need precise control
over the frequency, duration and phase of a waveform, digital genera-
tion becomes downright cheap and simple compared to the analog
alternatives.

The basic procedure for generating a sine wave is easy enough: At
precise time intervals, the program looks up a value from a table,
delivers it to a D/A converter, then waits another interval to put out the
next value. At the output of the D/A converter, the signal is a connect-
the-dots version of a sine wave. The addition of a low-pass filter
smoothes the jaggies, and we have a real sine wave.

Other waveforms can be made in a similar way, if their patterns repeat
within a time interval that can be stored in a reasonably sized lookup
table, or computed on-the-fly. If they cannot, then they must be synthe-
sized by combining multiple sine waves.

The program in the list-
ing demonstrates both
techniques. When the
frequency constants
freq1 and freq2 are set to
the same value, the
circuit’s output is a
pure sine wave. That’s
because the two point-
ers phase1 and phase2
move through the table
of sine values at the
same rate. However, if
the freq constants are
different, the circuit
produces a mixture of
two sine waves.
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How it works. The resistors in figure 1 are connected in an array known
as an R-2R ladder. This arrangement has an interesting property. It
divides each voltage present at its inputs by increasing powers of two,
and presents the sum of all these divided voltages at its output. Since the
PIC is capable of driving its outputs from rail to rail (0 to +5 volts), the
R-2R ladder converts the binary number present on port B into a
proportional voltage from 0 to 5 volts in steps of approximately 20
millivolts.

Most commercial D/A converters work on this same principle, but
have internal voltage regulators, logic, and latches. Since our demon-
stration doesn’t require any of those things, we can use the resistor array
alone. Unfortunately, it can be difficult to find a prefabricated R-2R
ladder at the volume parts houses. Figure 2 shows how to construct one
from 25 surface-mount 10k resistors and a tiny printed circuit pattern.
Alternatively, you may adapt the program listing to drive your favorite
packaged D/A converter.

The program that drives the D/A converter begins by setting port rb to
output and clearing its variables. Next it enters this loop:

• Add freq1 to acc1
> If acc1 overflows (generates a carry), increment phase1

• Put the sine value corresponding to phase1 into temp
• Add freq2 to acc2

> If acc2 overflows (generates a carry), increment phase2
• Add the sine value corresponding to phase2 into temp
• Copy temp to the output
• Do it again.

Parts placement

RB0RB7analog
voltage out

Actual-size pcb pattern

Figure 2. Constructing an R-2R digital-to-analog converter.
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The loop always takes the same amount of time to execute, so how do
freq1 and freq2 control the frequency? If the value of freq1 is 1 and acc1
starts out at 0, the program will complete 255 loops before acc1 over-
flows, generating a carry. Phase1 will increment once in every 256 loops.
This will produce a low output frequency. If freq1 is 100, acc1 will
overflow on the third trip through the loop, so phase1 will increment
much faster, producing a higher frequency.

This scheme, while compact, is not perfect. Take that
example of freq1 = 100. If acc1 starts off at 0, the
sequence goes as shown in the table to the right.

The rate at which carries occur is, on average, propor-
tional to freq1. However, the interval between carries
can be 1, 2, or 3 trips through the loop. At higher
frequencies, these variations become noticeable as a
thickening or jittering of traces on the oscilloscope
screen. If your application requires particularly pure
output, keep this in mind.

Modifications. Play with the values of freq1 and freq2
and observe the results on the oscilloscope. Compare
the results to a textbook discussion of frequency
mixing.

Try removing the resistor/capacitor low-pass filter from the output of
the R-2R ladder and look at the change in the output waveform. If you
are listening to the output through an audio amplifier, you may find
that you prefer the sound of the unfiltered D/A converter. The harmon-
ics it produces give the tone more sparkle, according to some listeners.

Perhaps the most useful modification is this: Set freq1 and freq2 to the
same value, say 100. Run the program and listen to the tone or observe
it on the ‘scope. If you use a scope, make note of the peak-to-peak
amplitude of the tone. Now substitute mov phase1, #7 for clr phase1 at the
beginning of the program. Run the program again. Do you hear (see)
how the amplitude of the tone has fallen off? Try once more with mov
phase1,#8. No tone at all. This is a graphic illustration of how out-of-
phase sine waves of the same frequency progressively cancel each
other. The 16 sine table entries represent amplitudes at intervals of 22.5
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acc1 carry
0 0

100 0
200 0
44 1

144 0
244 0
88 1

188 0
32 1

132 0
232 0
76 1

176 0
20 1
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degrees. When phase1 is initialized with a value of 8, while phase2 is zero,
the phase shift between the two is 22.5 x 8 = 180 degrees. Two sine waves
180 degrees out of phase cancel each other totally. Smaller phase shifts
produce proportionally less attenuation.

Given the PIC’s limited math capabilities, this phase shifting technique
is an easy way to control the overall amplitude (volume) of the tones
you generate.

Program listings. This program may be downloaded from the Parallax
BBS as SINE.SRC. You can reach the BBS at (916) 624-7101.

; Program: Synthesizing sine waves (SINE.SRC)
; This program mixes two sinewave signals and outputs them to port b for
; conversion to analog by an R-2R ladder D/A converter.

output = rb ; Ladder DAC on port b.
freq1 = 100 ; Sets frequency 1.
freq2 = 50 ; Sets frequency 2.

; Set aside variable space above special-purpose registers.
org 8

acc1 ds 1 ; Accumulator for phase 1.
acc2 ds 1 ; Accumulator for phase 2.
phase1 ds 1 ; Position in sine table, p1.
phase2 ds 1 ; Position in sine table, p2.
temp ds 1 ; Temporary variable.

; Device data and reset vector (remember to change if programming a different part).
device pic16c54,xt_osc,wdt_off,protect_off
reset start
org 0

start mov !rb,#0 ; Make rb an output.
clr acc1 ; Clear the accumulators.
clr acc2
clr phase1 ; Clear phase pointers.
clr phase2

:loop add acc1,#freq1 ; Add freq1 to acc1
addb phase1,c ; If carry, increment phase1.
AND phase1,#00001111b ; Limit to 0-15.
add acc2,#freq2 ; Do the same for
addb phase2,c ; phase2.
AND phase2,#00001111b
mov w,phase1 ; Look up sine value in table.
call sine
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mov temp,w ; Store 1st sine value in temp.
mov w,phase2
call sine ; Get value from table.
add temp,w ; Add sines together.
mov output,temp ; Output to D/A.
goto :loop ; Do forever.

; Notice that the sine values in the table below are scaled so that no pair adds to
; more than 254. This prevents overflowing the variable temp when the phases are
; added together. If you add more phases, adjust the maximum values in this table
; appropriately. The values are in increments of 22.5 degrees (0.3927 radians).
sine jmp pc+w

retw 64,88,109,122,127,122,109
retw 88,64,39,19,5,0,5,19,39
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Introduction. This application note shows how to use the interrupt
capabilities built into the PIC 16Cxx series controllers with a simple
example in Parallax assembly language.

Background. Many controller applications work like a fire depart-
ment. When there’s no fire, they mend hoses, polish the fire truck, and
wait for something to happen. When the fire bell rings, they swing into
action and handle the emergency. When it’s over, they return to
waiting.

If there were no fire bell, the job would be much different. The fire crew
would have to go out and look for fires, and somehow still make sure
that the hoses were fixed and the truck maintained. In their scurry to get
everything done, they might respond late to some fires, and miss others
completely.

The newer PIC 16Cxx controllers have interrupts, which work like the
fire bell in the first example. When an interrupt occurs, the PIC stops
what it’s doing and handles the cause of the interrupt. When it’s done,
the PIC returns to the point in the program at which it was interrupted.

The second example, with no fire bell, is an example of polling. This is
the approach used with the 16C5x PICs, which lack interrupts. For a fast
PIC, polling isn’t nearly as bad as in the example. The PIC can often get
everything done with plenty of time to spare. But there are times when
interrupts are the simplest way to do two or more things at once.

How interrupts work. For the examples here, we’re going to talk
about the 16C84. The same principles apply to the other interrupt-
capable PICs, such as the 16C71 and 16C64, but registers and interrupt
sources may vary.

First of all, the 16Cxx PICs awaken from power-up with all interrupts
disabled. If you don’t want to use interrupts, don’t enable them. It’s that
simple.

The PIC 16C84 can respond to interrupts from four sources:

• A rising or falling edge (your choice) on pin RB0/INT.
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• Changing inputs to pins RB4 through RB7.
• Timer (RTCC) overflow from 0FFh to 0.
• Completion of the data EEPROM programming cycle.

You can enable any combination of these sources. If you enable more
than one, it will be up to your code to determine which interrupt
occurred and respond appropriately. More on that later.

Let’s take a simple example. We want to use the RTCC interrupt to
generate a steady 1-kHz square wave on pin ra.1. Every 500 µs the RTCC
will interrupt whatever the PIC is currently doing, toggle ra.1, reload
the RTCC with an appropriate value and return.

The first consideration is where to put the interrupt-handler code.
When the 16C84 responds to an interrupt, it jumps to location 04h in
program memory. So we’ll use an org statement to place the handler at
04h. If you look at the program listing, you’ll see that we actually have
two orgs: the first positions the code jmp start at 0, which is where the
’84 looks for its power-on startup code, and the second positions the
interrupt handler at 4.

The program’s startup code configures the RTCC for its initial 500-µs
timing period, and enables the interrupt. To do so, it turns on the first
two bit switches shown in figure 1. For any interrupt to occur, the
global-interrupt enable (GIE) bit must be set. For the timer interrupt to
occur, the RTCC inter-
rupt enable (RTIE) bit
must be set. Once those
two switches are
closed, only one switch
remains before the in-
terrupt “alarm bell”
goes off—the RTCC in-
terrupt flag (RTIF).

When the interrupt oc-
curs, the PIC clears GIE
to disable further in-
terrupts, pushes the
program counter onto

Global
Interrupt
Enable
(GIE)

Timer
Interrupt
Enable
(RTIE)

Timer
Interrupt

Flag
(RTIF)

INTERRUPT

Figure 1. Logic of the interrupt-enable
and flag bits for the RTCC.
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the stack, then jumps to location 4. This process takes four instruction
cycles for an internal interrupt like the RTCC, five for an external
interrupt like RB0/INT.

Once at location 4, the PIC executes the code there until it encounters a
ret, retw, or reti instruction. Any of these will pop the value from the top
of the stack and cause a jump back to the point at which the program was
interrupted. However, the normal way to return from an interrupt is the
reti instruction. It automatically re-enables interrupts by setting GIE.
The other two returns do not.

In the program listing, you will notice that the first thing the interrupt
handler does is clear RTIF. Whenever the RTCC rolls over from 0FFh to
0, the PIC automatically sets RTIF. It does this regardless of the state of
the interrupt bits. And it never turns RTIF back off. So it’s the respon-
sibility of the interrupt handler to clear RTIF. This is true of all of the
interrupt flags. If the handler doesn’t clear the appropriate flag, the
same interrupt will occur again as soon as interrupts are re-enabled. The
resulting endless loop is what the Microchip documentation calls
“recursive interrupts.”

With a single interrupt source, you can think of an interrupt as a
hardware version of the call instruction. The primary difference is that
this kind of call can occur anywhere in your program, whether or not
the program is ready for it. This can pose a problem. Let’s say your
program is executing the Parallax instruction add sum,delta when the
interrupt occurs. That add instruction actually consists of two instruc-
tions; one that loads the variable delta into the w register, and a second
that adds w to sum.

Imagine that right after delta is loaded into w, the interrupt takes over.
It performs, for instance, the instruction mov rb,data. This instruction
loads the variable data into w, then moves w into rb. When it’s done, w
contains a copy of data.

When the handler returns, the PIC completes the interrupted addition.
But w contains data, not the intended delta, causing an error.

There are two ways to prevent this. One is to disable interrupts before
a two-part instruction, then enable them again afterwards. If the inter
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rupt event occurs while interrupts are disabled, the PIC will set the
interrupt flag, but won’t jump to the handler until your program re-
enables interrupts. The PIC will not miss the interrupt, it will just be
slightly delayed in handling it. To use this method, the example above
would be changed to:

clrb GIE ; Interrupts disabled.
add sum,delta ; w = delta: sum = sum+w.
setb GIE ; Interrupts enabled.

The alternative approach is to begin your interrupt handler with code
that saves a copy of the w register. Then, just before reti, move the copy
back into w.

This takes care of compound instructions that use w, but leaves another
group of instructions vulnerable; the ones that use the status register.
Conditional jumps and skips like jump-if-zero ( jz) and compare-and-
jump-if-equal (cje) and their many cousins are probably obvious. More
subtle are the rotate instructions rr and rl (which pull the carry bit into
the most- or least-significant bit of the byte being rotated). If the
interrupt handler affects any of the status bits, it may alter the outcome
of the interrupted instruction.

To protect w and status, you must make copies of them at the beginning
of a handler, then restore those copies at the end. In order to prevent the
action of restoring w from affecting status, you can use a sneaky trick.
Moving a file register into w will set or clear the zero bit, but moving a
nibble-swapped copy of the register into w does not. Neither does
swapping the nibbles of a file register. The program listing shows how
to use these loopholes to accurately copy both w and status.

Keep your interrupt handlers as short and simple as possible. Examine
them carefully for their effect on other portions of the program that
might be executing at the time the interrupt occurs. If necessary, protect
sensitive code by bracketing it with instructions that temporarily
disable interrupts. Also, keep in mind that test running your program
may not catch all possible interrupt-induced bugs. Use the PSIM
simulator and a sharp eye to detect potential problems.

Once you understand how the mechanism works with a single inter
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rupt source, you’ll be relieved to know that it’s not that much more
difficult to handle multiple interrupt sources. Figure 2 shows the alarm-
bell diagram for multiple interrupts on the 16C84. If you have all of the
16C84’s interrupts enabled, your handler at 04h should begin with
something like:

jb INTF, rb0_edge ; If INTF then handle rb.0 interrupt.
jb RBIF, rb_change ; If RBIF then handle change on rb.4-7.
jb RTIF, timeout ; If RTIF, then handle timer rollover
jb EEIF, EE_wr_done ; If EEIF, then handle write complete.

Code at each of those labeled locations (rb0_edge, etc.) would then deal
with that particular type of interrupt. Remember that each of the
handlers must clear its
corresponding flag; for
example, rb0_edge
must include the instruc-
tion clrb INTF.

What happens if an in-
terrupt occurs while the
PIC is already handling
an interrupt? At that
time, nothing. Remem-
ber that the PIC clears
GIE automatically in re-
sponse to an interrupt,
then sets it when rti ex-
ecutes. Any interrupt
event that occurs in the
meantime will set the
appropriate flag. That
interrupt will be delayed
until after the current
one is finished.

Program design. Interrupts are not a cure-all for the difficulties of
handling multiple tasks. In fact, you may just end up trading a difficult
programming job for an even more difficult debugging job. Experts
suggest using interrupts only as a last resort.

GIE

INTERRUPT

INTE

RBIE

RTIE

EEIE

INTF

RBIF

RTIF

EEIF

INTE/F = RB0 interrupt enable/flag bits
RBIE/F = RB4–7 change interrupt enable/flag bits
RTIE/F = RTCC overflow interrupt enable/flag bits
EEIE/F = EEPROM write complete interrupt enable/flag bits

Figure 2. Logic of all four 16C84
interrupts.
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; Program: INTRPT.SRC (Interrupt demonstration)
; This program illustrates the use of the RTCC interrupt
; in the PIC 16C84. The foreground program blinks an LED on
; pin ra.0, while an interrupt task outputs a 1-kHz square
; wave through pin ra.1 (assuming a 4-MHz clock).

; Device (16c84) and setup options.
device pic16c84,xt_osc,wdt_off,pwrt_off,protect_off

; Equates for LED, tone pins. Connect the LED through a
; 220-ohm resistor. Connect a speaker or earphone through
; a 1-k resistor.
LED = ra.0
SPKR = ra.1
tone = 6 ; Load into RTCC for 500-us delay.

; Allocate space for some variables. Notice that in the ’84
; variable start at 0Ch—higher than in the 16C5x series.

org 0Ch
w_copy ds 1
s_copy ds 1
countL ds 1
countH ds 1

; On startup, the PIC looks at address 0 for its first
; instruction. Since the interrupt handler begins at
; address 4, we’ll just jump over it to get to the
; startup routine.

org 0
jmp start ; Beginning of main program.

; Next is the interrupt handler, which must begin at
; address 4. This handler copies restores w and the status
; register. Because a normal “mov w,fr” alters the z bit of
; the status register, this routine uses “mov w,<>fr,” which
; does not. The routine actually swaps the byte twice,
; resulting in the correct value being written to w without
; affecting the z bit.

org 4
handler

clrb RTIF ; Clear the timer interrupt flag.
mov w_copy,w ; Make a copy of w.
mov s_copy,status ; Make a copy of status.
XOR ra,#2 ; Toggle bit ra.1.
mov rtcc,#tone ; Reload rtcc for 500-us delay.
mov status,s_copy ; Restore status register
swap w_copy ; Prepare for swapped move.
mov w,<>w_copy ; Swap/move to w, status unaffected.
reti ; Return to main program.
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; Here’s the startup routine and the main program loop.
; In the line that initializes “intcon,” bit 7 is GIE and bit 5
; is RTIE. Writing 1s to these enables interrupts generally (GIE)
; and the RTCC interrupt specifically (RTIE).

Start
mov !ra,#0 ; Make ra pins outputs.
setb rp0 ; Switch to register page 1.
clr wdt ; Assign prescaler to rtcc.
mov option,#0 ; Set prescaler to divide by 2.
clrb rp0 ; Restore to register page 1.
mov intcon, #10100000b ; Set up RTCC interrupt.

; If the interrupt handler were to alter w, the LED would stop
; flashing or flash erratically, since the routine is written to
; rely on the value of w remaining 1 in order to toggle bit ra.0.
; The routine also relies on reliable operation of the status
; register because of the two skip-if-not-zero (snz) instructions.
; Although this structure is a little strange, it’s an effective
; canary-in-a-coalmine demonstration that the interrupt handler’s
; save/restore instructions do preserve both w and status.

mov w,#1 ; Bit in 0 position to toggle ra.0.
:loop inc countL ; countL=countL + 1

snz ; IF countL=0,
inc countH ; THEN countH=countH+1
snz ; IF countH=0,
XOR ra,w ; THEN toggle LED.
jmp :loop
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