
EN/RA/AN03/0899/AE

www.wwgsolutions.com Frame Relay Flow Control and Data Transmission
Part 2: TCP Over Frame Relay

Frame Relay provides a cost-effective way of transporting a variety of encapsulated
protocols, including the popular TCP/IP suite. The Frame Relay and TCP protocols
each have their own congestion and flow control mechanisms. In order to understand
how a TCP/IP over Frame Relay network operates, you must first have an
understanding of how TCP/IP performs flow control. To learn about the basics of
Frame Relay transport and flow control see Part One of this series.

TCP/IP Basics
TCP flow control has some similarities to – and some significant differences from –
X.25 and SDLC frame-numbering implementations. In X.25 and SDLC a receiving
station generates acknowledgements as frames are received, enabling the transmitting
station to track sent and received frames. If the transmitting station does not receive
an acknowledgment within a fixed period of time it retransmits the first
unacknowledged frame.

In addition to using fixed timers for sending retransmissions, the window size, which
is the number of frames transmitted before an acknowledgement is received, is also
fixed. For example, SDLC can be configured to allow no more than seven
outstanding unacknowledged frames. If a host FEP has sent seven information
frames, it will not send the eighth until at least one of the outstanding information
frames has been acknowledged. A single frame can acknowledge multiple received-
data frames. This method of flow control in HDLC-based protocols is referred to as a
“sliding window.”

In contrast to X.25 and SDLC, TCP can be used over networks consisting of
combinations of local and wide area networks. Special consideration must be given to
frames that travel over a variety of networks. To address this challenge, TCP has a
unique method of verifying received data.

Acknowledgement and Retransmission
The TCP frame, from the header to the checksum, is called a segment. TCP segments
may be fragmented as they travel over a number of different LAN and WAN
networks. Some network elements, such as routers, break the original segment into
smaller datagrams, or fragments, when the segment exceeds its Maximum Transmit
Unit (MTU). Only the destination host can reassemble the fragments.

• Segments are the datagrams transmitted by the server or client. They may be
fragmented by other network elements based upon the MTU defined within that
network element. Fragments are reassembled by the destination host.

When TCP performs a file transfer, the end stations acknowledge the receipt of TCP
segments. Within the segment is the sequence number, which is calculated by adding
the number of user data bytes contained in the segment to the sequence number of the
previously transmitted segment. The server and client negotiate a random starting
sequence number when the TCP connection is established.

When a host receives error-free TCP segments it sends an acknowledgment to the
source. The acknowledgement contains the sequence number calculated from the

August 8,1999��������	�

EN/RA/AN03/0899/AE

www.wwgsolutions.com received data in one or more segments. A fragmented segment must be reassembled
before it can be acknowledged.

• Because a TCP segment may be fragmented, sequence numbers are a
continuously incrementing count of data bytes.

Hosts send acknowledgments only if there are no gaps in the received data. For
example, suppose a server sends 2,000 bytes of data in four 500-byte segments. The
host receives the first 500 bytes. If the next received segment contains bytes 1,001
through 1,500, only the first 500 bytes can be acknowledged. The host buffers the
segment containing bytes 1,001 through 1,500. When it receives bytes 501 through
1,000, the host acknowledges bytes 1 through 1,500. A single acknowledgement can
verify the receipt of multiple segments.

• The data contained in received segments can only be acknowledged in the order
it was transmitted. One acknowledgement can be used to verify receipt of
multiple segments. In the event of fragmentation, the segment must be
reassembled before its receipt is acknowledged.

In our example, suppose the Frame Relay network dropped the sequence containing
bytes 501 through 1,000, but all other segments were received. The server would not
receive an acknowledgment for any of the segments containing bytes above 500. To
prevent retransmitting data that was received but not acknowledged, the server times
out and retransmits only the segment that contained the first group of
unacknowledged bytes, in this case the second segment. After retransmitting the
segment of unacknowledged bytes, the server waits to see how many bytes are
acknowledged. It could be that the acknowledgment contains not only the sequence
for the retransmitted bytes, but also bytes 1,001 through 2,000. In this way the server
avoids retransmitting large numbers of segments that were received but not
acknowledged due to earlier dropped segments.

TCP is flexible in terms of response time. Consider the case of Internet browsing,
where response time varies tremendously and fixed retransmission timers could prove
troublesome. TCP compensates by dynamically handling response time variations.
When a server and a client initiate a transfer both sides monitor the time it takes to
get a response from the remote device, known as the Round Trip Time (RTT).
Because network congestion and server loading can change dramatically in a short
time, TCP is constantly monitoring response time by measuring the time it takes for a
segment to be acknowledged and adjusting the retransmission timer.

• To prevent unnecessary timeouts and retransmissions, TCP adapts dynamically
to changes in network throughput and response times.

Window Size
Window size is the second element of TCP flow control. TCP uses a sliding window
that operates in a more dynamic fashion than the classic sliding windows that are
used in HDLC/SDLC frame-numbering systems. The TCP sliding window ensures
that the server does not send more data than the host can process. Contained within
every TCP acknowledgment is a “window advertisement,” which specifies the
number of additional bytes of data the receiver is prepared to accept. Using this
information, the TCP sliding window in the server dynamically adjusts its values to
prevent overrunning the buffer at the remote client.

EN/RA/AN03/0899/AE

www.wwgsolutions.com The window advertisement informs the sending station of the maximum number of
bytes the sending station can place on the network before an acknowledgment is
required. Because the receiving station is unaware of the size of the file being
transferred, the window advertisement is not a mandate to send a given number of
bytes but rather a maximum allowable number. In actual operation, acknowledgments
are sent more frequently than actually required. Often the amount of data to be sent is
a function of the application utilizing the TCP transport. For example, when
downloading a Web page, the window advertisement from the user’s PC may offer
60,000 bytes although the Web page is only 25,000 bytes.

Figure 1: TCP Sliding Window

Congestion Window
Another flow control mechanism that is particularly important in TCP over Frame
Relay is the Congestion window. The Congestion window allows TCP networks to
respond quickly to congestion by reducing the transmission rate. When the sender
retransmits a segment, the congestion window is reduced by fifty percent. This
reduction occurs every time a retransmission is required.

When a TCP connection is established the Congestion window is equal to the
Transmit window. When a retransmission occurs, the Congestion window moves to a
lower value than the Transmit window. TCP uses the smaller of the two values when
sending data.

• The TCP stack dynamically adjusts the number of outstanding, unacknowledged
segments based upon window advertisements and retransmissions. The window
size determines how many bytes, in multiple segments, the receiver expects
before it is required to issue an acknowledgement.

Retransmissions cause another dynamic change in TCP. After a segment is
retransmitted, the retransmission timer is increased. By dynamically changing the
Congestion window to reduce traffic output and the retransmission timer to reduce
retransmission rate, TCP adapts to both frame loss and delay.

• TCP adjusts the retransmission timer based upon network conditions such as
dropped or fragmented segments and network latency changes.

2 3 4 5 6 7 8 9 10 111 12

sent wait
for ACK

sent &
ACK'd

ready to send

13 14

waiting for
window to move

Transmit window size

Moves as segments are transmit ted

Moves as segments are ACK'd

Moves with Ack's and window advert isements
Moves with retransmission's

EN/RA/AN03/0899/AE

www.wwgsolutions.com Congestion Recovery
If no retransmissions occur during a monitoring period, TCP begins to recover from
the congestion. A process called “slow start” prevents the server from flooding the
network when congestion clears. In a slow start the transmitting station exceeds the
congestion window by one segment. If the added slow start segment is
acknowledged, the transmitting station increases transmission by two segments. If the
two new segments are acknowledged, the congestion window is enlarged by four
additional segments, then eight, and so on until the Transmit window reaches half the
size of the pre-congestion window. This triggers the “congestion avoidance” phase,
in which transmission is again reduced to a single segment increase for every
received acknowledgement.

Slow start is also used when the TCP connection is established. Initially the
transmission starts with a single segment. When acknowledged, two segments are
sent, then four and eight and so on. This allows the TCP data exchange to gradually
increase to maximum efficiency, thereby avoiding excessive loss of data and
retransmissions. At the same time TCP avoids flooding the network. Although it has
the name slow start, the process is actually not slow at all. TCP increases the
transmission rate exponentially, and quickly arrives at its maximum transmission rate.

• TCP increases and decreases the rate of segment transmission to avoid
aggravating congestion based upon the historical, or learned, network
throughput. This method includes slow start and congestion-avoidance phases.

Implementation Scenarios
When implementing TCP in a Frame Relay network, flow control is best handled by
TCP. TCP’s end-to-end flow and congestion control mechanisms have some distinct
advantages in a network that is comprised of a variety of media, such as Ethernet and
Frame Relay. The TCP layer in the client and server recognizes and handles delay,
flow control and congestion, regardless of which segment is experiencing a problem.
Although routers can be configured to react to a BECN by adjusting the flow of data
onto the network, BECN flow control cannot address problems that occur on other,
non-Frame Relay parts of the network. Allowing the TCP layer on the server to
manage flow control lets it adjust to congestion that occurs on any segment over
which the packets travel.

A number of problems may crop up when migrating from older systems to Frame
Relay. TCP protocol stacks that pre-date the newer RFC standards can cause
unexpected behavior. TCP stacks of older design may need to be manually adjusted
to achieve optimum results. Some older TCP/IP implementations open a connection
and then begin to flood the network. A weak implementation of flow control and
retransmissions limits the ability of TCP to adapt to changing network conditions and
may cause a massive number of retransmissions. This aggravates the congestion
condition, and can be catastrophic in a Frame Relay network.

EN/RA/AN03/0899/AE

www.wwgsolutions.com

Figure 2

In the network shown in Figure 2, Host 3 has a link speed of 1024 Kbits/s and a CIR
of 256 Kbits/s. If we assume that the server is connected to a 100Base-T network,
that Host 3 advertises a 50,000 byte receive window size, and that the server is
running an old TCP/IP protocol stack, the following scenario is possible:

1. The server begins to send a 6 MB file at the LAN rate.
2. The data is passed onto the Frame Relay network at the full access rate of 1.536

Kbits/s.
3. Differences between interface speeds of routers 1 and 3 cause buffer overruns.
4. The CIR is exceeded and the Frame Relay switch input buffer overrun causes the

Frame Relay switch to discard packets.
5. Host 2 acknowledges receipt of the first received packets that made it through

the Frame Relay network.
6. The server receives the acknowledgments, but times out waiting for

acknowledgments for the dropped packets, causing retransmissions.
7. The server attempts to retransmit packets and send new packets in a narrow time

frame.
8. The Frame Relay switch continues to be flooded and discards more and more

packets, including some of the retransmissions.
9. Hosts 2, 4, and 5 experience severe delays because the interface from router 1 to

the Frame Relay network is being overrun with TCP frames destined for Host 3.
10. A 6 MB file transfer has now sent over 9 MB of data and is not yet complete.
11. This network is in what is called “congestion collapse” due to poor TCP flow

control.

Fortunately this scenario is rare with current TCP/IP stacks. Some older
implementations experience these sorts of problems due either to poor design or
improper configuration. If there is a problem with the protocol stack, altering the
configuration settings may alleviate the problem. Upgrading or replacing the TPC/IP
stack is another option.

In a properly functioning network, the two end stations handle the flow of data in a more
orderly and predictable manner. Below is an example of how the system should operate:

FR Switch 3

FR Switch 1

1536K

64K

1024K

256K

512K

Host 2

Host 3

Host 4

Host 5

FR Switch 2

Router 2

Router 3

Router 4

Router 5

Router 1

Host 1
Server

CIR=9.6K

CIR=256K

CIR=128K

CIR=256K

EN/RA/AN03/0899/AE

www.wwgsolutions.com 1. When a file transfer is requested, the end stations negotiate several parameters:
• starting sequence number
• initial round trip time (RTT)
• initial Receive window size

2. The sending station begins to transmit the file using several parameters.
• The slow start method allows the transmitting station to increase the number of

transmitted frames in relation to received acknowledgements.
• The transmitting station can send as many bytes as the Received window allows.

3. The Transmit window slides forward with every transmitted segment.
4. Acknowledgements cause the Transmit window to adjust its size based on the

window advertisement field within the acknowledgment.
5. When a frame is dropped, the receiving station stops sending acknowledgments.
6. The transmitting station times out and retransmits the unacknowledged segment.
7. The Congestion window is adjusted.
8. The rate of transmission is reduced.
9. The slow start procedures are initiated.
10. When the transmission rate reaches 50 percent of the maximum rate before the

retransmission was required, congestion avoidance is invoked. The transmission
rate increases by one extra segment for every acknowledged segment.

Identifying Problems
Monitoring for BECNs is an effective way of determining how a TCP/IP over Frame
Relay network is operating. Equally important is monitoring for retransmissions. By
having an understanding of how BECNs and retransmissions operate, you can tune
the performance of your network.

Occasional BECN frames do not indicate a problem, but instead show that the
network is being well utilized. Excessive BECNs indicate congestion in the Frame
Relay network. They require some investigation.

First, use an application such as WWG’s FR-CIR running on a DominoWAN or
DominoHSSI to get detailed information on FECN, BECN and DE-marked frames,
as well as overall traffic levels. This information can help identify Frame Relay
network congestion problems.

Next, use a Domino analyzer to monitor for retransmissions. If a PVC is
experiencing both excessive BECNs and TCP/IP retransmissions, look inside the
TCP segments on the Frame Relay network. WWG’s Examine software can filter
on the IP addresses experiencing the retransmissions and display both directions of
the data stream.

Examine software also shows the sequence numbers of the TCP segments and
acknowledgments being exchanged between two hosts. By comparing the sequence
numbers of segments and the retransmissions, you can see if the segments are being
dropped on the portion of the network being monitored. You many find that the
segments never made it onto the Frame Relay PVC. Instead they may have been
dropped by some other part of the network before the monitoring point.

Remember that retransmissions can be seen on the LAN segment as well as over the
Frame Relay network. If the only tool available is a DominoFE, DominoLAN or
LinkView® software analyzer, monitoring the LAN segment for retransmissions and
evaluating them will indicate how the TCP/IP protocol stack is operating. With every

EN/RA/AN03/0899/AE

www.wwgsolutions.com TCP retransmission the retransmission timer, which is displayed in Examine’s
timestamp field, should increase and the number of outstanding unacknowledged
segments should decrease.

Application Issues
Some applications fail to take advantage of TCP’s ability to transfer a large number
of segments before requiring an acknowledgement. These applications request a
small piece of information such as a single database entry, and receive an
acknowledgement for each piece. When viewed with a protocol analyzer the resulting
traces resemble ping and response frames, with an acknowledgement for every packet
sent. This situation is a result of poor application design. Although these types of
applications often run acceptably over LAN connections, their performance over
Frame Relay, or any other type of WAN, is unsatisfactory.

Often these poorly performing applications are the result of porting legacy
applications to IP. Because they were not developed as true client-server applications
they do not efficiently transfer data using TCP/IP. A properly functioning application
allows TCP to transmit reasonably large amounts of data before requiring an
acknowledgement. If you find an application operating in the single segment, single-
acknowledgement mode, contact the application provider.

Solving the problem
If investigation shows that TCP/IP is not behaving properly, the first step is to
contact the provider of the TCP/IP stack to learn if upgrades are available to improve
performance. If not, the support desk may suggest configuration settings to alleviate
some of the problems.

If you find yourself on your own, here are a few things you can try:

• Reduce the server’s Transmit window size, thereby reducing the number of
segments the server transmits without an acknowledgment. If packets are
dropped, the server does not have to retransmit as many packets. This has a
global effect on all file transfers from the server to all clients requesting files.

• Reduce the size of the client’s receive buffer. This reduces the size of the
window advertisement sent within each TCP acknowledgement to the server, and
affects all file transfers to this single client from all TCP/IP servers to which it is
connected. Although this not the best approach, it may be your only option if you
cannot modify the server’s protocol stack. In order to be effective for file
transfers, each client on the network must have the settings changed.

• Change the TCP/IP protocol stack settings. Windows 95/98/NT users can enter
the new settings in the Windows Registry. Information on specific parameter
settings is located in the Microsoft knowledge base on the Internet.

• Contact the application supplier. The only way to resolve problems related to
application designs that do not make use of the inherent capabilities of TCP is to
contact the application supplier.

1999 Wavetek Wandel Goltermann. Written by Gary Meyer, Enterprise Networks Division.

