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[8] 1. f(fl?, Y, Z) = rel—%¥

(a) Calculate the gradient vector of f at (1, 1, 1).

(b) What is the rate of change of f at (1, 1, 1) in the direction ( )?

Sl

1
= 0’
V2

(c) Find the equation of the tangent plane to the surface
zel=% =1

at (1,1, 1).
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[6] 2. The temperature of a metal sheet as a function of position (z,y) and time ¢ is
T(z,y,t) = (40 + 2 sin y)e .
An ant is walking across the sheet. Its position is given by
(z,y) = (cost, 2t).

Find T" (%), the rate of change of temperature seen by the ant at time —.
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[12] 3. Let f:R?— R be defined by

.’L'3 3

flz,y) =

x4 y2

for (z,y) #(0,0) and £(0,0) =0.

(a) Show that f is continuous at (0,0).

(b) Find the linearization La(z,y) of the function f at the point a = (0,0).
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(c) Show that f is not differentiable at (0,0).

(d) Calculate the directional derivative of f at the point (0,0) in an arbitrary
direction u = (uy, us).
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[12] 4. Let f:R? - R be defined by

wieo

fz,y) = (zy)3.
(a) Define differentiability at a for f : R? — R.

(b) Show that f is differentiable at (0,0).
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c¢) Based on your answer to part (i), what, if anything, can you conclude about the
continuity of f at (0,0) ? Justify your answer briefly.

d) Based on your answer to part (a), what, if anything, can you conclude about the

continuity of the partial derivatives f, and f, at (0,0) ? Provide a brief
explanation.
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[12] 5. f(z,y) =+/1+ 22+ 2.

(a) Calculate the linear approximation at (0,1).

(b) Prove that f is differentiable at (0,1).

(c) Use the linear approximation to estimate f(0.01,0.9).
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(d) Show that the error in the linear approximation from part (@) never exceeds
z® + (y — 1)2. What theorem are you using?
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