/*
	Source:	David Maeschen
	Date:	1 Jan 1995

   Compilation  
   make bm or 
   cc bm.c -o bm
*/
#ifndef lint
static char     sccsid[] = "@(#)bm.c	1.00   92/12/15";
#endif

/*
   Bitmap translation
   Usage: bm translate m lx ly mx my bitmap npad nx ny newcanvas 
          bm translate 3 0 0 408 532 bitmap 256 408 532  @ 400 dpi  
   Bitmap replication  
   Usage: bm replicate m lx ly mx my bitmap npad nx ny newcanvas
          bm replicate 0 0 0 408 532 bitmap 256 204 266 newcanvas
   Bitmap scaling
   Usage: bm scale   m mx my bitmap npad nx ny newcanvas
          bm scale   0 204 266 bitmap 256 408 532   @ 400 dpi
   Bitmap rotation
   Usage: bm rotate  m bitmap npad nx ny newcanvas 
          bm rotate  3 bitmap 256 408 532  @ 400 dpi                   
   Bitmap reversal
   Usage: bm reverse m bitmap npad nx ny newcanvas 
          bm reverse 3 bitmap 256 408 532  @ 400 dpi  
   Bitmap inversion
   Usage: bm invert  m bitmap npad nx ny newcanvas
          bm invert  2 bitmap 256 408 532   @ 400 dpi
   Bitmap erosion
   Usage: bm erode   m bitmap npad nx ny newcanvas
          bm erode   0 bitmap 256 408 532   @ 400 dpi
   0<= m <=3  lx, ly, mx, my, npad, nx, ny  bytes

   These functions are close to optimum for the general cases they address
   although some (rotate 0/3) have been left unoptimized when another 
   (reverse 0/3) can accomplish the same result

   Future ideas
   Shearing
   Application to bitmap superpixels
*/
#include 
#include 


/*
    Unsigned to prevent signed right shifts
*/
typedef unsigned char byte;

#define min(a,b) ((a)<(b)?(a):(b))
#define max(a,b) ((a)>(b)?(a):(b))

/*
    Bit functions
    For the ith j quantity 
    1(bit) 2(nibble) 3(byte) 4(short)
    (second byte i 2, j 3)

    Select    (((k)>>BIT1(i,j)) & BIT0(j))
    Clear       k &= ~(BIT0(j)<>BIT1(i,j)) & BIT0(j))
#define BITSET(i,j,k,l)  ( ((k)&(~(BIT0(j)<>biti(n)) & 0x01)

void trans_bitmap(m,lx,ly,mx,my,nx,ny,c,d)
/*
    Translate and crop m (0-3) circularly, clip x, clip y, clip x & y,
    the mx x my bitmap c into an nx x ny bitmap d at relative position lx x ly
    Can be done in place in most but not all cases
*/
long m, lx, ly, mx, my, nx, ny;
byte c[], d[];
{
  byte e;
  long i, j, k, l, n, mmnx, mmny, mmxx, mmxy;

  if (m % 2) {
    mmnx = max( 0, min( mx,    - lx));
    mmxx = max( 0, min( mx, nx - lx));
  } else { 
    mmnx = 0;
    mmxx = mx;
  }
  if ((m % 4)/2) {
    mmny = max( 0, min( my,    - ly));
    mmxy = max( 0, min( my, ny - ly));
  } else {
    mmny = 0;
    mmxy = my;
  }

  k = mmny*mx + mmnx;
  l = ((mmny+ly+ny) % ny)*nx + (mmnx+lx+nx) % nx;
  if (k >= l) {
    for ( i=mmny; i>bitj(l);
          d[l/8+1] |= c[k]<=mmny; i--) {
      for ( j=(mmxx-1)/8; j>=mmnx/8; j--) {
        k = i*mx/8 + j;
        l = ((i+ly+ny) % ny)*nx + (8*j+lx+nx) % nx;
        if (l%8) {
          d[l/8  ] |= c[k]>>bitj(l);
          d[l/8+1] |= c[k]<= l) {
    for ( i=0; i>bitj(k);
          d[l] |= c[k0/8]<=0; i--) {
      for ( j=(nx-1)/8; j>=0; j--) {
	k = ((i+ly+my) % my)*mx + (8*j+lx+mx) % mx;
        l = i*nx/8 + j;
        if (k%8) {
          k0 = mpos(k,-1,mx);
          d[l] |= c[ k/8]>>bitj(k);
          d[l] |= c[k0/8]<>biti(j)) & 0x01) {
                k = bit0((i<<3)|j,nx,ny);
                d[k/8] |= 1 << biti(k);
              }
            }
          }
        }
      break;

      case 1:
        for ( i=0; i>biti(j)) & 0x01) {
                k = bit1((i<<3)|j,nx,ny);
                d[k/8] |= 1 << biti(k);
              }
            }
          }
        }
      break;

      case 2:
        for ( i=0; i>biti(j)) & 0x01) {
                k = bit2((i<<3)|j,nx,ny);
                d[k/8] |= 1 << biti(k);
              }
            }
          }
        }
      break;

      case 3:
        for ( i=0; i>biti(j)) & 0x01) {
                k = bit3((i<<3)|j,nx,ny);
                d[k/8] |= 1 << biti(k);
              }
            }
          }
        }
      break;

      case 4: 
	/* Tile rotation */
        nxb = nx>>3;
        nyb = ny>>3;
        nr = 8;
        nb = (n+nr-1)/nr;
        ri = (byte *)malloc(nr);
        ro = (byte *)malloc(nr);

        /* Load ri */
        for ( ib=0; ib>biti(j)) & 0x01) {
                    k = j*8 + (i/8)*64 + i%8;
                    ro[k>>3] |= 1 << biti(k);
                  }
                }
              }
            }     
#else
            for ( i=0; i>biti(i) & 0x01) << biti(0)) | 
                ((ri[1]>>biti(i) & 0x01) << biti(1)) |
		((ri[2]>>biti(i) & 0x01) << biti(2)) | 
                ((ri[3]>>biti(i) & 0x01) << biti(3)) |
		((ri[4]>>biti(i) & 0x01) << biti(4)) | 
                ((ri[5]>>biti(i) & 0x01) << biti(5)) |
		((ri[6]>>biti(i) & 0x01) << biti(6)) | 
                ((ri[7]>>biti(i) & 0x01) << biti(7)) ;
#endif 
	  }
          /* Store ro */
          for ( i=0; i>3;
        nyb = ny>>3;
        nr = ny;
        nb = (n+nr-1)/nr;
        ri = (byte *)malloc(nr);
        ro = (byte *)malloc(nr);

        /* Load ri */
        for ( ib=0; ib>biti(j)) & 0x01) {
                  k = j*8 + (i/8)*64 + i%8;
                  ro[k>>3] |= 1 << biti(k);
                }
              }
            }
          }           
          /* Store ro */
          for ( i=0; i>4)])

#else
/* Byte reversals */
static byte reverse[] = {
    0x00, 0x80, 0x40, 0xC0, 0x20, 0xA0, 0x60, 0xE0,
    0x10, 0x90, 0x50, 0xD0, 0x30, 0xB0, 0x70, 0xF0,
    0x08, 0x88, 0x48, 0xC8, 0x28, 0xA8, 0x68, 0xE8,
    0x18, 0x98, 0x58, 0xD8, 0x38, 0xB8, 0x78, 0xF8,
    0x04, 0x84, 0x44, 0xC4, 0x24, 0xA4, 0x64, 0xE4,
    0x14, 0x94, 0x54, 0xD4, 0x34, 0xB4, 0x74, 0xF4,
    0x0C, 0x8C, 0x4C, 0xCC, 0x2C, 0xAC, 0x6C, 0xEC,
    0x1C, 0x9C, 0x5C, 0xDC, 0x3C, 0xBC, 0x7C, 0xFC,
    0x02, 0x82, 0x42, 0xC2, 0x22, 0xA2, 0x62, 0xE2,
    0x12, 0x92, 0x52, 0xD2, 0x32, 0xB2, 0x72, 0xF2,
    0x0A, 0x8A, 0x4A, 0xCA, 0x2A, 0xAA, 0x6A, 0xEA,
    0x1A, 0x9A, 0x5A, 0xDA, 0x3A, 0xBA, 0x7A, 0xFA,
    0x06, 0x86, 0x46, 0xC6, 0x26, 0xA6, 0x66, 0xE6,
    0x16, 0x96, 0x56, 0xD6, 0x36, 0xB6, 0x76, 0xF6,
    0x0E, 0x8E, 0x4E, 0xCE, 0x2E, 0xAE, 0x6E, 0xEE,
    0x1E, 0x9E, 0x5E, 0xDE, 0x3E, 0xBE, 0x7E, 0xFE,
    0x01, 0x81, 0x41, 0xC1, 0x21, 0xA1, 0x61, 0xE1,
    0x11, 0x91, 0x51, 0xD1, 0x31, 0xB1, 0x71, 0xF1,
    0x09, 0x89, 0x49, 0xC9, 0x29, 0xA9, 0x69, 0xE9,
    0x19, 0x99, 0x59, 0xD9, 0x39, 0xB9, 0x79, 0xF9,
    0x05, 0x85, 0x45, 0xC5, 0x25, 0xA5, 0x65, 0xE5,
    0x15, 0x95, 0x55, 0xD5, 0x35, 0xB5, 0x75, 0xF5,
    0x0D, 0x8D, 0x4D, 0xCD, 0x2D, 0xAD, 0x6D, 0xED,
    0x1D, 0x9D, 0x5D, 0xDD, 0x3D, 0xBD, 0x7D, 0xFD,
    0x03, 0x83, 0x43, 0xC3, 0x23, 0xA3, 0x63, 0xE3,
    0x13, 0x93, 0x53, 0xD3, 0x33, 0xB3, 0x73, 0xF3,
    0x0B, 0x8B, 0x4B, 0xCB, 0x2B, 0xAB, 0x6B, 0xEB,
    0x1B, 0x9B, 0x5B, 0xDB, 0x3B, 0xBB, 0x7B, 0xFB,
    0x07, 0x87, 0x47, 0xC7, 0x27, 0xA7, 0x67, 0xE7,
    0x17, 0x97, 0x57, 0xD7, 0x37, 0xB7, 0x77, 0xF7,
    0x0F, 0x8F, 0x4F, 0xCF, 0x2F, 0xAF, 0x6F, 0xEF,
    0x1F, 0x9F, 0x5F, 0xDF, 0x3F, 0xBF, 0x7F, 0xFF,
};
#define reverse_byte(a)  reverse[a]

#endif

void reverse_bitmap(m,nx,ny,c,d)
/* 
    Reverse m (copy, flip x, flip y, flip x & y axes) the nx x ny bitmap into d
    Can be accomplished in place
    Flip x & y accomplishes a half turn (180 deg rotation)
*/
byte c[], d[];
{
  byte e;
  long i, j, k, l, n;

  n = (nx*ny + 7)/8;
  switch (m % 4) {

    case 0:
      if (c != d) memcpy(d,c,n);
    break;

    case 1:
      n = nx/8;
      for ( i=0; i= n) {
    /* Condense */
    if (c == d) {
      for (i=0; i>biti(j)) & 0x01) 
          d[i/8] |= 1 << biti(i);
        else
          d[i/8] &= ~(1 << biti(i));
      }
    } else {
      for (i=0; i>biti(j)) & 0x01) 
          d[i/8] |= 1 << biti(i);
        if (!(i % 100000)) fprintf(stderr," %u %u \r",j,i);
      }
    }
  } else {
    /* Expand */
    if (c == d) {
      for (i=n-1; i>=0; i--) {
        if (i<(n-nx) && ((i/nx * my/ny) == ((i/nx + 1) * my/ny))) {
          d[i/8] = d[(i+nx)/8];
        } else {
          j = (i%nx) * mx/nx + ((i/nx)*my/ny)*mx;
          if ((c[j/8]>>biti(j)) & 0x01) 
            d[i/8] |= 1 << biti(i);
          else
            d[i/8] &= ~(1 << biti(i));
        }
      }
    } else {
      for (i=n-1; i>=0; i--) {
        if (i<(n-nx) && ((i/nx * my/ny) == ((i/nx + 1) * my/ny))) {
          d[i/8] = d[(i+nx)/8];
        } else {
          j = (i%nx) * mx/nx + ((i/nx)*my/ny)*mx;
          if ((c[j/8]>>biti(j)) & 0x01) 
            d[i/8] |= 1 << biti(i);
          if (!(i % 100000)) fprintf(stderr," %u %u \r",j,i);
        }
      }
    }
  }
}

void erode_bitmap(m,nx,ny,c,d)
/*
    m 0-3  Erode, dialate, edge, and outline
    the nx x ny bitmap c into bitmap d 
    Cannot be done in place 
*/
long m, nx, ny;
byte c[], d[];
{
  byte e;
  long i, j, n;

  n = nx*ny;
  switch (m % 4) {

  case 0:
    for (i=0; i(n-nx)) || !(i%nx) || !((i+1)%nx) ||
          !(!bitn(i-1,c) || !bitn(i+1,c) ||
            !bitn(i-nx,c) || !bitn(i+nx,c) ) ))
        d[i/8] |= 1 << biti(i);
      if (!(i % 100000)) fprintf(stderr," %u \r",i);
    }
  break;

  case 1:
    for (i=0; i=nx) && bitn(i-nx,c)) || ((i<(n-nx)) && bitn(i+nx,c)) ))
        d[i/8] |= 1 << biti(i);
      if (!(i % 100000)) fprintf(stderr," %u \r",i);
    }
  break;

  case 2:
    for (i=0; i(n-nx)) || !(i%nx) || !((i+1)%nx) ||
          !bitn(i-1,c) || !bitn(i+1,c) ||
          !bitn(i-nx,c) || !bitn(i+nx,c) ))
        d[i/8] |= 1 << biti(i);
      if (!(i % 100000)) fprintf(stderr," %u \r",i);
    }
  break;

  case 3:
    for (i=0; i=nx) && bitn(i-nx,c)) || ((i<(n-nx)) && bitn(i+nx,c)) ))
        d[i/8] |= 1 << biti(i);
      if (!(i % 100000)) fprintf(stderr," %u \r",i);
    }
  break;

  }
}

int main( argc, argv )
int argc;
char *argv[];
{
  char *c, *d, *e;
  int ichar;
  long i = 0, ifn = 0, lx = 0, ly = 0, m = 3, mx = 0, my = 0;
  long n = 0, np = 256, nx = 408, ny = 532;
  time_t ctime0, ctime1;

  if (argc == 1) {
    fprintf(stderr,"usage: bm [bitmap npad nx ny] \n");
    fprintf(stderr,"       [translate m lx ly mx my | replicate m lx ly mx my |\n");
    fprintf(stderr,"       scale m mx my | rotate m | reverse m | invert m | erode m ]\n");
    fprintf(stderr,"where the nx byte x ny byte with npad bytes is to be\n");
    fprintf(stderr," translate (lx,ly) bytes into an mx x my byte bitmap\n");
    fprintf(stderr,"  with clipping m 0 none, 1 x, 2 y, 3 x & y\n");
    fprintf(stderr," replicate (lx,ly) bytes into an mx x my byte bitmap\n");
    fprintf(stderr,"  with m none\n");
    fprintf(stderr," scale     m 0-3 none into an mx x my byte bitmap\n");
    fprintf(stderr," rotate    m 0-3 quarter turns counterclockwise\n");
    fprintf(stderr," reverse   m 0 none, 1 x, 2 y, 3 x & y\n");
    fprintf(stderr," invert    m 0 white, 1 ident, 2 negate, 3 black\n");
    fprintf(stderr," erode     m 0 erode, 1 dialate, 2 edge, 3 outline\n");
    return(0);
  }

  while (++i < argc) {
    if (strstr(argv[i],"translate") != NULL) {
      ifn = 1;
      ++i;
      if (i < argc) sscanf(argv[i],"%d",&m);
      ++i;
      if (i < argc) sscanf(argv[i],"%d",&lx);
      ++i;
      if (i < argc) sscanf(argv[i],"%d",&ly);
      ++i;
      if (i < argc) sscanf(argv[i],"%d",&mx);
      ++i;
      if (i < argc) sscanf(argv[i],"%d",&my);
    } else if (strstr(argv[i],"replicate") != NULL) {
      ifn = 2;
      ++i;
      if (i < argc) sscanf(argv[i],"%d",&m);
      ++i;
      if (i < argc) sscanf(argv[i],"%d",&lx);
      ++i;
      if (i < argc) sscanf(argv[i],"%d",&ly);
      ++i;
      if (i < argc) sscanf(argv[i],"%d",&mx);
      ++i;
      if (i < argc) sscanf(argv[i],"%d",&my);
    } else if (strstr(argv[i],"rotate") != NULL) {
      ifn = 3;
      ++i;
      if (i < argc) sscanf(argv[i],"%d",&m);
    } else if (strstr(argv[i],"reverse") != NULL) {
      ifn = 4;
      ++i;
      if (i < argc) sscanf(argv[i],"%d",&m);
    } else if (strstr(argv[i],"invert") != NULL) {
      ifn = 5;
      ++i;
      if (i < argc) sscanf(argv[i],"%d",&m);
    } else if (strstr(argv[i],"scale") != NULL) {
      ifn = 6;
      ++i;
      if (i < argc) sscanf(argv[i],"%d",&m);
      ++i;
      if (i < argc) sscanf(argv[i],"%d",&mx);
      ++i;
      if (i < argc) sscanf(argv[i],"%d",&my);
    } else if (strstr(argv[i],"erode") != NULL) {
      ifn = 7;
      ++i;
      if (i < argc) sscanf(argv[i],"%d",&m);
    } else if (strstr(argv[i],"bitmap") != NULL) {
      ++i;
      if (i < argc)  sscanf(argv[i],"%d",&np); 
      ++i;
      if (i < argc)  sscanf(argv[i],"%d",&nx);
      ++i;
      if (i < argc)  sscanf(argv[i],"%d",&ny);
    } else {
      fprintf(stderr," unknown argument:  %s\n",argv[i]);
    }
  }


  n = np + max( 8*mx*my, 8*nx*ny);
  if (n == np)  n = 2*1024*1024;
  c = (char *)malloc(n);
  if (ifn == 1 || ifn == 2 || ifn == 3 || ifn == 6 || ifn == 7)  
    d = (char *)malloc(n);
  else
    d = c;
  if (c == NULL || d == NULL) { 
    fprintf(stderr," Cannot get memory\n");
    exit(1);
  }
  memset(d,0,n);

  i = 0;
  while ((ichar = fgetc(stdin)) != EOF) 
    { c[i] = ichar; i++; }
  n = i;

  n -= np;
  if (nx*ny == 0)  { 
    nx = n;
    ny = 1;
  }
  if (mx*my == 0)  {
    mx = nx;
    my = ny;
  }
  fprintf(stderr,"  Input %d bytes\n",n);
  ctime1 = time(&ctime0);
  switch (ifn % 8) {

    case 0:
    break;

    case 1:
      trans_bitmap(m,8*lx,8*ly,8*nx,8*ny,8*mx,8*my,c,d);
      n = mx*my*8;
    break;

    case 2:
      repli_bitmap(m,8*lx,8*ly,8*nx,8*ny,8*mx,8*my,c,d);
      n = mx*my*8;
    break;

    case 3:
      rotate_bitmap(m,8*nx,8*ny,c,d);
    break;

    case 4:
      reverse_bitmap(m,8*nx,8*ny,c,d);
    break;

    case 5:
      invert_bitmap(m,8*nx,8*ny,c,d);
    break;

    case 6:
      scale_bitmap(m,8*nx,8*ny,8*mx,8*my,c,d);
      n = mx*my*8;
    break;

    case 7:
      erode_bitmap(m,8*nx,8*ny,c,d);
    break;

  }

  n += np;
  ctime1 = time(&ctime0)-ctime1;
  fprintf(stderr," Output %d bytes %d sec\n",  n, ctime1);

  for (i=0; i

    Source: geocities.com/aenlighten