

DOLOČITEV DOPUSTNE NOSILNOSTI TAL

Ob kliku ikone Dopustna_nosilnost se pojavi menu:

Dopustna_nosilnost

Podatki, potrebni za izračun, se zapisujejo v pripadajoča okna. Podatke lahko razdelimo na dve skupini: podatke o zemljini in podatke o temelju (njegovih dimenzijah in legi ter obtežbi).

Podatki o zemljini so:

- γ specifična teža zemljine nad temeljem
- γ' specifična teža zemljine pod temeljem (če sta specifični teži zemljine nad in pod temeljem enaki, lahko podamo samo eno vrednost).
- c kohezija
- φ kot notranjega trenja.

Programu je mogoče podati tudi faktorja varnosti in sicer F_c za kohezijo (predefinirana vrednost je 2.5) in F_{ϕ} (predefinirana vrednost je 1.5). Oba faktorja varnosti seveda lahko spreminjamo (prazne prostore ali vrednosti, ki so enake ali manjše od nič, program avtomatično pretvori faktorja v 1).

Podatki o lokaciji in dimenzijah temelja so:

Najosnovnejši podatki so:

L dolžina temelja

B širina temelja

D globina temelja. Če je temelj nagnjen za kot η , je potrebno podati dimenzijo na plitvejšem delu.

Če vertikalna sila P ne deluje v središču temelja, je mogoče podati ekscentriteti vertilkalne sile P e_B^{P} in e_L^{P} . Če deluje na temelj še enakomerna zvezna obtežba, se računski ekscentriteti še korigirata za vpliv enakomerne zvezne obtežbe v e_B^{V} in e_L^{V} . Program nato sam izračuna računski dimenziji B' in L' (ki sta, če je ekscentriteta sile P enaka nič, kar enaki dimenzijama B in L).

Podati je mogoče še komponenti horizontalne sile H_L in H_B , katerih položaj ne vpliva na izračun.

Dodatno je mogoče podati še naslednje podatke:

- η kot nagiba temelja v smeri dimenzije B (v stopinjah)
- β_B kot nagiba terena za temeljem v smeri dimenzije B (v stopinjah)
- β_B kot nagiba terena za temeljem v smeri dimenzije B (v stopinjah)

Podatki o obtežbi so:

- P koncentrirana sila, normalna na površino temelja
- q vertikalna zvezna obtežna (lastna teža temelja)
- H_B koncentrirana sila, delujoča vzporedno s površino temelja v smeri dimenzije B
- H_L koncentrirana sila, delujoča vzporedno s površino temelja v smeri dimenzije L

Celotna sila, normalna na površino temelja se izračuna kot $V = P + q \cdot B \cdot L$.

Pregled nekaterih ikon

Brisanje vseh podatkov.

Zapri

Zapiranje okna in vrnitev v glavno okno.

Izračun brez tvorbe WinWord datoteke.

Izračun s tvorbo WinWord datoteke (opomba: opcija samo pri uporabnikih z WinWord licenco).

kontrola zdrsa

164.012 kN< 224.650 kN O.K.

Program najprej preveri kontrolo zdrsa temelja. Izvede jo z rezultanto horinzontalnih sil H_B in H_L . Če je rezultanta sil večja od zdrsne odpornosti, se polje obarva rdeče. Program v takem primeru ne izvede izračuna dopustne nosilnosti.

hannal

 \boxtimes

Program še kontrolira, ali rezultanta vertikalnih sil pade izven jedra prereza. Tudi v tem primeru izpiše opozorilo.

Ikona, ki omoči pripravo podatkov za računanje nosilnosti na večslojnem prostoru.

Program nato izračuna celotno obtežbo, normalno na obtežbo, q_{tot} (obtežba q, povečana za vertikalno silo P, reducirano s površino temelja) in dopustne nosilnosti po enačbah, ki so jih podali Terzaghi (za kvadratne in trakaste temelje), Meyerhof, Hansen (teoriji, privzeti po Bowlesu in Šukljetu) ter Vesi}. Vsak izračun po pripadajoči enačbi je podan kot opcija, ki jo je poljubno mogoče izključiti.

Okence za vključitev/izključitev željene metode v izračun. Križec pomeni vključeno opcijo, prazen kvadrat pa izključeno.

Temljenje na slojevitem polprostoru

Ikona, ki omoči pripravo podatkov za računanje nosilnosti na večslojnem prostoru.

Poseben primer nastopi, kadar se temelj nahaja v slojevitem polprostoru. Tudi če se temelj v celoti nahaja v enem sloju, lahko cona porušitve sega v spodnji sloj, kar je potrebno dodatno upoštevati.

Okno za določitev parametrov za večslojni prostor

Računski postopek bo prikazan na različnih primerih.

Za temelj, katerega globina temeljenja D znaša 0.8 m je potrebno določiti dopusno nosilnost. Teren sestavljajo štirje sloji z naslednjimi karakteristikami:

Sloj	Debelina	γ	c	ø
1	1.0	18.5	20	10
2	1.0	19.0	25	20
3	0.6	19.5	30	15
4	3.0	18.5	35	25

Izračunati je potrebno nadomestne vrednosti kohezije in strižnega kota za obravnavani temelj.

Iz slike vidimo, da se temelj v celoti nahaja v prvem sloju.

Izračun globine H

 $H = \frac{B}{2} \cdot \tan\left(45 + \frac{\phi}{2}\right), \text{ kjer moramo upoštevati strižni kot različen za vsak sloj.}$

Za nadomestno kohezijo slojev pod temeljem dobimo:

$$c_{nad} = \frac{\int\limits_{z=D}^{D+H} c(z) \cdot dz}{H}$$

Za izračun nadomestnega strižnega kota pa lahko izbiramo med dvema enačbama:

$$\phi_{nad} = \arctan\left(\frac{\int_{z=D}^{D+H} \tan(\phi(z)) \cdot dz}{H}\right)$$
oziroma
D+H

$$\phi_{nad} = \frac{\int_{z=D} \phi(z) \cdot dz}{H}$$
$$\phi_{nad} = \frac{\int_{z=D}^{D+H} \phi(z) \cdot dz}{H}$$

Opis ikon

N 4

Število slojev, ki tvorijo stratigrafijo

B4.3x plus - Določitev dopustne nosilnosti tal

potrebno podati.

h	C	¢	γ
1 1 0.6 3.0	20 25 30 35	10 20 15 25	18.5 19.0 19.5 18.5

V posamezne kolone podajamo podatke o debelinah posameznih slojev, koheziji, kotu notranjega trenja in prostorninski teži. Podatke podajamo vedno od najvišjega proti nižje ležečim slojem. Podatke v posameznem stolpcu ločimo s presledkom ali pritsnemo tipko Enter. Podati je potrebno toliko podatkov, kolikor smo navedli slojev.

Izračun brez tvorjenja WinWord

datoteke.

Izračun s tvorbo WinWord datoteke (opomba: opcija samo pri uporabnikih z WinWord licenco).

Zapri

Zapiranje okna in vrnitev v prejšnje okno (Dopustna nosilnost). Vsi podatki, potrebni za izračun dopustne nosilnosti se avtomatično prenesejo iz okna Nosilnost slojevitih tal v okno Dopustna nosilnost.

Temelj se nahaja v sloju 1

Vrh trikotnika se najaha v sloju: 4

Informacija o temelju in globini, do kođer sega globina klina. Če se temelj nahaja globlje od najnižjega sloja ali vrh klina izpade iz podanih slojev, se v teh oknih izpiše opozorilo.

^JNadomestna specifična teža slojev nad temeljem.

OK

Podatki o nadmestni specifični teži, koheziji in kotu notranjega trenja za sloje pod temeljem. H predstavlja višino klina. Izbiramo lahko med dvema možnostima izračuna nadomestnega strižnega kota. V prvem primeru je nadomestni kot izračunan s povprečenjem tangensov kotov, v drugem primeru pa s povprečenjem kotov. Opcijo, ki jo želimo uporabiti, izberemo s klikom na krožec, vendar je razlika običajno majhna.